多次给药精神分裂症行为模型评价及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神分裂症是一种常见的病因尚未完全阐明的精神疾病。多起病于青壮年,常缓慢起病,具有思维、情感、行为等多方面障碍,精神活动与环境不协调。通常无意识及智能障碍。病程多迁延,呈反复加重或恶化。精神分裂症的症状分为阳性和阴性症状,前者包括幻觉、妄想和思维障碍等,后者主要包括社交障碍、兴趣缺失及情感障碍。另外精神分裂症患者还伴有认知功能缺损、学习记忆障碍和工作记忆障碍等。
     应用抗精神分裂症药物是目前治疗精神分裂症的主要手段。第一代抗精神分裂症药物是以氟哌啶醇为代表的经典型抗精神分裂症药物,其通过阻断多巴胺D2受体起到治疗作用。经典型抗精神分裂症药物能有效控制精神分裂症阳性症状,但对阴性症状的疗效甚差,并且长期用药会产生严重的副反应,如:锥体外系症状、性功能障碍、直立性低血压、神经内分泌紊乱及镇静,这些都限制了经典型抗精神分裂症药物的使用。第二代抗精神分裂症药物是以氯氮平、奥氮平为代表的非经典型抗精神分裂症药物。这类药物和多巴胺D2受体的结合率相对较低,但和其他受体的结合率相对较高,如:5-HT_(2A)、5-HT_(1A)、α1-肾上腺素、α2-肾上腺素受体。与经典型抗精神分裂症药物相比,非经典型抗精神分裂症药物不仅可以有效控制精神分裂症阳性症状,同时减少了发生锥体外系副反应的可能性。然而,第二代抗精神分裂症药物能产生其他的副反应,如:体重增加、二型糖尿病、高血糖症及脂质代谢障碍。另外,超过30%的精神分裂症患者对任何药物治疗均不敏感,病情持续活跃。目前抗精神分裂症药物对阴性症状疗效极其有限,同时可以产生众多副作用,因此当前精神分裂症的药物治疗现状并不乐观,迫切需要开发新的药物来缓解精神分裂症患者的阴性症状及认知障碍,以此来提高精神分裂症患者的生活质量。
     动物模型在研究人类疾病及开发新药方面起着非常重要的作用,而目前有关精神分裂症的病因学及病理生理学尚未阐明。另外,这类疾病的许多症状很难在啮齿类动物上直接进行检测,如:妄想、散发性思维等,因此,建立能适当地反映精神分裂症这样具有复杂神经精神异常的动物模型非常困难。
     应用动物行为学模型是研究精神分裂症及开发、筛选新型抗精神分裂症药物的最主要手段。在我们可以检测抗精神分裂症药物在患者上的作用前,我们必须首先研究药物在动物行为学上的作用。一个理想的精神分裂症动物模型的重要因素是其对于当前及未来的治疗有着较高的预测效度。然而,目前没有一种理想的动物模型能模拟所有精神分裂症患者的症状,每一种模型只能模拟精神分裂症的某个方面的特点。因此精神分裂症治疗手段的预测型模型仅仅反应抗精神分裂症药物的局限的一个方面的作用,并且在此情况下,研究者通常只是检测急性给予抗精神分裂症药物对于多巴胺或谷氨酸受体介导的行为异常的作用。还未有多次给药动物行为模型的相关报道及初步行为机制探讨。而临床上精神分裂症患者是长期服药且症状长期存在。所以迫切需要开发一些改良的精神分裂症模型来更好的反应药物对精神分裂症的治疗作用。
     ATP敏感性钾通道(ATP-sensitive potassium channel,K-ATP通道)是一类耦联细胞代谢和电活动、以细胞内的ATP/ADP水平为门控因素、非电压依赖性的特殊钾离子通道。近年来,包括本实验室在内的研究表明K-ATP通道特别是线粒体K-ATP通道(mitochondrial ATP-sensitive potassium channel,mitoK-ATP通道)不仅是急性缺血缺氧、氧化应激等病理因素损伤时机体的重要内源性保护机制,而且与神经退行性疾病(neurodegenerative diseases),包括PD,阿尔茨海默病(Alzherimer’s disease, AD)相关。
     新型K-ATP通道开放剂埃他卡林(Iptakalim,IPT)是我国学者自行设计、合成的脂肪仲胺类小分子化合物,最初开发用于治疗高血压,它通过开放心血管KATP通道起到抗高血压作用。后期研究表明埃他卡林可以穿透血脑屏障并作用于神经元细胞或胶质细胞膜上KATP通道及线粒体KATP通道,使得在整体动物模型上研究、评价K-ATP通道开放剂的神经系统作用成为可能。
