慢性胆道感染对Oddi括约肌功能影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     临床上,Oddi括约肌(sphincter of Oddi,SO)松弛在肝胆管结石患者比较常见,由于SO松弛可能诱发返流性胆管炎,从而使肝胆管结石复发增加,因此,SO松弛与否是术中是否废弃SO行胆肠吻合的主要参考因素。但随着胆肠吻合术后吻合口狭窄、癌变以及结石复发等远期并发症逐渐被认识,越来越多的研究者提出尽可能地保留SO的结构和功能并恢复胆道的正常生理结构,这一观点的提出使得一些研究者致力于弄清肝胆管结石患者SO松弛的发生原因。但迄今为止SO松弛的病因不明,学术界对肝胆管结石患者SO松弛的原因存在较大争议,一部分研究者认为排石过程对SO组织的机械性损伤是SO松弛的主要原因,另一部分研究者却发现SO松弛与否和可能存在的排石过程并无密切关系。
     炎性肠道病变和非结石性胆囊炎引起的平滑肌功能变化是近年来消化系统功能学研究的热点之一。炎症状态下平滑肌运动功能减弱与活性氧簇和亚硝酸盐等炎症代谢产物对平滑肌细胞膜的损害有密切关系,表现为钙离子稳态失衡,肌球蛋白轻链(myosin light chain, MLC)磷酸化障碍甚至纤丝状肌动蛋白(filamentous actin, F-actin)发生重塑。这些研究结果强烈的提示我们反复发作的胆道感染可能与肝胆管结石患者SO松弛有着密切的关系。但关于慢性胆道感染对SO功能有何影响目前尚未见相关报道。
     基于以上背景,我们推测:反复发作的胆道感染可能是SO平滑肌收缩功能减弱的重要原因。为验证我们的假说,本研究旨在通过临床研究,观察SO松弛患者的SO压力和肌电活动特征,分析肝胆管结石患者SO松弛的主要危险因素。随后通过建立兔胆道感染的动物模型,研究慢性胆道感染对兔在体和离体SO肌电活动的影响;最后从细胞水平阐明慢性胆道感染后SO平滑肌细胞收缩相关的钙离子动员、MLC磷酸化、F-actin重塑的发生情况。
     材料与方法
     一、采用环状电极记录肌电和三通道测压导管测压的方法,我们记录了肝胆管结石患者SO松弛时的SO压力和肌电特征,分析其SO基础压(SO basal pressure,SOBP)、峰压(SO amplitude,SOAP)和收缩持续时间(duration of SO contraction)、收缩频率(frequency of SO phasic contraction, SOF)以及SO肌电幅值(amplitude of SO spike burst, SOSB)的变化情况。进一步,采用多因素分析回顾性研究293例肝胆管结石患者SO松弛的发生情况,分析年龄、性别、病程、结石分布、结石大小、结石性状、既往手术次数、手术方式以及既往胆管炎发作次数等因素与SO松弛的相关性。
     二、用改良的Thomas法建立清醒状态下兔SO功能检测的动物模型,在清醒状态下记录兔SO的肌电活动,分析消化间期、静脉给予不同剂量的CCK和进食后SO肌电的变化情况。
     三、用胆总管内置丝线和经胆囊管连续3周(每周1次)向胆总管内注入大肠杆菌的方法建立慢性胆道感染的动物模型,以对照组和非感染组为对照,采用一般情况(饮食量、肛温、体重变化)、SO病理检测评分和肝功能检测的方法对模型进行判断。在模型终点进行在体和离体SO肌电记录,对慢性胆道感染组、对照组和非感染组的肌电活动进行比较。在体SO肌电记录分别比较在消化间期、静脉给予不同剂量的CCK后各组SO的肌电变化情况,分析慢性胆道感染对SO肌电活动的影响。离体实验采用完整切取SO组织、在离体器官浴槽中记录SO肌电活动的方法进行,比较各组SO在基础状态、CCK诱发的SO肌电频率、幅值变化情况,进一步,我们研究了在激动剂[60 mM KCl,50 nM ionomycin,10 nM cholecystokinin (CCK)]作用下和容量依赖的钙离子内流(capacitative calcium entry, CCE)诱导下胞外钙离子内流和胞浆内钙池钙离子释放引发SO肌电活动的变化。
     四、为研究慢性胆道感染对平滑肌细胞钙离子稳态、MLC磷酸化及F-actin表达的影响,我们对对照组,非感染组和慢性胆道感染组SO平滑肌细胞进行了原代分离和培养,首先用Fluo-3 AM负载后在激光共聚焦显微镜下观察激动剂(60 mM KCl,50 nM ionomycin,10 nM CCK)和CCE对胞浆内[Ca2+]i的影响,然后用Western-blot方法检测SO平滑肌组织中MLC磷酸化水平的改变,最后检测了FITC- phalloidin标记的平滑肌细胞骨架F-actin的表达情况。
     结果
     一、293例肝胆管结石患者中伴发SO松弛60例(20.5%),与SO不松驰的患者相比较,其SO基础压、峰压、收缩频率和收缩持续时间降低,SO肌电幅值和频率也相应降低。肝胆管结石的病程和多次发作的急性胆管炎与SO松弛的发生密切相关。
     二、建立了清醒状态下SO肌电检测的动物模型。禁食期间,SO的肌电活动呈周期性变化,肌电活动由较弱的1期经逐渐升高的2期过渡至肌电活动最强的第3期,4期为3期向1期的短暂过渡期。20 ng·kg-1和100 ng·kg-1的CCK以及进食可以明显兴奋SO的肌电活动。
     三、建立了慢性胆道感染的动物模型,慢性胆道感染后γ-谷氨酰转肽酶(γ-glutamyltransferase, GGT)和碱性磷酸酶(alkaline phosphatase, ALP)的明显升高,SO组织在病理上表现为黏膜层、肌层炎细胞浸润和肌层胶原纤维沉积增多,炎症评分明显增高。慢性胆道感染后SO肌电频率、运动指数在2期、3期明显减低,20 ng·kg-1和100 ng·kg-1的CCK兴奋SO肌电活动的作用减弱。同样,慢性胆道感染后静息状态及10 nM CCK诱导下离体SO肌电活动明显减低,促进胞外钙离子内流和胞内钙离子释放的激动剂诱发的肌电活动也明显减弱。
     四、利用胶原酶消化法,我们对兔SO平滑肌细胞进行了分离和培养。慢性胆道感染后,兔SO平滑肌细胞钙离子稳态失衡,包括KCl、CCE诱发的胞外钙离子内流和CCK、Caffeine诱发的胞内钙离子释放减少。此外,MLC磷酸化障碍、F-actin骨架重塑在慢性胆道感染后SO平滑肌细胞也有发生。
     结论
     一、肝胆管结石患者SO松弛的发生率较高,其运动特征为SO肌电活动减弱和压力降低,病程和多次发作的胆管炎是SO松弛的主要危险因素。
     二、慢性胆道感染后兔在体及离体SO肌电频率、幅值和运动指数均明显降低,其对CCK等激动剂的反应减弱。
     三、钙离子稳态失衡、MLC磷酸化障碍、F-actin表达下降可能是慢性胆道感染后SO平滑肌运动功能减弱的重要原因。
BACKGROUND AND OBJECTS
     It is very common that a loose sphincter of Oddi (SO) is encountered during exploration of common bile duct in patients with hepatolithiasis or common bile duct stones. Because of its potential risk to induce reflux cholangitis and result in stones recurrence, loose SO is one of the decisive reasons to adopt cholangiojejunostomy. However, with the long-term complications such as the stenosis and the carcinomatous change of the stoma as well as the high incidence of stones recurrence be recognized, more and more researchers proposed to preserve the structure and the function of SO. This point of view encouraged many researchers to reveal the underlying cause of loose SO accompanied with hepatolithiasis, but completely different results were draw and effects of cholelithiasis on the motility of SO were quiet controversy, it is conceivable that passage of stones through the sphincter can result in loose SO, however, other researchers argued that the passage of stones through SO was not in close relationship to the occurrence of loose SO.
