黑龙江省霍吉河钼矿床地质特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省逊克县霍吉河钼矿床是近年来新发现和正在勘查的Mo矿床,矿床矿体产出于黑云母二长花岗岩岩体中,辉钼矿等金属矿物呈浸染状、细脉浸染状赋存于蚀变二长岩(局部过渡为花岗斑岩)中的含矿黑云母—钾长石化—石英带、云母—石英网脉带、硫化物细脉带内,总体属于重要的斑岩型矿床,矿床规模达到大型。
     本文从成矿地质背景分析入手,深入研究矿床地质特征、地球化学特征,准确厘定了成矿岩体的形成时代,确定了该Mo矿床的成因,建立成矿模式,研究成果对本地区的开展类似研究工作与钼找矿工作有重要指导意义。
The HuoJiHe Mo deposit is located in the north of XiaoXingAnLing-ZhangGuangCaiLing metallogenic belt, which is discovered nearby years as a good-sized one.
     Indicating with field-lab integration research, The mineralizing of HuoJiHe Mo deposit is focused on the Yanshanian biotite monzonitic granite,which putting up local mineralizing in this rock.The ore veins are controled of hydrothermal altered rock belt,and molybdenum ores major in the mineralized biotite- K-feldspar - quartz belt, granite- quartz network belt or sulfid joint vein belt.
     Showing the results of petrochemistry, microelement geochemistry and REE geochemistry research, the biotite monzonitic granite is the melting production of thickening the lower rock of crust ,which is related to mineralizing, have near affinity with adakites,and the same to the characteristic of high potass。So mantle-resource melts offer the ore-forming element in the original magma,just as Mo element。
     Indicating with fluid inclusion research,the mineralized fluid is belong to NaCl-H2O system。In the front of mineralization,the fluid has high-temperature and high-salinity characteres,and stand by the events of forepart magma evolvement.In metallogenic epoch,the fluid is style of medium-lower temperature and medium-lower salinity.The primary homogenization temperature of mineralized fluid of this deposit focus on the zone between 185.3 to 360℃,and the peak value is between 245.3 to 360℃.Based on the homogenization temperature and salinity of fluid inclusion,we can see that the fluid density is between 0.66 g/cm3 to 0.87 g/cm3, the mineralized pressure is between 38Mp to 85Mp,compared with the mineralized depth is between 4.9Km to 7.5km。In the zone of homogenization temperature,there are two different fluids of medium salinity style and lower salinity style,and it indicated the mixing action occurring at fluid evolvement in a certain extent。
     Indicating with the results of fine chronology research, the forming era of biotite monzonitic granite is 184.92±0.91Ma, which is related to mineralizing.So the granite is near related to the Mesozoic Yanshanian strcture-magma movement ,compared to early-Paleozoic Caledonian, which is considered by father workers.
     With the colligated researches, the form of HuoJiHe Mo deposit is related to the XiaoXingAnLing-ZhangGuangCaiLing orogeny in Mesozoic.When the movement makes the lithosphere thick, the magma usually comes of neonatal thick lower crust, remaining garnet and hornblende, finally forms as adakitic magma。And then with the extending circumstance,which is worked by subduction of Pacific Plate,the magmas intrude into the 4.9-7.5Km zone and finally deposit ores,and then form the low-F porphyry-vein style Mo deposit,which absent ore fluorite.
引文
[1]Ai Y F and Feng R Z. Mo-bearing granitic material sources and genetic type of Yangjiazhangzi- Lanjiagou area[J]. Henan Geol.,1985,(Supp.): 198~204(in Chinese)
    [2]ARRIBAS A J, HEDENQUIST J W, ITAYA T, et al. Con-temporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines[J].Ge-ology, 1995, 23: 337-340.
    [3]ARRIBAS A Jr. Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid[J].Mineralogical Association of Canada Short Course Series, 1995, 23: 419-454.
    [4]ALL GRE C J, GIRARDEAU J, MARCOUX J,et al. Struc-ture and evolution of the Himalayan-Tibet orogenic belt[J].Na-ture, 1984, 307: 17-22.
    [5]Beus A, Grigorian S V. Gechemical Exploration Methods For Mineral Deposits(M). Moscow:Applied publishing LTD,1975:124~127。
    [6]Bell D R. Water in mantle minerals [J]. Nature,1992,357: 646—647.
    [7]Bondar B J. Revised equation and table for determining the freez-ing point depression of H2O_NaCl solutions. Geochemi Cosmochem Acta, 1993. 57: 683~684.
    [8]Boyle R W. The geochemistry of gold and its deposit (together with a chapter on geochemical prospectingforthe element) [M]. Geological Sur-vey, Bulletin 280, 1979.
    [9]BLLSNLUK P M, HACKER B, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J].Na-ture, 2001,412:628-632.
    [10]毕献武,胡瑞忠等.姚安和马厂箐富碱侵入体的地球化学特征[j].岩石学报,2005,21(1):113-124
    [11]Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300 to 500℃[ J]. America Journal of Science, 1991. 291: 309~338.