     本实验室前期研究显示盐酸埃他卡林有望用于治疗精神分裂症,有望改善精神分裂症患者的阴性症状及认知功能障碍。首先:在体或离体实验已证实盐酸埃他卡林可以抑制多巴胺的过度释放。研究表明埃他卡林可以显著抑制鱼藤酮或GBR-12909诱导PC12细胞释放多巴胺,在体微透析研究亦表明埃他卡林可以抑制MPP+或尼古丁诱导的多巴胺释放。更加让我们感兴趣的是:在单侧6-OHDA造模的PD大鼠中,埃他卡林可以显著降低健侧细胞外多巴胺水平,而显著升高损毁侧细胞外多巴胺水平,这种特征与多巴胺的部分激动剂,如:阿立哌唑,非常相似。其次,研究证实埃他卡林可以通过抗凋亡,抗坏死起到神经保护作用,这些均与埃他卡林抑制谷氨酸释放,调节谷氨酸能受体相关。另外,在动物行为学研究中发现,埃他卡林可以逆转氟哌啶醇诱导的肌僵直和低运动能力。用埃他卡林或二氮嗪(一种线粒体ATP敏感性钾通道开放剂)对动物进行预保护可以阻止鱼藤酮诱导的肌僵直,并且可以减少纹状体多巴胺含量。以上这些发现提示埃他卡林有可能可以在不同脑区对多巴胺含量进行调节,使之趋于正常水平,从而起到多巴胺稳定剂的作用。KATP通道大量存在于黑质、腹侧被盖区、前额皮质、及海马,这些区域对于神经递质如:谷氨酸,多巴胺,GABA的调节有着重要作用,并且这些区域与精神分裂症的病理生理严密相关。埃他卡林已被证实可以通过开放KATP通道而起到独特的抗高血压效果,精神分裂症患者往往伴有高血压,从而埃他卡林的这种抗高血压效果非常具有吸引力。另外,已有文献基于多巴胺受体可以调节KATP通道开放的事实作出KATP通道开放剂有望治疗精神分裂症的假设。事实上,已有研究临床研究证实,二氮嗪联合氟哌啶醇用药可以显著提高临床疗效,二氮嗪可以强化氟哌啶醇对阳性症状的控制作用,并可改善精神分裂症患者的一般精神症状。
     前期研究结果提示IPT是富有前景的靶向于K-ATP通道的新型抗精神分裂症药物。然而,目前学术界尚未见K-ATP通道开放剂对精神分裂症的治疗作用的报道。
     多次给药动物行为学模型是否与急性模型一致?多次给药动物模型的行为学机制是什么?K-ATP通道开放剂是否对精神分裂症动物模型有治疗作用?K-ATP通道是否是治疗精神分裂症的潜在靶点?这些科学问题的阐明,不仅开拓了神经精神的新领域,也将为发展理想的神经保护剂提供新的靶标。因此,本文工作第一部分首先应用建立多种多次给药大鼠精神分裂症行为学模型,系统研究了多次给药与急性给药模型的差异。第二部分在发现多次给药模型更优越的基础上,研究多次给药模型的相关行为学机制;第三部分研究K-ATP通道开放剂IPT在多次给药动物行为学模型中对精神分裂症的实验治疗学作用。
     第一部分多次给药精神分裂症行为模型的建立及意义
     目的:建立多次给药精神分裂症行为学模型,研究、阐明多次给药精神分裂症模型与急性给药模型在进行抗精神分裂症药物筛选中的差异及意义。
     方法:建立多次给药快速运动大鼠模型方法:给药前两天开始适应测试环境及测试箱,自第三天起,连续5天先给予SD大鼠CLZ(5.0、10.0、20.0mg·kg~(-1)·day~(-1), s.c.)、HAL(0.01、0.05、0.10 mg·kg~(-1)·day~(-1), s.c.)、RIS(0.30、0.10mg·kg~(-1)·day~(-1), s.c.)、CDP(10.0 mg·kg~(-1)·day~(-1), i.p.)、FLU(5.0、10.0 mg·kg~(-1)·day~(-1),i.p.)或生理盐水,半小时候后给予SD大鼠AMPH(1.5 mg·kg~(-1)·day~(-1), s.c.)或PCP(3.2 mg·kg~(-1)·day~(-1), s.c.)或生理盐水。于每天第一次给药后开始记录大鼠运动情况,连续记录90分钟(含给致幻药前的30分钟及致幻药后的60分钟),连续记录5天。