     Researches on the functional changes of smooth muscle motility in the inflammatory bowel disease (IBD) and acalculous cholecystitis were prevalent in the past few years. Many studies have reported that there is a correlation between the impaired smooth muscle motility and the increased reactive oxygen species (ROS) and /or peroxynitrite, which induce cellular injury via several mechanisms including peroxidation of membrane lipids, and result in impaired calcium homeostasis, abnormal phosphorylation of myosin light chain (MLC) as well as distortion of filamentous actin (F-actin). It is imperative to assume that recurrent cholangitis may be involved in the progress of loose SO, However, few researches focused on the cause and effect of cholangitis and loose SO.
     Then we assumed that recurrent cholangitis be the most important factor of impaired smooth muscle motility of SO. To identify this hypothesis, the aim of our study was, first of all, to collect clinical data, observe the motility characteristics of loose SO and analyze its related risk factors in hepatolithiasis patients. Then we devised a novel cholangtis model in rabbits and observed the effects of chronic cholangitis on the myoelectric motility of SO in-vivo and in-vitro. Finally, we investigated the effects of chronic cholangitis on the calcium mobilization, phosphorylation of myosin light chain (MLC) as well as the remodeling of filamentous actin (F-actin) in SO smooth muscle cells.
     MATERIALS AND METHODS
     1. With the methods of myoelectric and manometry recording via circular electrode (CE) or perfused triplelumen system, we recorded the myoelectric motility and manometry change of SO including the SO basal pressure (SOBP), SO amplitude (SOAP), frequency of SO phasic contraction(SOF), duration of SO contraction, as well as the frequency and amplitude of SO spike burst (SOSB). Then, we analyzed the correlation between loose SO and independent variables involved in the progress of hepatolithiasis including age, gender, course of disease, distribution of stones, size of stones, characteristic of stones, operation frequency, occurrence frequency of cholangitis, and diameter of common bile duct in 293 cases.
     2. With modified Thomas process, we devised a novel model of myoelectric recording of SO in fully conscious state in rabbits. We recorded the cyclic change of myoelectric motility during fasting, and the myoelectric response to different doses (20 ng·kg-1 or 100ng·kg-1) of cholecystokin (CCK) or feeding.
     3. To establish the model of chronic cholangitis in rabbits, we introduced three 2-0 silk and sequentially injected E Coli into the bile duct, and then observed the changes of weight, rectal temperature, liver function [alanine aminotransferase (ALT); alkaline phosphatase (ALP);γ-glutamyltransferase (GGT) and direct bilirubin (DB)], as well as inflammation score assessed by pathological changes of SO including inflammatory infiltration and collagen deposition. In in-vivo SO myoelectric motility experiment, the SO myoelectric activity was recorded by cyclic electrode (CE) through the jejunum stump in conscious rabbits or application of CCK. In in-vitro experiment, the SO was completely isolated under operating microscope and the myoelectric activity was recorded by CE in a 10-ml organ bath filled with Krebs solution with or without addition of CCK, KCl, ionomycin or induction of capacitative calcium entry (CCE). All the results from chronic cholangitis rabbits were in comparison with that in control and non-infective subjects.