    [12]Bloom M S. Chemistry of inclusion fluids: stockwork molybde-num deposits form Questa, New Mexico, Hudson Bay Mountain,and Endako, Bristish Columbia[J]. Econ. Geo,1981,6: 1906 ~1920.
    [13]BABCOCK R C J, BALLANTYNE G H, PHILLIPS C H.Summary of the geology of the Bingham District, Utah[J].Arizona Geological Society Digest, 1995, 20: 316-335.
    [14]Cerny P,Blevin P L,Cuney M,et al.Granite-related ore deposits[C]//Hedenquist J W,et al.Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists,Inc,2005:337-370.
    [15]Candela P A,Piccoli P M.Magmatic processes in the development of porphyry-type ore systems[C] //Hedenquist J W, et al.Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists, Inc., 2005:25-37.
    [16]Candela P A.Controls on ore metal ratios in granite-related ore systems:an experimental and computational approach[J].Transac-tions of the Royal Society of Edinburgh:Earth Sciences,1992,83:317-326.
    [17]CLARK G H. Panaguna copper-gold deposit[A]. HUGHES FE.Geology of the Mineral Deposits ofAustralia and Papua New Guinea[C]. Australia :Australian Institute of Mining and Metallurgy, 1990. 1807-1816.
    [18]COLEMAN M, HODGES K. Evidence for Tibetan Plateau up-lift before 14 Ma ago from a new minimum age for east-west ex-tension[J].Nature, 1995, 374:49-52.
    [19]CHEN W J, LI Q, HAO J, et al. Post crystallization thermal evolution history of Gangdese batholithic zone and its tectonic implication[J].Science in China, 1999, 42(1): 37-44.
    [20]COULON C, MALUSKI H, BOLLINGER C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic sig-nificance[J].Earth Planet Sci Lett, 1986,79: 281-302.
    [21]CAMUS F, SILLTIOE R H, PETERSEN R. Andean copper deposits: New discoveries, mineralization style and metallogeny[J].Society of Economic Geologist, Special Publication5,1996, 5:198.
    [22]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J].Geology,2003.
    [23]DEWEY J F, SHACKELTON R M, CHANG C, et al. The tectonic evolution of the Tibetan plateau[J].Phil Trans RoySoc Lond,1988, A327:379-413.
    [24]DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Na-ture,1990, 347: 662-665.
    [25]DURR S B. Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous, south Tibet)[J].Geol Soc Am Bull, 1996, 108:669-684.
    [26]Defant M J, Drummond M S, Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc[J]. Geology,1993,21:547-550.
    [27]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Na-ture,1990,347:662-665.
    [28]丁振举,等.地幔流体及其成矿作用[J].地质科技情报, 1997,16 (1): 72—76.
    [29]迟效国等。青藏高原高Mg#和低Mg#两类钾质·超钾质火山岩及其源区性质[j].岩石学报,2006,22(3):595-602.
    [30]崔革,于静秋,高艳秋等.黑龙江省东部晚石炭一晚白奎世地层的古地磁特征及其地质意义[j].黑龙江地质,1991,2(2):41一49.
    [31]迟元林,云金表,蒙启安等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002,39一69.
    [32]程瑞玉,吴福元,葛文春等.黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化[j].岩石学报,2006,22(2):353一376.
    [33]陈文明,王勇,陈伟十.斑岩铜矿含矿斑岩体石英斑晶中中高盐度NaCI一H20溶液包裹体的捕获环境及物化条件限定[C].地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议.
    [34]陈雪.黑龙江省鸡东金场沟铜钼矿控矿条件与成矿预测[D]. 2008.吉林大学硕士学位论文.
    [35]陈骏,王鹤年.《地球化学》(M).科学出版社,2004.
    [36]Cerny P,Blevin P L,Cuney M,et al.Granite-related ore deposits[C]//Hedenquist J W,et al.Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists,Inc,2005:337-370.
    [37]曹殿华,王安建,管烨,陈江.基于模糊逻辑的中甸岛弧斑岩型铜矿定位预测[j].矿床地质,2006,25(2):199~206.
    [38]陈衍景,陈华勇,刘玉林,郭光军,赖勇,秦善,黄宝玲,张增杰,隋颖慧,李超,李震,李萍,李欣,王海华,朱梅湘,高秀丽,魏倚英.碰撞造山过程内生矿床成矿作用的研究历史和进展[J].科学通报, 1999,44: 1681~1689.
    [39]代军治,毛景文等。辽西兰家沟钼矿床成矿流体特征及成因探讨[j].矿床地质,2007,26(4):443-454.
    [40]郭峰,范蔚茗等.大兴安岭南段晚中生带双峰式火山作用[j].岩石学报,2001,17(1):161-168
    [41]葛文春,吴福元等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[j].科学通报,2007,52(20):2407-2417.