     建立多次给药条件躲避反射模型方法:给药前两天开始适应测试环境及测试箱,自第三天起,在连续两周时间内给予SD大鼠条件躲避反射训练十次。SD大鼠被放入一个被栅栏分隔成两部分的测试箱,大鼠可以在这两部分间自由穿过。即先给予大鼠一个信号:声音信号,然后给动物一次电击,最终使SD大鼠能把这两种刺激联系起来,从而接受到信号后可以穿越到箱子的另一边以躲避电击,形成条件躲避反射。每次训练含有二十次声音信号和电击。最后连续两天能成功躲避百分之七十以上即被认为学会了条件躲避反射,即成功躲避14次的SD大鼠进入下一阶段实验。停止训练后即连续5天给予SD大鼠CLZ(5.0、10.0、20.0 mg·kg-1·day~(-1), s.c.)或HAL(0.01、0.05、0.10 mg·kg-1·day~(-1), s.c.)或生理盐水,一小时后放入条件躲避反射测试箱测试,记录大鼠条件躲避反射次数。
     结果:1)急性快速运动实验中,CLZ、HAL、OLZ均剂量依赖性地抑制AMPH或PCP诱导的运动行为增强,同时急性状态下CLZ、OLZ更倾向于抑制PCP诱导的快速运动行为,而HAL更倾向于抑制AMPH诱导的快速运动行为。2)在多次给药快速运动实验中,随着给药次数的增多,CLZ、HAL、OLZ逐渐丧失对AMPH诱导的快速运动行为的抑制能力,而在PCP诱导的快速运动行为实验中,随着给药次数的增多,CLZ、HAL、OLZ对快速运动行为的抑制能力在增强,而CDP并不能显示这种能力。3)在多次给药条件躲避反射实验中,随着给药次数的增多,HAL对SD大鼠条件躲避反射的抑制能力逐渐增强,而CLZ随着给药次数的增多,逐渐丧失对大鼠条件躲避反射的抑制能力。
     结论:联合急性给药和多次给药快速运动行为学模型可以区分经典型或非经典型抗精神分裂症药物,多次给药PCP诱导的快速运动行为模型可以更好地模拟临床上的给药情况。
     第二部分多次给药精神分裂症行为模型的行为机制和受体机制
     目的:在建立PCP多次给药快速运动行为学模型基础上,研究、阐明多次给PCP行为学模型的行为机制。在建立HAL、CLZ多次给药条件躲避反射模型基础上,研究、阐明HAL及CLZ抑制条件躲避反射的受体学机制。
     方法:在多次给予PCP动物模型上首先检测不同给药史对多次PCP诱导的快速运动行为的作用:在饲养笼内连续5天给予SD大鼠CLZ(10.0mg·kg-1·day~(-1),s.c.)或HAL(0.05mg·kg-1·day~(-1), s.c.)或OLZ(2.0 mg·kg-1·day~(-1), s.c.)或生理盐水,从第6天起连续5天先给予SD大鼠CLZ(10.0mg·kg-1·day~(-1), s.c.)或HAL(0.05mg·kg-1·day~(-1), s.c.)或OLZ(2.0 mg·kg-1·day~(-1), s.c.)或生理盐水,半小时后给予SD大鼠PCP(3.2 mg·kg-1·day~(-1), s.c.),同时于第6天起每天给药后把SD大鼠放入快速运动行为测试箱进行测试,记录大鼠运动情况,连续记录90分钟(含给PCP前的30分钟及PCP后的60分钟),连续记录5天。其次检测相同给药史前提下,不同测试环境暴露史对多次PCP诱导的快速运动行为的作用:连续7天给予SD大鼠HAL(0.03mg·kg-1·day~(-1), s.c.),半小时候给予SD大鼠PCP(1.6mg·kg-1·day~(-1), s.c.),一组于给药第一天即放入测试箱测试记录,一组在饲养笼内连续给药两天,于第三天放入测试箱测试记录,另外一组在饲养笼内连续给药四天,于第五天放入测试箱测试记录。
     在多次给药条件躲避反射模型上,给药前两天开始适应测试环境及测试箱,自第三天起,在连续两周时间内给予SD大鼠条件躲避反射训练十次。训练结束后连续3天给予成功获得条件躲避反射能力的大鼠QUI(1.0mg·kg-1·day~(-1), s.c.)或DO(I 2.5mg·kg-1·day~(-1), s.c.),十分钟后分别给予SD大鼠HAL(0.05mg·kg-1·day~(-1),s.c.)或CLZ(10.0mg·kg-1·day~(-1), s.c.)或OLZ(1.0mg·kg-1·day~(-1), s.c.),抗精神分裂症药物给药半小时后放入条件躲避反射测试箱测试记录。
     结果:1)有抗精神分裂症药物给药史的大鼠并不能在首次测试时达到最强抑制效果。2)在相同给药史情况下,暴露于测试环境下的次数越多,抑制快速运动行为的能力更强。3)HAL抑制条件躲避反射的能力可以被QUI所逆转,而CLZ抑制条件躲避反射的能力可以被DOI所逆转。