     4. To investigate the effects of chronic cholangitis on the calcium mobilization, phosphorylation of MLC as well as the remodeling of F-actin in SO smooth muscle. We isolated the smooth muscle cells from the SO with the modified enzymatic digestion method, then we observed the changes of [Ca2+]i induced by agonists in Fluo-3 AM loaded cells, or the expression of F-actin by FITC-phalloidin loaded smooth muscle cells under laser scanning confocal microscope (LSCM). The phosphorylated MLC was also detected by Western-blot.
     RESULTS
     1. 60 cases (20.5%) of loose SO was found in 293 hepatolithiasis patients, in comparison with the intact SO, the SOBP, SOAP, SOF and duration of SOAP recorded by SO manometry were significantly decreased, the frequency and amplitude of SOSBs were also decreased. The recurrent cholangitis and course of disease were in close relationship with loose SO.
     2. The myoelectric motility was recorded in fully conscious rabbits with this model; sphincter motility exerted a cyclic change because of the cyclical variation of fast waves and almost invariant slow waves. Feeding caused excitation of the sphincter activity as well as the effect of CCK in the dosage of 20 ng·kg-1 or 100 ng·kg-1.
     3. Chronic cholangitis was successfully established in rabbits. In control (CN) and non-infective (NI) groups, no changes were found in weight, rectal temperature as well as liver function. However, in chronic cholangitis (CC) group, rectal temperature, ALT, ALP, GGT, and DB were significantly elevated at the first 3~4 days. Three months latter, ALP, GGT and inflammation score were significantly higher than that in NI and CN groups, but the ALT and DB was not changed. The cyclic change of myoelectric motility was recorded in 25 rabbits. In comparison with the CN and NI group, the duration of phase 3 was significantly decreased. The frequency and amplitude of SOSBs were lower in CC than that in the CN and NI group in phase 2 and 3, and the myoelectric motility index (MI) was especially lower in phase 3 in CC group. The excitative response of myoelectric motility was decreased in CC group with shortened effective duration, lower amplitude of SOSBs and MI.
     In-vitro study also showed decreased frequency and amplitude of SOSBs as well as MI in resting state and response to 10 nM CCK in CC group in comparison with NI and CN group. CC group also showed significantly lower MI of elevated myoelectric motility in the presence of 60 mM KCl and induction of CCE. In CC group, agonists (10 nM CCK and 50 nM ionomycin) activated calcium release in calcium-free medium was also fail to induce the significant increase of myoelectric MI as that in CN and NI group.
     4. With the modified enzymatic digestion method, we successfully isolated and cultivated the smooth muscle cells. Smooth muscle cells of SO isolated from the chronic cholangitis rabbits showed impaired calcium homeostasis including the decrease of 60 mM KCl or CCE-induced calcium influx from extracellular and 10 nM CCK or 10 mM Caffeine-induced calcium release from the calcium pools. In addition, abnormal phosphorylation of MLC and distortion or fragmentation of F-actin was also found in the SO smooth muscle cell in chronic cholangitis rabbits.
     CONCLUSIONS
     1. The occurrence rate of loose SO is relatively high in hepatolithiasis patients with decreased SOBP, SOAP, SOF, as well as the frequency and amplitude of SOSB. Course of disease recurrent cholangitis were the independent variable correlated with loose SO.
     2. The frequency, amplitude and motility index of SO myoelectric activity and of its response to CCK was decreased either in-vivo or in-vitro in chronic cholangitis rabbits.
     3. Impaired calcium homeostasis and deregulation of MLC phosphorylation as well as remodeling of F-actin might be the key events of impaired motility of SO in chronic cholangitis rabbits.
引文
1. Toouli J, Baker RA. Innervation of the sphincter of Oddi: physiology and considerations of pharmacological intervention in biliary dyskinesia[J]. Pharmacol Ther 1991; 49: 269-281.
    2. Tanaka M, Senninger N, Runkel N, et al. Sphincter of Oddi cyclic motility. Effect of translocation of the papilla in opossums[J]. Gastroenterology 1990; 98: 347-352.
    3. Toouli J. The sphincter of Oddi and acute pancreatitis-revisited[J]. HPB (Oxford) 2003; 5: 142-145.
    4. Toouli J. Clinical relevance of sphincter of Oddi dysfunction[J]. Br J Surg 1990; 77: 723-724.
    5. Toouli J. What is sphincter of Oddi dysfunction? Gut 1989; 30: 753-761.
    6. Toouli J, Roberts-Thomson IC, Kellow J, et al. Manometry based randomised trial of endoscopic sphincterotomy for sphincter of Oddi dysfunction[J]. Gut 2000; 46: 98-102.
    7. Zhang ZH, Wu SD, Wang B, et al. Sphincter of Oddi hypomotility and its relationship with duodenal-biliary reflux, plasma motilin and serum gastrin[J]. World J Gastroenterol 2008; 14: 4077-4081.
    8.田忠,吴硕东,孔静,等.胆管结石患者术后经“T”管窦道胆道镜0ddi括约肌测压的表现及意义[J].世界华人消化杂志2006; 14: 1119-1123.
    9. Kuo KK, Utsunomiya N, Nabae T, et al. Sphincter of Oddi motility in patients with hepatolithiasis and common bile duct stones[J]. Dig Dis Sci 2000; 45: 1714-1718.