    [42]高晓峰.东北地区中生代火成岩SrNd一Pb同位素填图及其对区域构造演化的制约[D].中国科学院研究生院博士学位论文.2007.
    [43]高晓峰,郭锋,范蔚茗等.南大兴安岭晚中生代中酸性火山岩的岩石成因[j].岩石学报,2005,21(3):737一748.
    [44]高永丰,侯增谦,魏瑞华,等.西藏高原冈底斯中新世含矿斑岩岩石学特征及动力学意义[J].岩石学报,2003, 19:418-428.
    [45]葛宁杰,侯振辉,李惠民,陈江峰,刘斌,阮俊,秦礼萍.大别造山带岳西沙村镁铁一超镁铁岩体的错石U一Pb年龄[j].科学通报,1999,44:2110一2114
    [46]GARZA R A P, TITLEY S R, FRANCISCO P B. Geology of the Escondida porphyry copper deposit, Antofagasta region,Chile[J].Econ Geol, 2001, 96:307-324.
    [47]GUILERMO O C, ROBERTO F C, GUSTAFSON L B,et al.Geology of the Chuquicamata Mine: A progress report[J].Econ Geol, 2001,96:249-270.
    [48]GRANT J A. The isocon diagram—A simple solution to Gre-sens’equation for metasomatic alteration[J].Econ Geol, 1986,81:1976-1982.
    [49]Garven G.Continental-scale groundwater flow and geologic pro-cesses[J].Ann.Rev.Earth Planet.Sci., 1995,23:89-117.
    [50]Garven G,Raffensperger J P.Hydrogeology and geochemistry of ore genesis in sedimentary basins[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley&Sons, Inc., 1997: 125-189.
    [51]Groves D I. The crustal continuum model for late-Archean lode-gold de-posits of the Yilgarn Block, Western Australita [J]. MineraliumDeposita,1993, 28: 366—374.
    [52]郭利果,刘玉平,徐伟,等. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约[J].岩石学报,2006,21(4):1009-1016.
    [53]侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘, 2004, 11(1): 131-143.
    [54]侯增谦,曲晓明等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[j].矿床地质,2006,25(6):629-651.
    [55]侯增谦,潘小菲等.初论大陆环境斑岩铜矿[j].现代地质,2007,21(2):332-351.
    [56]侯增谦,钟大赉等.青藏高原东缘斑岩铜钼金成矿带的构造模式[j].中国地质,2004,31(1):1-14.
    [57]侯增谦,潘桂棠等.青藏高原碰撞造山带:晚碰撞转换成矿作用[j].矿床地质,2006,25(5):521-543.
    [58]侯增谦,莫宣学等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[j].2006,33(2):340-351.
    [59]侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学, 2003, 33: 609-618.
    [60]HOU Z Q, MA H W, ZA W K, et al. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet[J].Economic Geology, 2003, 98: 125-145.
    [61]HOU Z Q, QU X M, RUI Z Y, et al. The Gangdese Miocene porphyry copper belt generated during post-collisional extension in the Himalayan-Tibetan Orogen[J].Economic Geology, 2004(in press).
    [62]HOU Z Q, ZENG P S, GAO Y F, et al. The Himalayan Cu-Mo-Au mineralization in the eastern Indo- Asian collision zone:Constraints from Re-Os dating of molybdenite[J].Mineralum Deposita, 2004 (in press)
    [63]HARRIS N B W, XU R, LEWIS C L, et al. Isotope geochem-istry of the 1985 Tibet Geotraverse, Lhasa to Golmud[J].Phil Trans Roy Soc Lond, 1988, A327: 263-285.
    [64]HENDERSON P.Rare Earth Element Geochemistry[M].London: Elsevier Science Publishers, 1984.1- 284.
    [65]HOLLISTER V F. Models for prospect evaluation of porphyry copper deposits[A]. HOLLISTER V F.Porphyry Copper,Molybdenum, and Gold Deposits, Volcanogenic Deposit(sMassive Sulfides), and Deposits in Layered Rock[C]. NewYork: Society for Mining, Metallurgy and Exploration, 1991.3:5-10.
    [66]HEDENQUIST J W, ARRIBAS A J, REYNOLDS T J. Evolu-tion of an intrusion-centered hydrothermal system: Far South-east-Lepanto porphyry and epithermal Cu-Au deposits, Philip-pines[J].Econ Geol, 1998, 93: 373-404.
    [67]HARRISON T M, COPELAND P, KIDD W S F, et al. Rais-ing Tibet[J].Science,1992, 255: 1663-1670.
    [68]HEDENQUIST J W, ARRIBAS A J, GONZALEZ-URIEN E.Exploration for epithermal gold deposits[J]. Reviews in Eco-nomic Geology, 2000, 13: 245-277.
    [69]洪大卫,工式洗,韩宝福等.碱性花岗岩的的构造环境分类及其鉴别标志[j].中国科学(B辑),1995,25:418一426.