     结论:抗精神分裂症药物对于多次PCP诱导的快速运动行为的逐渐增强效应依赖于抗精神分裂症药物与PCP的相互作用,同时亦依赖于药物与环境的相互作用。HAL通过阻断D2受体发挥抑制条件射避反射作用,而CLZ通过阻断5HT2受体发挥作用。
     第三部分K-ATP通道开放剂对精神分裂症的实验治疗学作用
     目的:研究、阐明K-ATP通道开放剂在多种动物行为学模型中对精神分裂症的实验治疗学作用。
     方法:应用快速运动行为检测IPT(10、30、60mg·kg-1·day~(-1),i.p.)对AMPH(1.5 mg·kg-1·day~(-1),s.c.)、PCP(3.2 mg·kg-1·day~(-1),s.c.)诱导的快速运动行为的抑制效果,应用条件躲避反射模型检测IPT(10、30、60mg·kg-1·day~(-1),i.p.)对SD大鼠条件躲避反射的抑制效果,应用PPI模型,检测IPT(10、30、60mg·kg-1·day~(-1),i.p.)对AMPH(1.5 mg·kg-1·day~(-1),s.c.)或PCP(3.2 mg·kg-1·day~(-1),s.c.)诱导的PPI损害的影响。应用免疫组织化学检测IPT(10、30、60mg·kg-1·day~(-1),i.p.)对精神分裂症相关脑区c-FOS表达的影响。应用肌僵直模型检测IPT(10、30、60mg·kg-1·day~(-1),i.p.)本身对SD大鼠肌僵直的影响。
     结果:1) IPT(60mg·kg-1·day~(-1),i.p.)在急性状态下可以抑制AMPH、PCP诱导的快速运动行为,且更倾向于抑制PCP诱导的快速运动,与CLZ相一致,随着给药次数增多而丧失抑制能力。2) IPT(60mg·kg-1·day~(-1),i.p.)在急性状态下可以抑制条件躲避反射,随着给药次数增多而丧失抑制能力,与CLZ相一致。3) IPT无法逆转AMPH或PCP诱导的PPI损害。4) IPT诱导的相关脑区c-FOS表达情况与CLZ相一致。5) IPT本身不影响肌僵直。
     结论:K-ATP通道开放剂IPT在多种精神分裂症行为学模型中显示了一定的有效性,K-ATP通道有望成为抗精神分裂症药物开发的新靶点。
     综上所述,本文工作的主要创新之处在于:
     1.建立了多个多次给药动物行为学模型用于研究精神分裂症,揭示联合使用急性模型和多次给药模型或联合应用多巴胺类致幻剂和谷氨酸类致幻剂可以更好地研究、区分抗精神分裂症药物作用特点和类别。为筛选新的抗精神分裂症药物积累了必要的学术与实验基础。
     2.阐明多次给药PCP快速运动模型的行为学机制,不仅依赖于药物和药物的相互作用,还依赖于药物和环境的相互作用。同时阐明HAL及CLZ在条件躲避反射中起抑制作用的受体学基础。为进一步机制研究提供了必要的学术基础。
     3.发现K-ATP通道开放剂IPT对多种精神分裂症行为学模型有治疗作用,且与CLZ相似。研究结果为发展靶向于K-ATP通道的药物用于精神分裂症的临床治疗提供了理论依据。
Schizophrenia is an etiology unknown mental disorder. Onset of symptomstypically occurs in young adulthood, characterized by abnormalities in the thought,emotion and behavior. The symptoms of schizophrenia include positive and negativesymptoms, the positive symptoms most commonly manifests as hallucinations,disorganized thinking, and the negative symptoms most commonly manifests associal withdrawal and anhedonia. In addition, patients with schizophrenia also showcognitive impairment such as working memory and attention impairment.