    10. Yuasa N, Nimura Y, Yasui A, et al. Sphincter of Oddi motility in patients with bile duct stones. A comparative study using percutaneous transhepatic manometry[J]. Dig Dis Sci 1994; 39: 257-267.
    11. Toouli J, Bushell M, Iannos J, et al. Peroperative sphincter of Oddi manometry: motility disorder in patients with cholelithiasis[J]. Aust N Z J Surg 1986; 56: 625-629.
    12. Wu SD, Yu H, Wang HL, et al. The relationship between Oddi's sphincter and bile duct pigment gallstone[J]. Zhonghua Wai Ke Za Zhi 2007; 45: 58-61.
    13. Guelrud M, Mendoza S, Vicent S, et al. Pressures in the sphincter of Oddi in patients with gallstones, common duct stones, and recurrent pancreatitis[J]. J Clin Gastroenterol1983; 5: 37-41.
    14. Varadarajulu S, Hawes RH, Cotton PB. Determination of sphincter of Oddi dysfunction in patients with prior normal manometry[J]. Gastrointest Endosc 2003; 58: 341-344.
    15. Bortolotti M, Caletti GC, Brocchi E, et al. Endoscopic electromyography and manometry of the human sphincter of Oddi[J]. Hepatogastroenterology 1985; 32: 250-252.
    16. Abell TL, Werkman RF, Familoni BO, et al. Biliary, pancreatic, and sphincter of Oddi electrical and mechanical signals recorded during ERCP[J]. Dig Dis Sci 1998; 43: 540-546.
    17. Chen F, Chen J, Dong JH, et al. The feasibility and reliability of using circular electrode for sphincter of Oddi electromyography in anaesthetised rabbits[J]. Neurogastroenterol Motil 2009; 21: 651-656, e628-659.
    18. Gomez-Pinilla PJ, Camello PJ, Pozo MJ. Protective effect of melatonin on Ca2+ homeostasis and contractility in acute cholecystitis[J]. J Pineal Res 2008; 44: 250-260.
    19. Cullen JJ, Maes EB, Aggrawal S, et al. Effect of endotoxin on opossum gallbladder motility: a model of acalculous cholecystitis[J]. Ann Surg 2000; 232: 202-207.
    20. Morales S, Camello PJ, Rosado JA, et al. Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells[J]. Cell Signal 2005; 17: 635-645.
    21. Gomez-Pinilla PJ, Morales S, Camello-Almaraz C, et al. Changes in guinea pig gallbladder smooth muscle Ca2+ homeostasis by acute acalculous cholecystitis[J]. Am J Physiol Gastrointest Liver Physiol 2006; 290: G14-22.
    22. Merg AR, Kalinowski SE, Hinkhouse MM, et al. Mechanisms of impaired gallbladder contractile response in chronic acalculous cholecystitis[J]. J Gastrointest Surg 2002; 6: 432-437.
    23.吴硕东,田雨. Oddi括约肌功能异常与胆管胆色素结石病[J].外科理论与实践2007; 12: 312-314.
    24. Tocchi A, Mazzoni G, Liotta G, et al. Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: a follow-up study of more than 1,000 patients[J]. Ann Surg 2001; 234: 210-214.
    25. Mi Y, Li R, Xu K, et al. Modified method of hepatic portal choledochoplasty to treatbenign strictures of hilar biliary ducts[J]. J Gastroenterol Hepatol 2008; 23: e395-398.
    26.梁力建,李绍强.关于胆肠吻合术一些问题的思考[J].中国实用外科杂志,2004,24 (1):41-42.
    27.耿小平.胆管结石的外科问题与对策[J].肝胆外科杂志2002; 10: 1-2,9.
    28.王炳煌,朱红,李立春,等. Oddi括约肌松弛与复发性胆管炎胆结石[J].肝胆外科杂志2002; 10: 10-12.
    29.霍永江,张天政,张小弟,等.十二指肠乳头括约肌松弛性病变处理策略[J].肝胆外科杂志2006; 14: 354-356.
    30. Yasuda H, Takada T, Kawarada Y, et al. Unusual cases of acute cholecystitis and cholangitis: Tokyo Guidelines[J]. J Hepatobiliary Pancreat Surg 2007; 14: 98-113.
    31.梁力建,李绍强.胆石症胆肠吻合的重建[J].中国实用外科杂志,2004,24(9):536-538.
    32.张永杰.与Oddi括约肌功能及胆肠吻合相关的若干临床问题[J].中华肝胆外科杂志2003; 9: 562-563.
    33.吴硕东,张振海,金俊哲,等.Oddi括约肌在肠胆返流中作用的研究[J].中华肝胆外科杂志,2007,13 (4):224-227.
    34.李宝山,李海林,李智华,等.犬Oddi括约肌狭窄后肌电改变的实验研究[J].第三军医大学学报2007; 29: 1958-1960.
    35. Krishnamurthy S, Krishnamurthy GT. Biliary dyskinesia: role of the sphincter of Oddi, gallbladder and cholecystokinin[J]. J Nucl Med 1997; 38: 1824-1830.
    36. Scott RB, Diamant SC. Biliary motility associated with gallbladder storage and duodenal delivery of canine hepatic biliary output[J]. Gastroenterology 1988; 95: 1069-1080.
    37. Thune A, Saccone GT, Scicchitano JP, et al. Distension of the gall bladder inhibits sphincter of Oddi motility in humans[J]. Gut 1991; 32: 690-693.