    [70]韩海涛,刘继顺,董新,欧阳玉飞.西秦岭温泉斑岩型钼矿床地质特征及成因浅析[J].地质与勘探,2008,44(4):1-7.
    [71]侯敏,杜恒芳.小兴安岭南段-张广才岭成矿带主要金属矿床成矿系列的划分及区域成矿规律[j].黑龙江地质.1998,9(3):10-16
    [72]韩振新,赫正平,等.黑龙江省主要成矿带矿床成矿系列[M ].哈尔滨工程大学出版社, 1996.
    [73]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].黑龙江人民出版社,2004
    [74]Han. Chunming. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang[j] , central Asia. Ore Geology Reviews.v .2006,.29(1).p 77-94.
    [75]胡永达.青海东昆仑乌兰乌珠尔铜矿地质特征及成矿远景评价[D].吉林大学硕士学位论文. 2007.
    [76]黄熏德,吴郁彦.《地球化学找矿》(M).地质出版社,1996.
    [77]НекрасовИЙЯ.银和金金属互化物形成条件的实验研究[j].东北地质科技情报, 1986,(2):17~24.
    [78]韩振新,郝政平,侯敏.小兴安岭地区与加里东期花岗岩类有关的矿床成矿系列[j].矿床地质.1995,14(4):293-302
    [79]侯增谦,王二七。印度—亚洲大陆碰撞成矿作用主要研究进展[J].地球学报,2008,29(3):275-292.
    [80]Hugh R。Rollison,杨学明,等译。《岩石地球化学》(M)中国科学技术大学出版社,2000。
    [81]黄典豪,董群英,甘志贤.中国钼矿床[M].北京:地质出版社, 1989. 482-483.
    [82]黄典豪,吴澄宇,聂风军.陕西金堆城斑岩钼矿床地质特征及成因探讨[J].矿床地质, 1987, 6(3): 22-34.
    [83]黑龙江省地质矿产局.黑龙江省区域地质志[M ].地质出版社, 1993.
    [84]姜耀辉,蒋少涌等。陆一陆碰撞造山环境下含铜斑岩岩石成因—以藏东玉龙斑岩铜矿带为例[j].2006,22(03):697-706.
    [85]李永军,高占华,李英,等.西秦岭温泉岩浆混合花岗岩的地球化学特征[J].地质地球化学, 2003, 31(4): 43-49.
    [86]林新多,张德会,章传玲.湖南宜章瑶岗仙黑钨矿石英脉的成因[J].地球科学,1986,11:153-160.
    [87]KERRICH R, GOLDFARB R, GROVES D, et al. The charac-teristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J].Sicence in China, 2000, 43: 1-68.
    [88]Kay R W,Kay S M. Andean adakites:three ways to make them [J]. Acta Petrologica Sinica, 2002, 18:303—311.
    [89]Kwak T A P.W-Sn skarn deposits and related metamorphic skarns and granitoids[M]. Amsterdam:Elsevier,1987:451.
    [90]LambM A, Cox D. New40Ar/39Ar age data and im-plications forporphyry copperdeposits ofMongolia [J].Economic Geology, 1998, 98: 524.
    [91]刘宝山.马永强.吕军等.伊春地区上游新村晚三叠世二长花岗岩体成因及就位机制[j].地质与资源. 2005,14(3)170~175
    [92]Ledair A D. Crustal-scale auriferous shear zones in the Central Superrior Province, Canada [J]. Geology, 1993, 21: 1298—1307.
    [93]Li. Peilan. Yu. Xingzhen. Experimental Study Of The Principle Of Geochemical Potential Conservation Based On The Mineralization Of Duobaoshan Porphyry Copper Deposit. Zhongnan Kuangye Xueyuan Xuebao/Journal of Central-South Institute of Mining and Metallurgy.1987.18(4).p 380-384
    [94]李朝阳等著.中国铜矿主要类型特征及其成矿远景[M].地质出版社,2000.
    [95]LOWELL J D, GUILBERT J M. Lateral and vertical alter-ation-mineralization zoning in porphyry oredeposits[J].EconGeol, 1970, 65:373-404.
    [96]罗照华,莫宣学等.透岩浆流体成矿作用———理论分析与野外证据[j].地学前缘,2007,14(3):165-183.
    [97]冷成彪,张兴春等.中国斑岩铜矿与埃达克(质)岩关系探讨[j].地学前缘,2007,14(5):199-210.
    [98]李诺,陈衍景等.东秦岭斑岩钼矿带的地质特征和成矿构造背景[j].地学前缘,2007,14(5):186-198.
    [99]刘显凡,宋祥峰等.地幔流体在滇西富碱斑岩成岩成矿过程中的作用-地质年代学和同位素地球化学制约[j].吉林大学学报,2006,36(4):503-534.
    [100]李志安,闰义.中国东北造山带—盆地系统动力学研究[j].大地构造与成矿学,2000,24(1):31-37.