     Antipsychotic drugs (APDs) are the main medications used to treatschizophrenia. The first-generation APDs (typical APDs, e.g., haloperidol) areprimarily dopamine D2 receptor antagonists. They are most effective in the control ofpsychotic symptoms but have a high propensity for producing severe side effects,such as extrapyramidal symptoms (EPS), sexual dysfunction, orthostatic hypotension,neuroendocrine disturbances, and sedation, which limit the therapeutic usefulness ofAPDs and reduce the patient’s quality of life. The second-generation APDs (atypicalAPDs, clozapine, olanzapine) display a lower affinity for dopamine D2 receptors andhigher affinities for other receptors, such as 5-HT2A, 5-HT1A andα1- adrenergic and α2 - adrenergic receptors. In comparison to typicals, atypical APDs are equallyeffective against psychotic symptoms but have a reduced risk of EPS. However,atypicals can cause other unwanted side effects, such as weight gain, type II diabetes,hyperglycemia, and dyslipidemia. In addition, more than 30% of patients respondpoorly to any drug treatment and remain actively psychotic. Thus, it is it safe to saythat the current psychopharmacological treatments for schizophrenia areunsatisfactory because of their limited effectiveness on non-psychotic symptoms andthe disturbing side effects that they can cause. Consequently, there is a pressing needto develop better drugs that offer hope for the alleviation of negative symptoms andcognitive deficits in schizophrenia, to improve the quality of life of schizophrenicpatients.
     Animal behavior models are extremely useful tools in researching pathogenesisand treatment of human disease. Creating adequate animal models of complexneuropsychiatric disorders such as schizophrenia represents a particularly difficultchallenge. In the case of schizophrenia, little is certain regarding the etiology orpathophysiology of the human disease. In addition, many symptoms of the disorderare difficult to measure directly in rodents.
     Predictive validity for current and future therapies is one of the more desirablefeatures of an ideal animal model of schizophrenia. However, some current“predictive models”of schizophrenia treatment measure only a single dimension ofantipsychotic drug effects, often testing the effects of acute antipsychotic drugadministration on dopamine or glutamate receptor-mediated behaviors. Improvedmodels of schizophrenia will likely lead to unique advances in schizophreniatreatment.