    38. Dhiman RK, Phanish MK, Chawla YK, et al. Gallbladder motility and lithogenicity of bile in patients with choledocholithiasis after endoscopic sphincterotomy[J]. J Hepatol 1997; 26s: 1300-1305.
    39. Sharma BC, Agarwal DK, Baijal SS, et al. Effect of endoscopic sphincterotomy on gall bladder bile lithogenicity and motility[J]. Gut 1998; 42: 288-292.
    40. Sonoda Y, Takahata S, Jabar F, et al. Electrical activation of common bile duct nervesmodulates sphincter of Oddi motility in the Australian possum[J]. HPB (Oxford) 2005; 7: 303-312.
    41. Hui CK, Lai KC, Yuen MF, et al. Role of cholecystectomy in preventing recurrent cholangitis[J]. Gastrointest Endosc 2002; 56: 55-60.
    42. Shafik A. Choledochosphincter inhibitory reflex: identification of the reflex in dogs and its significance[J]. J Surg Res 1998; 78: 7-10.
    43. Muller EL, Grace PA, Conter RL, et al. Influence of motilin and cholecystokinin on sphincter of Oddi and duodenal mobility[J]. Am J Physiol 1987; 253: G679-683.
    44. Blaut U, Marecik J, Thor PJ. Sphincter of Oddi motility disturbances--etiologic factor or the consequence of choledocholithiasis[J]. Folia Med Cracov 1999; 40: 93-105.
    45. Balemba OB, Salter MJ, Mawe GM. Innervation of the extrahepatic biliary tract[J]. Anat Rec A Discov Mol Cell Evol Biol 2004; 280: 836-847.
    46. Madacsy L, Bertalan V, Szepes A, et al. Effect of nalbuphine on the motility of the sphincter of Oddi in patients with suspected sphincter of Oddi dysfunction[J]. Gastrointest Endosc 2003; 57: 319-323.
    47. Varadarajulu S, Tamhane A, Wilcox CM. Prospective evaluation of adjunctive ketamine on sphincter of Oddi motility in humans[J]. J Gastroenterol Hepatol 2008; 23: e405-409.
    48. Kong J, Wu SD, Zhang XB, et al. Choledochoscope manometry about different drugs on the Sphincter of Oddi[J]. World J Gastroenterol 2008; 14: 5907-5912.
    49. Dong M, Sonoda Y, Kawamoto M, et al. Duodenum is important for the sphincter of Oddi motor response to cholecystokinin octapeptide in conscious dogs[J]. J Gastroenterol 2005; 40: 389-395.
    50. Talley NJ. Functional gastrointestinal disorders in 2007 and Rome III: something new, something borrowed, something objective[J]. Rev Gastroenterol Disord 2007; 7: 97-105.
    51.陈飞,李虎城,李智华,等.黏膜接触电极在家兔Oddi括约肌肌电测量中的应用价值[J].中华肝胆外科杂志2006; 12: 544-546.
    52. Sonoda Y, Dong M, Konomi H, et al. Role of duodenum on sphincter of Oddi motility in conscious dogs[J]. Dig Dis Sci 2003; 48: 1693-1700.
    53. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperatingmechanisms[J]. Am J Physiol Gastrointest Liver Physiol 2009; 296: G1-8.
    54.肖路加,彭其芳,饶林强,等.化脓性胆管炎和胆色素结石的动物模型[J].中华外科杂志,1985,23:399-400.
    55.邹声泉,裘法祖,于昌松.肝内胆管结石动物模型的实验研究[J].同济医科大学学报,1989,18(2):95-98.
    56. Deng ZL, Nabae T, Konomi H, et al. Effects of proximal duodenal transection and anastomosis on interdigestive sphincter of Oddi cyclic motility in conscious dogs[J]. World J Surg 2000; 24: 863-869.
    57. Peter SA, D'Amato M, Beglinger C. CCK1 antagonists: are they ready for clinical use? [J]. Dig Dis 2006; 24: 70-82.
    58. Palvolgyi A, Sari R, Nemeth J, et al. Interplay between nitric oxide and VIP in CCK-8-induced phasic contractile activity in the rabbit sphincter of Oddi[J]. World J Gastroenterol 2005; 11: 3264-3266.
    59. Nabae T, Yokohata K, Otsuka T, et al. Effect of truncal vagotomy on sphincter of oddi cyclic motility in conscious dogs[J]. Ann Surg 2002; 236: 98-104.
    60. Balemba OB, Heppner TJ, Bonev AD, et al. Calcium waves in intact guinea pig gallbladder smooth muscle cells[J]. Am J Physiol Gastrointest Liver Physiol 2006; 291: G717-727.
    61. Kovac JR, Chrones T, Sims SM. Temporal and spatial dynamics underlying capacitative calcium entry in human colonic smooth muscle[J]. Am J Physiol Gastrointest Liver Physiol 2008; 294: G88-98.
    62. Young SH, Ennes HS, McRoberts JA, et al. Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation[J]. Am J Physiol 1999; 276: G1204-1212.
    63. Morales S, Camello PJ, Alcon S, et al. Coactivation of capacitative calcium entry and L-type calcium channels in guinea pig gallbladder[J]. Am J Physiol Gastrointest Liver Physiol 2004; 286: G1090-1100.
    64. Balemba OB, Salter MJ, Heppner TJ, et al. Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells[J]. Am J Physiol Gastrointest Liver Physiol 2006; 290: G655-664.