    [101]李锦轶.中国东北及邻区若干地质构造问题的新认识[j].地质评论,1998,44(4):339一347.
    [102]刘斌,沈昆.流体包裹体热力学基础[M].北京:地质出版社,1999, 1~290.
    [103]林强,葛文春,孙德有等.东北地区中生代火山岩的大地构造意义.地质科学,1998,33(2):129一139
    [104]刘伟,潘小菲,谢烈文等.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式.岩石学报,2007,23(2):441一460.
    [105]卢焕章,范宏瑞,倪培,等.流体包裹体[M].科学出版社,2004.
    [106]龙昱.《矿体定位预测的地质标志与方法》[M].中国地质大学出版社,2002.
    [107]刘俊来,宋志杰,曹淑云,翟云峰,王安建,高兰,修群业,曹殿华.印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程--以藏东三江地区构造演化为例[j].岩石学报,2006.,22(4):775~786.
    [108]李红阳,等.试论冀西北多金属矿产富集区地幔热柱及其成矿制约[J].地球科学, 1996, 17(4).
    [109]Michard A.Rare earth element systematics in hydrothermal fluids[j].Geochim Cosmochim Acta,1989,53:745-750.
    [110]MACDONALD G D, AMOLD L C. Geological and geochemical zoning of the Grasberg igneous complex, Irian, Jaya, Indonesia[J].Journal ofGeochemical Exploration,1994, 50: 145-178.
    [111]MELDRUM S J, AQUINO R S, GONZALES R I, et al. The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, In-donesia[J].Journal of Geochemical Exploration, 1994, 50:203-220.
    [112]MILLER C, SCHUSTER R, KLOTZLI U, et al. Post-colli-sional potassic and ultrapotassic magmatism in SW Tibet: Geo-chemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J].Journal of Petrol, 1999,40:1399-1424.
    [113]MITCHELL A H G. Metallogenic belts and angle of dip of Be-nioff zones[J].Nature, 1973, 245: 49-52
    [114]MAKSAEV V, ZENTILLI M. Fission track thermochronology of the Domeyko cordillera, northern Chile: Implications for An-dean tectonics and porphyry copper metallogenesis[J].Mining Geology and Exploration, 1999, 8: 65-89.
    [115]Ma H W. Granitoid and mineralization of the Yulong porphy-ry copper belt in eastern Tibet[M]. Beijing: China Universi-ty of Geosciences Press,1990: 157(in Chinese).
    [116]Matveev S, et al. Volatile in the earth’s mantle: I. Synthesis of CHO fluids at 1237K and 2·4Gpa [J]. Geochimica et Acta, 1997, 61(15): 3018—3088.
    [117]Norton D, Knight J.Transport phenomena in hydrothermal systems:cooling plutons[J]. Amer. Jour.Sci.,1977,277:937-981.
    [118]Norton D.Fluid and heat transport phenomena typical of copper-bearing pluton environments: Southeastern Arizona[C]//Titley S R.Advances in Geology of the Porphyry Copper Deposits Southwest-ern North America.University of Arizona Press,1982:59-72.
    [119]Norton D.Theory of hydrothermal systems[J].Ann.Rev.Earth Plan-et.Sci.,1984,12:155-177.
    [120]Norton D.Metasomatism and permeability[J].Amer.J.Sci.,1988,288:604-618.
    [121]Neuendorf K K E,Mehl J,Jackson,Jr J A,et al.Glossary of geolo-gy[M].Alexandria:American Geological Institute,Fifth Edition,2005:158.
    [122]马永昌,王长刚,冯国清,李友权,宋雨春,贾广宁. 2002.杨家杖子矿区再找矿[J].矿床地质, 21(增刊): 434~438.
    [123]毛景文,李晓峰等。中国造山带内生金属矿床类型、特点和成矿过程探讨[j].地质学报,2005,79(3):342-372.
    [124]毛景文,李荫清.河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿的关系.矿床地质, 2001,20(1):23~36.
    [125]孟祥金,侯增谦等。碰撞造山型斑岩铜矿蚀变分带模式———以西藏冈底斯斑岩铜矿带为例[j].地学前缘,2004,11(1):202-214.
    [126]聂凤军,张万益等。内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义[j],地质学报,2007,81(7):898-905.
    [127]聂凤军,张万益等。内蒙古小东沟斑岩钼矿床地质特征及成因探讨[j].矿床地质,2007,26(6):609-620.
    [128]Oyarzun R,Marquez A,Lillo J,et al.Giant versus smallporphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism[J]. Mineral Deposit,2001,36:794—798.
    [129]潘贵,刘宝山,李仰春.伊春地区晚奥陶世花岗质岩石中闪长质包体的成因[j].中国地质.2002,29(4):364-368
    [130]朴寿成,翟玉峰,赵春光。因子得分值得新思路(J)。地质与勘探,2002,38(2):68~70。
    [131]Paterno R.Castillo.埃达克岩成因回顾[j].科学通报,2006,51(6):617-627.