     ATP-sensitive potassium channel (K-ATP channel) is a special class ofpotassium channel, which links cell metabolic state to excitability. K-ATP channelsconsist of discrete pore-forming and regulatory subunits and are activated by adecrease in ATP/ADP ratio. Recently, it is demonstrated that K-ATP channelespecially mitochondrial K-ATP (mitoK-ATP) channel is the importantneuroprotective target, and may be the endogenous protective mechanism after ischemic, hypoxia or oxidative stress-induced injury. Moreover. K-ATP channelparticipates in the initiation and progress of Parkinson s disease (PD), Alzherimer'sdisease (AD')
     Iptakalim was originally developed for the treatment of hypertension. It is anovel adenosine tnphosphate (ATP)-sensitive potassium channel activator that opensthe cardiovascular K-ATP channels and exerts an antihypertensive effect. Becauseiptakalim was later found to be able to easily pass through the blood-brain-barrier andto act on the neuronal plasma membrane and/or mitochondrial K-ATP channels, itspotential therapeutic effects ou neurological and neuropsychiatric disorders havegenerated much interest Current research focuses on the neuronal protective effectsof lptakalim on ischenic stroke. Parkinson s disease (PD) and its potential therapeuticeffect on nicotine addiction
     Several lines of indirect evidence suggest lhat lptafcalim may be potentiallyuseful for schizophrenia and may offer needed efficacies on negative and cognitivesymptoms First, in vitro and in vivo experiments demonstrate that iptakalim has aninhibitory function on excess dopamine release. Iptakalim is found to significantlyreduce dopamine release induced by rotenone or GBR-I2909 in rat dopaminergicPC 12 cells and to attenuate dopamine release induced by1-methy1-4-phenylpyridinium ion (MPP(+)) or nicotine m freely moving ratsInterestingly, in the unilateral 6-hydroxydopamine (6-OHDA) lesioned rats (a modelof PD). iptakalim is shown to significantly decrease extracellular dopamine levels inthe intact side of the sratum. while increasing dopamine levels in the lesioned sideThis unique property in some ways resembles lhat of a dopamine partial agonist, suchas aripiprazole, and suggests that iptakalim may be capable of adjusting the level ofdopamine in different parts of the brain Second, iptakalim is demonstrated to possessan intrinsic neuroprotective effect against necrosis and apoptosis due to its ability tolimit glutamate release and receptor functions. Third, in animal behavioral studies.iptakalim is shown to reverse haloperidol-induced catalepsy and hypolocomotionPretreatment with iptakalim or diazoxide (a selective mitochondrial ATP-sensitivepotassium channel opener) can even prevent rotenone-induced catalepsy and the reduction of striatum dopamine contents. These fomdomgs, together with evidencereviewed above showing that lptakalim can inhibit excess dopamine release, stronglysuggest that iptakalim may function as a ""dopamine stabilizer to modulate theappropriate level of dopamine in different parts of the brain. It may increasedopamine release at the site where tbe dopamine level is low, while decreasingdopamine release at the site where the dopamine level is high. Fourth, iptakalim isshown to possess a unique antihypertensive effect via the opening of the K-AXPchannels in several animal models. This antihypertensive effect of iptakalim is anattractive feature because hypertension is common in patients with psychiatric illness.Interestingly, most antipsychotic drugs also have a similar hypotensive effect.although via quite different physiological mechanisms. Nevertheless, this similarityadds to the support for the proposition that iptakalim may possess an antipsychoticproperty. Fifth the target site of iptakalim -the K-ATP channel- is found in the neuralcircuits that are implicated in the pathophysiology of scluzophrenia. such as thesubstantia nigra, ventral tegmental area, the prefrontal cortex and hippocampus, andplays an important role in the regulation of release of neurotransmitters, such asglutamate. dopamine and GABA Finally, it has been hypothesized that the K-ATPchannel activators may be beneficial in schizophrenia based on the evidence thatdopamine receptors can modulate the K-ATP channel opening. Diazoxide theATP-sensitive potassium channel opener has been tried m the clinic as an adjunctivetreatment together with haloperidol. It potentiated the effects of haloperidol on thepositive and general psychopathological symptoms of schizophrenia as measured byPANSS.
     In the present study, we first evaluated several rat behavioral models forantipsychotic activity. Then we used these newly developed models and exploredthe behavioral and receptor mechanisms underlying acute and repeated effects ofantipsychotic treatment Finally, we investigated the potential antipsychotic effect ofK-ATP channel opener EPT on preclinical scluzophrenia behavior model.
     Part I Significance of the repeated antiphychotic treatmentschizophrenia model
     AIM: To investigated whether repeated antipsychotic treatment could producean early-onset and progressively increased antagonistic effect on amphetamine orphencyclidineinduced hyperlocomotion and on conditioned avoidance response as away of assessing the validity of such models in capturing time course of antipsychoticaction.
     METHODS: For the hyperlocomotion test, on each of the five consecutive testdays, different groups of rats (n=6–7/group) received an initial injection of eitherhaloperidol (0.01–0.10 mg/kg, sc), clozapine (5–20.0 mg/kg, sc), olanzapine (1.0mg/kg, sc), chlordiazepoxide (10.0 mg/kg, ip) or vehicle (sterile water, sc) 30 minprior to a second injection of either amphetamine (1.5 mg/kg, sc) or phencyclidine(3.2 mg/kg, sc). Motor activity was subsequently monitored for 60 min afteramphetamine or phencyclidine treatment. For the CAR test, on each of the fiveconsecutive test days, different groups of rats (n=6–7/group) received an injection ofeither haloperidol (0.05 mg/kg, sc), clozapine (10.0 mg/kg, sc), or vehicle (sterilewater, sc). Conditioned avoidance response monitored 60 min after HAL、CLZ orVEH treatment.