    65. Morales S, Camello PJ, Mawe GM, et al. Characterization of intracellular Ca(2+) storesin gallbladder smooth muscle[J]. Am J Physiol Gastrointest Liver Physiol 2005; 288: G507-513.
    66. Xiao ZL, Chen Q, Biancani P, et al. Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs[J]. Am J Physiol Gastrointest Liver Physiol 2001; 281: G490-497.
    67. Liu X, Rusch NJ, Striessnig J, et al. Down-regulation of L-type calcium channels in inflamed circular smooth muscle cells of the canine colon[J]. Gastroenterology 2001; 120: 480-489.
    68. Cao W, Harnett KM, Cheng L, et al. H(2)O(2): a mediator of esophagitis-induced damage to calcium-release mechanisms in cat lower esophageal sphincter[J]. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1170-1178.
    69. Pfitzer G. Invited review: regulation of myosin phosphorylation in smooth muscle[J]. J Appl Physiol 2001; 91: 497-503.
    70. Mizuno Y, Isotani E, Huang J, et al. Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo[J]. Am J Physiol Cell Physiol 2008; 295: C358-364.
    71. Kim HR, Appel S, Vetterkind S, et al. Smooth muscle signalling pathways in health and disease[J]. J Cell Mol Med 2008; 12: 2165-2180.
    72. Hirano K, Derkach DN, Hirano M, et al. Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain[J]. Mol Cell Biochem 2003; 248: 105-114.
    73.杨向新,魏经国,王春梅,等.高胆固醇血症对兔胆管括约肌细胞内Ca^2+转运的影响[J].第四军医大学学报2002; 23: 1698-1701.
    74. Chijiiwa K, Yamasaki T, Chijiiwa Y. Direct contractile response of isolated gallbladder smooth muscle cells to cholecystokinin in patients with gallstones[J]. J Surg Res 1994; 56: 434-438.
    75.王新疆,魏经国,王春梅,等.缩胆素诱导兔Oddi括约肌细胞钙动员途径[J].第四军医大学学报2001; 22: 2064-2067.
    76.马克军,魏经国,王亚蓉,等.高胆固醇兔胆管括约肌细胞钙代谢与钙振荡变化关系[J].世界华人消化杂志2005; 13: 971-974.
    77. Kapur N, Banach K. Inositol-1,4,5-trisphosphate-mediated spontaneous activity inmouse embryonic stem cell-derived cardiomyocytes[J]. J Physiol 2007; 581: 1113-1127.
    78. Karaki H, Weiss GB. Calcium channels in smooth muscle[J]. Gastroenterology 1984; 87: 960-970.
    79. Xiong Z, Sperelakis N, Noffsinger A, et al. Ca2+ currents in human colonic smooth muscle cells[J]. Am J Physiol 1995; 269: G378-385.
    80. Iino M, Endo M. Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate- induced Ca2+ release[J]. Nature 1992; 360: 76-78.
    81. Horowitz A, Menice CB, Laporte R, et al. Mechanisms of smooth muscle contraction[J]. Physiol Rev 1996; 76: 967-1003.
    82. Fukumoto Y, Tawara S, Shimokawa H. Recent progress in the treatment of pulmonary arterial hypertension: expectation for rho-kinase inhibitors[J]. Tohoku J Exp Med 2007; 211: 309-320.
    83. Deng JT, Van Lierop JE, Sutherland C, et al. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase[J]. J Biol Chem 2001; 276: 16365-16373.
    84. Opazo Saez A, Zhang W, Wu Y, et al. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane[J]. Am J Physiol Cell Physiol 2004; 286: C433-447.
    85. Kim HR, Gallant C, Leavis PC, et al. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent[J]. Am J Physiol Cell Physiol 2008; 295: C768-778.
    86. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments[J]. Cell 2003; 112: 453-465.
    87. Zhang W, Gunst SJ. Interactions of airway smooth muscle cells with their tissue matrix: implications for contraction[J]. Proc Am Thorac Soc 2008; 5: 32-39.
    88. Zhang W, Wu Y, Du L, et al. Activation of the Arp2/3 complex by N-WASp is required for actin polymerization and contraction in smooth muscle[J]. Am J Physiol Cell Physiol 2005; 288: C1145-1160.
    1. Karaki H, Weiss GB. Calcium channels in smooth muscle[J]. Gastroenterol. 1984;87:960- 970.
    2.何加强,郑永芳.平滑肌钙通道的研究进展[J].中华心血管病杂志, 1996:24(6): 468-470.
    3. Xiong Z, Sperelakis N, Noffsinger A, Fenoglio-Preiser C. Ca2+ currents in human colonic smooth muscle cells[J]. Am J Physiol. 1995; 269:G378-385.
    4. McDonald TF, Pelzer S, Trautwein W. Regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells[J]. Physiol Rev. 1994; 74(2):365-507.
    5. Berridge MJ. Inositol triphosphate and calcium signaling[J]. Nature, 1993; 361:315-325
    6. Horowitz A, Menice CB, Laporte R, et al. Mechanisms of smooth muscle contraction[J]. Physiol Rev, 1996; 76(4):967-1003.
    7. Karaki H, Ozaki H, Hori M, et al. Calcium movements,distribution, and functions in smooth muscle[J]. Pharmacol Rev, 1997; 49(2): 157-230.
    8.郑永芳,王国勇.细胞膜钙通道与钾通道.北京医科大学、协和医科大学联合出版社,1997:50-64.
    9. Kuriyama H, Kitamura K, Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues[J]. Pharmacol Rev, 1995; 47(3): 387-573.