    [132]PERELLO J, COX D, GARAMJAV D, et al. Oyu Tolgoi,Mongolia: Siluro-Devonian porphyry Cu-Au-(Mo) and high-sul-fidation Cu mineralization with a Cretaceous chalcocite blanket[J].Econ Geol, 2001, 96: 1407-1428.
    [133]PERELLO J. Geology, porphyry Cu-Au, and epithermal Cu-Au-Ag mineralization of the Tombuliato district, North Sulawe-si, Indonesia[J].Jour Geochem Explor, 1994, 50: 221-256.
    [134]PIERCE J A, MEI H. Volcanic rocks of the 1985 Tibet Geotra-verse. Lhasa to Golmud[J].Phil Trans Roy Soc Lond, 1988,A327:203-213.
    [135]曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿成矿带:西藏第二条玉龙铜矿带[J].矿床地质, 2001, 20:355-366.
    [136]邱家骧,林景仟.岩石化学[ M].北京:地质出版社,1991.131
    [137]邱殿明.黑龙江省东部岩石圈演化特征.吉林大学博士论文. 2005.
    [138]秦秀峰,尹志刚等。大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义[j].岩石学报,2007,23(6):1501-1511.
    [139]秦克章,李惠民,李伟实,等.内蒙古乌努格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评,1999,45(2):180-185.
    [140]Robb L.Introduction to Ore-forming Processes[M].Malden:Black-well Science Ltd.,2005:373.
    [141]Roberts M P, Clements J D .1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21:825-825
    [142]Robert F,Kelly W C。Ore-forming fluids in Archean gold-bearing quarz veins at the Sigma Mine,Abitibi greenstone belt, Quebec, Canda[J]。Econ。Geol。,1987,82:1464-1482。
    [143]Roedder E,Bodnar R J.Geologic pressure determinations from flu-id inclusion studies[J].Annual Rev.Earth Planet.Sci.,1980,8:263-301.
    [144]RUSHP M, SEEGERS HJ. Ok Tedi copper-gold deposits[A].HUGHES F E.Geology of the Mineral Deposits of Australia and Papua New Guinea[C]. Australia: Australian Institute of Mining and Metallurgy, 1990. 1747-1754.
    [145]Rapp R P,Xiao L,Shinizu N. Experimental constraints on the origin of potassium-rich adakites in eastern China[J]. Acta Petrologica Sinica, 2002,18(3):293-302.
    [146]RICHARDS J P, BOYCE A J, PRINGLE M S. Geologic evo-lution of the Escondida area, northern Chile: A model for spatial and temporal location of porphyry Cu mineralization[J].Econ Geol, 2001, 96: 271-306.
    [147]REYNOIDS T J, BEANE R E. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit[J].Econ Geol, 1985, 80: 1328-1347.
    [148]隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[j].岩石学报,2007,23(2):461—480
    [149]舒广龙.湖北丰山矿田成矿地质背景及斑岩成矿系列与微细浸染型金矿[D]. 2004.
    [150]孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光.U-Pb年龄测定[J].地球学报,2004,25(2):213-218.
    [151]孙加鹏,张兴洲,杨宝俊.张广才岭岩石圈结构及盆岭构造[J].长春科技大学学报.1999.29(1):25-28
    [152]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].吉林大学博士论文2007.
    [153]孙德有.张广才岭中生代花岗岩成因及其地球动力学意义[D].吉林大学博士学位论文. 2001.
    [154]Singer. Donald A. Porphyry copper deposit density[J]. Economic Geology .2005.100(3).p1637-1641.
    [155]时永明.崔彬.贾维林.黑龙江省铁力市鹿鸣钼矿床地质特征[J].地质与勘探. 2007,43(2)20~22.
    [156]孙德有,吴福元,高山,吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘.2005,12(2):263-275
    [157]斯米尔诺夫ВИ.矿床地质学[M].《矿床地质学》翻译组译.北京:地质出版社,1985:532.
    [158]舍赫特曼ПА,科罗列夫ВА,尼基福罗夫НА,等.热液矿床详细构造预测图[M].石准立等译.北京:地质出版社,1982:263.
    [159]Simmons S F,White N C,Jone D A.Geological characteristics of epithermal precious and base metal deposits[C]//Hedenquist J W,et al.Economic Geology 100th Anniversary Volume.Littleton:Soci-ety of Economic Geologists,Inc.,2005:485-522.
    [160]SCHAER U, XU R H, ALL RE C J. U-Pb geochronology of the Gangdese (Transhimalaya) plutonism in the Lhasa-Xizang region, Tibet[J].Earth Planet Sci Lett, 1984, 69:311-320.
    [161]SILITOE R H. A plate tectonic model for the origin of porphyry copper deposits[J].Econ Geol, 1972. 67-184.
    [162]Shmulovich K I, Yardley B D, Gonchar G G. Fluids in the crust [M].Moscow: Chapman and Hall Press, 1995, 215—312.