     RESULTS: 1) Repeated treatment of haloperidol, clozapine, or olanzapineprogressively potentiated inhibition on repeated phencyclidine-inducedhyperlocomotion and prolonged this action over the five consecutive days;2) Incontrast, antipsychotic inhibition on repeated amphetamine-induced hyperlocomotionwas gradually attenuated and shortened;3) Repeated treatment of chlordiazepoxide, abenzodiazepine anxiolytic, retained its inhibition on amphetamine-inducedhyperlocomotion, but had no effect on phencyclidine-induced one;4) Repeatedtreatment of haloperidol progressively potentiated inhibition on conditionedavoidance response; 5) In contrast, repeated treatment of clozapine progressivelyattenuated inhibition on conditioned avoidance response.
     CONCLUSION: R e p eated phencyclidine-induced hyperlocomotion model repeated antipsychotic treatment regimen is capable of capturing theprogressive increase pattern of antipsychotic treatment seen in the clinic anddifferentiating antipsychotics from anxiolytics; thus it may serve as a better modelfor the investigation of the neurobiological mechanisms of action of antipsychoticdrugs and delineating the pathophysiology of schizophrenia.
     Part II Mechanisms underlying repeated antiphychotictreatment schizophrenia model
     AIM: To investigate the behavioral and receptor mechanisms underlying acuteand repeated effects of antipsychotic treatment.
     METHODS: For different antipsychotic treatment history test: First, differentgroups of rats (n=6–7/group) received an injection of either haloperidol (0.05 mg/kg,sc), clozapine (5 mg/kg, sc), olanzapine (2.0 mg/kg, sc), or vehicle (sterile water, sc)in the homecages for daily for five consecutive days, then, on the next five test days,they were injected with either haloperidol (0.05 mg/kg, sc), clozapine (5 mg/kg, sc),olanzapine (2.0 mg/kg, sc), or vehicle (sterile water, sc) 30 min prior to a secondinjection of phencyclidine (3.2 mg/kg, sc) before being placed in the motor activitytesting boxes. Motor activity was monitored for 60 min after phencyclidine treatment.Some rats that received vehicle in the first five days received either haloperidol (0.05mg/kg, sc), clozapine (5 mg/kg, sc), olanzapine (2.0 mg/kg, sc) in the second test days.For different testing room exposure test: on each of 7 consecutive test days, differentgroups of rats (n=8/group) received an initial injection of either haloperidol (0.03mg/kg, sc), clozapine (5 mg/kg, sc), olanzapine (1.0 mg/kg, sc), or vehicle (sterilewater, sc) 30 min prior to a second injection of phencyclidine (1.6 mg/kg, sc) in theirhomecages or testing boxes. Motor activity was subsequently monitored for 60 minafter phencyclidine treatment.
     For the CAR test: well-trained rats were administered with haloperidol (0.05 mg/kg,sc), clozapine (10.0 mg/kg, sc), or olanzapine (1.0 mg/kg, sc) together with eithersterile water, quinpirole (a selective dopamine D2/D3 agonist, 1.0 mg/kg, sc), and/or 2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT2A/2C agonist, 2.5 mg/kg,sc), and their avoidance behavior were tested over three consecutive days. After twodays drug-free retraining, the repeated treatment effect (i.e. drug memory) wasassessed in a challenge test.
     RESULTSRESULTS: 1) Preexposure to the antipshchotic did not afftect the inhibition ofantipsychotic treatment on acute PCP-induced hyperlocomotion.; 2) Differentexposure times affect the inhibition effect of HAL, but not CLZ, OLZ, onPCP-induced hyperlocomotion;3) Pretreatment of quinpirole, but not DOI,attenuated the acute haloperidol-induced disruption of avoidance responding and to alesser extent, olanzapine-induced disruption;4) In contrast, pretreatment of DOI, butnot quinpirole, attenuated that of clozapine;5) On the repeated effect, pretreatmentof DOI attenuated the haloperidol drug memory, whereas pretreatment of quinpiroleattenuated olanzapine drug memory and potentiated that of clozapine.