    10. Jackson WF. Ion channels and vascular tone. Hypertention. 2000; 35:173-178.
    11. De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations[J]. Science. 1998; 279: 227–30.
    12. Fukumoto Y, Tawara S, Shimokawa H. Recent progress in the treatment of pulmonary arterial hypertension: expectation for rho-kinase inhibitors[J]. Tohoku J Exp Med. 2007; 211: 309–20.
    13. Deng JT, Van Lierop JE, Sutherland C, et al. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase[J]. J Biol Chem. 2001; 276: 16365–73.
    14. Herring BP, El-Mounayri O, Gallagher PJ, et al. Regulation of myosin light chainkinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol. 2006; 291: C817–27.
    15. Dirksen WP, Vladic F, Fisher SA. A myosin phosphatase targeting subunit isoform transition defines a smooth muscle developmental phenotypic switch[J]. Am J Physiol Cell Physiol. 2000; 278: C589–600.
    16. Khatri JJ, Joyce KM, Brozovich FV, et al. Role of myosin phosphatase isoforms in cGMP-mediated smooth muscle relaxation[J]. J Biol Chem. 2001; 276: 37250–7.
    17. Eto M, Ohmori T, Suzuki M, et al. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization[J]. J Biochem. 1995; 118: 1104–7.
    18. Dimopoulos GJ, Semba S, Kitazawa K, et al. Ca2+-dependent rapid Ca2+sensitization of contraction in arterial smooth muscle[J]. Circ Res. 2007; 100: 121–9.
    19. Lincoln TM. Myosin phosphatase regulatory pathways: different functions or redundant functions? [J] Circ Res. 2007; 100: 10–2.
    20. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoAinduced Ca2+ sensitization of contraction in vascular smooth muscle[J]. J Biol Chem. 2000; 275: 21722–9.
    21. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoAinduced Ca2+ sensitization of contraction in vascular smooth muscle[J]. J Biol Chem. 2000; 275: 21722–9.
    22. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension[J]. Nature. 1997; 389: 990–4.
    23. Gangopadhyay SS, Barber AL, Gallant C, et al. Differential functional properties of calmodulin-dependent protein kinase II gamma variants isolated from smooth muscle[J]. Biochem J. 2003; 372: 347–57.
    24. Miller SG, Patton BL, Kennedy MB. Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2(+)-independent activity[J]. Neuron. 1988; 1: 593–604.
    25. Munevar S, Gangopadhyay SS, Gallant C, et al. CaMKIIT287 and T305 regulate history dependent increases in alpha agonistinduced vascular tone[J]. J Cell Mol Med. 2008; 12: 219–26.
    26. Humphrey MB, Herrera-Sosa H, Gonzalez G, et al. Cloning of cDNAs encoding human caldesmons[J]. Gene. 1992; 112: 197–204.
    27. Kordowska J, Huang R, Wang CL. Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation[J]. J Biomed Sci. 2006; 13: 159–72.
    28. Hossain MM, Hwang DY, Huang QQ, et al. Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation[J]. Am J Physiol Cell Physiol. 2003; 284: C156–67.
    29. Opazo Saez A, Zhang W, Wu Y, et al. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane[J]. Am J Physiol Cell Physiol. 2004; 286: C433–47.
    30. Kim HR, Gallant C, Leavis PC, et al. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform-dependent and stimulus dependent[J]. Am J Physiol Cell Physiol. 2008: 295: C768–78.
    31. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments[J]. Cell. 2003; 112: 453–65.
    32. Zhang W, Gunst SJ. Interactions of Airway Smooth Muscle Cells with Their Tissue Matrix: Implications for Contraction[J]. Proc Am Thorac Soc. 2008; 5: 32–9.
    33. Zhang W, Wu Y, Du L, et al. Activation of the Arp2/3 complex by NWASp is required for actin polymerization and contraction in smooth muscle[J]. Am J Physiol Cell Physiol. 2005; 288: C1145–60.
    34. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis[J]. Nat Rev Cancer. 2008; 8: 604–17.
    35. Ali F, Pare P, Seow C, et al. Models of contractile units and their assembly in smooth muscle[J]. Can J Physiol Pharmacol. 2005; 83: 825–31.
    36. Herrera AM, McParland BE, Bienkowska A, et al.‘Sarcomeres’of smooth muscle: functional characteristics and ultrastructural evidence[J]. J Cell Sci. 2005; 118: 2381–92.
    37. Guo D-C, Pannu H, Tran-Fadulu V, et al. Mutations in smooth muscle [alpha]-actin (ACTA2) lead to thoracic aortic aneurysms and dissections[J]. Nat Genet. 2007; 39: 1488–93.
    [1] Scott RB, Diamant SC. Biliary motility associated with gallbladder storage and duodenal delivery of canine hepatic biliary output. Gastroenterology 1988; 95: 1069-1080.
    [2] Nabae T, Yokohata K, Otsuka T, et al. Effect of truncal vagotomy on sphincter of oddi cyclic motility in conscious dogs. Ann Surg 2002; 236: 98-104.
    [3] Krishnamurthy S, Krishnamurthy GT. Biliary dyskinesia: role of the sphincter of Oddi, gallbladder and cholecystokinin. J Nucl Med 1997; 38: 1824-1830.
    [4] Toouli J, Bushell M, Iannos J, Collinson T, Wearne J, Kitchen D. Peroperative sphincter of Oddi manometry: motility disorder in patients with cholelithiasis. Aust N Z J Surg 1986; 56: 625-629.