    [163]SHEPPARD S M F, NIELSON R L, TAYLORHP J. Oxygen and hydrogen isotope ratios of clay minerals from porphyry cop-per deposits[J].Econ Geol, 1969, 64: 755-777.
    [164]SILITOE RH. Epochs of intrusion-related copper mineralization in the Andes[J].JS Am Earth Sci, 1988, 1: 89-108.
    [165]SILLITOE R H. Major regional factors favouring large size,high hypogene grade, elevated gold content and supergene oxida-tion and enrichment of porphyry copper deposits[A].PORTER T M. Porphyry and Hydrothermal Copper and Gold De-posits—A Global Perspective[C]. Perth, Adelaide: AustralianMineral Foundation/PGC Publishing, 1998. 49-60.
    [166]Sajona FG,Maury RC. Association of adakites with gold and copper mineralization in the Philippines [J]. CR ACAD SCI II A,1988,326(1):27—34.
    [167]SHEPPARD S M F. Hydrogen and oxygen isotope ratios in min-erals from porphyry copper deposits[J].Econ Geol, 1971, 66:515-542.
    [168]TURNER S, HAWKESWORTH G, LIU J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J].Na-ture, 1993, 364: 50-54.
    [169]TITLEY S R, FLEMING A W, NEALE T I. Tectonic evolu-tion of the porphyry copper system at Yandera, Papua New Guinea[J].Econ Geol, 1978, 73:810-828.
    [170]Thieblemont D, Stein G, Lescuyer J-L. Gisements epithermaux et porphyriques:la connexion adakite[J].Earth Planet Sci,1997,325:103—109.
    [171]唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社, 1998,210~280.
    [172]ULRICH T, HEINRICHC A. Geology and alteration geochem-istry of the porphyry Cu-Au deposit at Bajo de la Alumbrera Ar-gentina[J].Econ Geol, 2001, 96:1719-1742.
    [173]Fu-yuan Wu, Bor-ming Jahn, Simon A. Wilde et al., Highly fractionated I-type granites in NE China (II):isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos. 2003,67:191-204
    [174]王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社,1989,223-224
    [175]王强,唐功建等.埃达克质岩的金属成矿作用[j].高校地质学报,2008,14(3):350-364.
    [176]王强,许继峰等.中国埃达克岩或埃达克质岩及相关金属成矿作用[j].矿物岩石地球化学通报,2007,26(4):336-349.
    [177]吴福元,李献华等。花岗岩成因研究的若干问题[j].岩石学报,2007,23(6):1217-1238.
    [178]吴福元,孙德有,李惠民等.2000.松辽盆地基底岩石的错石u一Pb年龄.科学通报,45(6):656-660
    [179]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15:181一189.
    [180]吴福元,叶茂,张世红.中国满洲里-绥芬河地学断域的地球动力学模型[J].地球科学,1995,20:535-539.
    [181]魏春生,郑永飞,赵子福.中国东部A型花岗岩形成时代及物质来源的Nd一Sr一O同位素地球化学制约[J].岩石学报,2001,l7(l):95一111.
    [182]吴锡生。《地探数据处理方法》(M)。地质出版社,1993。
    [183]王江海,尹安,H丽sonTM等.青藏东缘新生代两类高钾岩浆活动的热年代学研究[J].中国科学,D辑,2002,32(7):529一537
    [184]Walsh J F,Kesler S E。Fluid inclusion geochemistry of high grage,vein hosted gold ore at the pamore Mine,poreupine Camp,Ontario[J]. Econ.Geol.1988,83:1347-1367.
    [185]WILLIAMS H, TURNER S, KELLEY S, et al. Age and com-position of dikes in Southern Tibet: New constraints on the tim-ing of east-west extension and its relationship to post-collisional volcanism[J].Geology, 2001, 29: 339-342.
    [186]WILLIAMS S A, FORRESTER J D. Characteristics of por-phyry copper deposits[J].Arizona Geological Society Digest,1995, 20: 21-34.
    [187]王可勇,任云生,程新民,等.黑龙江团结构金矿床流体包裹体研究及矿床成因[J].大地构造与成矿,2004,28(2):171?178.
    [188]王可勇,姚书振,吕新彪.川西北马脑壳金矿床流体相分离及其成矿意义[J].地球学报, 2001,22(1):35~38.
    [189]XU R H, SCHAER U, ALL RE C J. Magmatism and meta-morphism in the Lhasa block(Tibet): A geochronological study[J].Journal of Geology, 1985, 93: 41-57.
    [190]Xiong X L,Li X H,Xu J F,et al. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate:The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China [ J ]. Geochemical Journal,2003,37:233—252.
    [191]Xu J F,Wang Q,Xu Y G,et al. Geochemistry of Anjishan in-termediate-acid intrusive rocks in Ningzhen area:constraint toorigin of the magma with HREE and Y depletion[J]. Acta Petrologica Sinica,2001,17(4):576-584(in Chinese).