    [5] Thune A, Saccone GT, Scicchitano JP, Toouli J. Distension of the gall bladder inhibits sphincter of Oddi motility in humans. Gut 1991; 32: 690-693.
    [6] Dhiman RK, Phanish MK, Chawla YK, Dilawari JB. Gallbladder motility and lithogenicity of bile in patients with choledocholithiasis after endoscopic sphincterotomy. J Hepatol 1997; 26s: 1300-1305.
    [7] Sharma BC, Agarwal DK, Baijal SS, Negi TS, Choudhuri G, Saraswat VA. Effect of endoscopic sphincterotomy on gall bladder bile lithogenicity and motility. Gut 1998; 42: 288-292.
    [8] Sonoda Y, Takahata S, Jabar F, et al. Electrical activation of common bile duct nerves modulates sphincter of Oddi motility in the Australian possum. HPB (Oxford) 2005; 7: 303-312.
    [9] Hui CK, Lai KC, Yuen MF, Ng MM, Lam SK, Lai CL. Role of cholecystectomy in preventing recurrent cholangitis. Gastrointest Endosc 2002; 56: 55-60.
    [10] Shafik A. Choledochosphincter inhibitory reflex: identification of the reflex in dogs and its significance. J Surg Res 1998; 78: 7-10.
    [11] Behar J, Corazziari E, Guelrud M, Hogan W, Sherman S, Toouli J. Functional gallbladder and sphincter of oddi disorders. Gastroenterology 2006; 130: 1498-1509.
    [12] Blaut U, Marecik J, Thor PJ. [Sphincter of Oddi motility disturbances--etiologic factor or the consequence of choledocholithiasis]. Folia Med Cracov 1999; 40: 93-105.
    [13] Kuo KK, Utsunomiya N, Nabae T, et al. Sphincter of Oddi motility in patients with hepatolithiasis and common bile duct stones. Dig Dis Sci 2000; 45: 1714-1718.
    [14] Yuasa N, Nimura Y, Yasui A, Akita Y, Odani K. Sphincter of Oddi motility in patients with bile duct stones. A comparative study using percutaneous transhepatic manometry. Dig Dis Sci 1994; 39: 257-267.
    [15] Chen F, Chen J, Dong JH, et al. The feasibility and reliability of using circular electrode for sphincter of Oddi electromyography in anaesthetised rabbits. Neurogastroenterol Motil 2009; 21: 651-656, e628-659.
    [16] Ohtsuka T, Yokohata K, Inoue K, et al. Biliary sphincter motility after neural isolation of the pancreatoduodenal region in conscious dogs. Surgery 2002; 131: 139-148.
    [17] Dong M, Sonoda Y, Kawamoto M, et al. Duodenum is important for the sphincter of Oddi motor response to cholecystokinin octapeptide in conscious dogs. J Gastroenterol 2005; 40: 389-395.
    [18] Terao R, Honda K, Hatano E, Uehara T, Yamamoto M, Yamaoka Y. Suppression of proliferative cholangitis in a rat model with direct adenovirus-mediated retinoblastoma gene transfer to the biliary tract. Hepatology 1998; 28: 605-612.
    [19] Xiao ZL, Chen Q, Biancani P, Behar J. Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs. Am J Physiol Gastrointest Liver Physiol 2001; 281: G490-497.
    [20] Nabae T, Takahata S, Konomi H, et al. Effect of prepyloric gastric transection and anastomosis on sphincter of Oddi cyclic motility in conscious dogs. J Gastroenterol 2001; 36: 530-537.
    [21] Deng ZL, Nabae T, Konomi H, et al. Effects of proximal duodenal transection and anastomosis on interdigestive sphincter of Oddi cyclic motility in conscious dogs. World J Surg 2000; 24: 863-869.
    [22] Peter SA, D'Amato M, Beglinger C. CCK1 antagonists: are they ready for clinical use? Dig Dis 2006; 24: 70-82.
    [23] Palvolgyi A, Sari R, Nemeth J, et al. Interplay between nitric oxide and VIP in CCK-8-induced phasic contractile activity in the rabbit sphincter of Oddi. World J Gastroenterol 2005; 11: 3264-3266.
    [24] Liu X, Rusch NJ, Striessnig J, Sarna SK. Down-regulation of L-type calcium channels in inflamed circular smooth muscle cells of the canine colon. Gastroenterology 2001; 120: 480-489.
    [25] Cao W, Harnett KM, Cheng L, Kirber MT, Behar J, Biancani P. H(2)O(2): a mediator of esophagitis-induced damage to calcium-release mechanisms in cat lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1170-1178.
    [26] Gomez-Pinilla PJ, Camello PJ, Pozo MJ. Protective effect of melatonin on Ca2+ homeostasis and contractility in acute cholecystitis. J Pineal Res 2008; 44: 250-260.
    [27] Kinoshita K, Sato K, Hori M, Ozaki H, Karaki H. Decrease in activity of smooth muscle L-type Ca2+ channels and its reversal by NF-kappaB inhibitors in Crohn's colitis model. Am J Physiol Gastrointest Liver Physiol 2003; 285: G483-493.
    [28] Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem 2001; 276: 36411-36418.
    [29] Gomez-Pinilla PJ, Morales S, Camello-Almaraz C, Moreno R, Pozo MJ, Camello PJ. Changes in guinea pig gallbladder smooth muscle Ca2+ homeostasis by acute acalculous cholecystitis. Am J Physiol Gastrointest Liver Physiol 2006; 290: G14-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700