    [192]肖庆辉,邢作云,张昱,等.当代花岗岩研究的几个重要前沿[J].地学前缘, 2003, 10(3): 221-229.
    [193]冶金工业部地质研究所.中国斑岩铜矿[ M].科学出版社,1984.
    [194]尹冰川,冉清昌.小兴安岭—张广才岭地区区域成矿演化[J],矿床地质,1997,16(3):237-242
    [195]芮宗瑶,侯增谦,李光明,等.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J].地质与勘探,2006,42(1):1-6.
    [196]袁奎荣.隐伏花岗岩预测及深部找矿[M].北京:科学出版社,1990:214.
    [197]於崇文,岑况,鲍征宇,等.成矿作用动力学[M].北京:地质大学出版社,1998:230.
    [198]於崇文,岑况,鲍征宇,等.热液成矿作用动力学[M].武汉:中国地质大学出版社,1993:100-123.
    [199]YIN A, HARRISON T M. Geologic evolution of the Hi-malayan-Tibetan orogen[J].Annu Rev Earth Planet Science,2000,28: 211-280.
    [200]YIN J, XU J, LIU C, et al. The Tibetan plateau: Regional stratigraphic context and previous work[J].Phil Trans Roy Soc Lond, 1988, A327:5-52
    [201]姚春亮,陆建军等。斑岩铜矿若干问题的最新研究进展[j].矿床地质,2007,26(2):221-229.
    [202]郑有业,高顺宝,张大权,等.西藏朱诺斑岩铜矿床发现的重大意义及启示[J].地学前缘,2006,13(4):233-239.
    [203]郑有业,多吉,王瑞江,等.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展[J].中国地质.2007,34(2):324-335
    [204]翟裕生,姚书振,崔彬,等.成矿系列研究[M].武汉:中国地质大学出版社, 1996: 1-192
    [205]翟裕生,邓军,王建平,等.深部找矿研究问题[J].矿床地质, 2004, 23(2): 142-149.
    [206]Zheng. you-ye. Ore-forming fluid controlling minerallzation in Qulong super-large porphyry copper deposit, Tibet .Diqiu Kexue–Zhongguo Dizhida Daxue Xuebao /Earth Science-jlurnal of China University of Geosciences .2006.31(3).p349-354.
    [207]张海心.内蒙古乌奴格吐山铜钼矿床地质特征及成矿模式[D].吉林大学硕士学位论文. 2006.
    [208]赵明玉.张广才岭成矿带铁力-玉泉有色金属、贵金属矿带成矿特征分析[J].矿产与地质.2000.14(78):225-229
    [209]张均.《隐伏矿体定位预测方法》(M).地质出版社,1999.
    [210]张旗,许继峰等.埃达克岩的多样性[j].地质通报,2004,23(9-10):959-965.
    [211]张旗,王焰等.埃达克岩的特征及其意义[j].地质通报,2002,21(7):431-435.
    [212]张旗,王焰等.埃达克岩与构造环境[j].大地构造与成矿学,2003,27(2):101-108.
    [213]赵文津.大型斑岩铜矿成矿的深部构造岩浆活动背景[j].中国地质,2007,34(2):179-205.
    [214]张炯飞,李之彤等.中国东北部地区埃达克岩及其成矿意义[j].岩石学报,2004,20(02):361-368.
    [215]张旗,秦克章等.中国与埃达克质岩有关的矿床分布、找矿方向及找矿方法刍议[j].华南地质与矿产,2004,2:1-8.
    [216]张旗等.花岗岩构造环境问题:关于花岗岩研究的思考之三[j].岩石学报,2007,23(11):2683-2698.
    [217]张旗,秦克章,王元龙,等.加强埃达克岩研究,开创中国Cu-Au找矿的新局面[J].岩石学报,2004,20(2):195-204.
    [218]张显.黑龙江省东部早中生代火成岩构造组合及其大地构造演化[D].中国地质大学(北京)博士学位论文.2008.
    [219]张明显.热液沸腾与金成矿作用刍议[J].黄金地质, 1997, 3.
    [220]张兴洲,穆石敏,杨宝俊等.拼合的大陆板块.张贻侠,孙运生,张兴洲等止上编.中国满洲里一绥芬河地学断面1:1000000说明书.北京:地质出版社. 1999:6~19.
    [221]赵国龙,杨杜林,傅嘉有.大兴安岭中南部中生代火山岩[M].北京:北京科学技术出版社,1989,1一75.
    [222]郑亚东等.燕山带中生代主要构造事件与板块构造背景问题[J].地质学报,2000,74:289一302.
    [223]赵海玲,邓晋福,陈发景等.黑龙江完达山地区中侏罗世火山岩特征及其构造背景[J].地球科学,1996,21(4):428一432.
    [224]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社, 1993,107~156.
    [225]张泓翔,徐志方,黄智龙,等.地幔流体基本特征及成因[J].地质地球化学, 2000, 28(2): 1—7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700