     CONCLUSION: The progressively potentiated inhibition of repeated treatmentof haloperidol, clozapine, or olanzapine on repeated phencyclidine inducedhyperlocomotion depends on the drug-drug interaction and drug-environmentinteraction. Acute haloperidol and olanzapine disrupt avoidance responding primarilyby immediately blocking dopamine D2 receptors, whereas acute clozapine exerts itsdisruptive effect primarily by blocking the 5-HT2A/2C receptors. The repeatedhaloperidol and clozapine effect may be mediated by brain changes initiated by5-HT2A/2C blockade, whereas the repeated olanzapine effect may be mediated by brainchanges initiated by D2 blockade.
     Part III Effect of iptakalim in schizophrenia models
     AIM: To examine the potential antipsychotic activity of iptakalim (IPT) inseveral schizophrenia animal behavioral models
     METHODS: We used some preclinical animal behavioral model to investigatethe potential antipsychotic activity of IPT:1) amphetamine- andphencyclidine-induced hyperlocomotion;2) conditioned avoidance responding model; 3) amphetamine- and phencyclidine-induced prepulse inhibition deficit model; 4)Immunohistochemistry was taken for analyses of IPT induced C-fos expression inthe nucleus accumbens, medial prefrontal cortex, lateral septal nucleus, anddorsolateral striatum.
     RESULTSRESULTS: 1) IPT is effective in reducing amphetamine- andphencyclidine-induced hyperlocomotion and shows a preferential effect in reducingthe PCP-induced hyperlocomotion over the amphetamine-induced one;2) acuteiptakalim treatment selectively and dose-dependently disrupts conditioned avoidanceresponding. Repeated iptakalim treatment gradually loses its inhibition on avoidanceresponding, an effect shared only by clozapine, but not by other antipsychotics tested,such as haloperidol, olanzapine and risperidone; 3) iptakalim itself does not disruptprepulse inhibition (PPI) of acoustic startle reflex or cause catalepsy. It potentiates theamphetamine-induced reduction of PPI but is ineffective in reversing thephencyclidine-induced disruption; 4) iptakalim and clozapine, but not haloperidol,preferentially induces Fos-like immunoreactivity (FLI) in the nucleus accumbens,medial prefrontal cortex and lateral septal nucleus, but not in the dorsolateralstriatum..
     CONCLUSION: These findings indicate that iptakalim is a drug that maypossess an atypical clozapine-like antipsychotic property with a distinct mechanismof action.
     The major contributions of the present study lie in:
     1. For the first time, we validated several preclinical animal models forantipsychotic activity based on repeated treatment regimen. We show that repeatedphencyclidine-induced hyperlocomotion model based on repeated antipsychotictreatment regimen is capable of capturing the progressive increase pattern ofantipsychotic treatment seen in the clinic and differentiating antipsychotics fromanxiolytics; which serve as a better model for the investigation of the neurobiologicalmechanisms of action of antipsychotic drugs and delineating the pathophysiology ofschizophrenia
     2. For the first time, we explored the behavior and receptor mechanismsunderlying acute and repeated effects of antipsychotic.
     3. For the first time, we determined that iptakalim is a drug that may possess anatypical clozapine-like antipsychotic property with a distinct mechanism of action,and points out that neuronal and astrocytic plasma membrane and/or mitochondrialK-ATP channels may be a target that deserves attention for antipsychotic drugdevelopment.
引文
[1] Picchioni MM, Murray RM: Schizophrenia. BMJ 2007, 335(7610):91-95.
    [2] Axelson D, Birmaher BJ, Brent D, Wassick S, Hoover C, Bridge J, Ryan N: Apreliminary study of the Kiddie Schedule for Affective Disorders and Schizophrenia forSchool-Age Children mania rating scale for children and adolescents. J Child AdolescPsychopharmacol 2003, 13(4):463-470.
    [3] Gross G, Huber G: [Psychopathology of schizophrenia and brain imaging]. FortschrNeurol Psychiatr 2008, 76 Suppl 1:S49-56.
    [4] Schultze-Lutter F: Subjective symptoms of schizophrenia in research and the clinic: thebasic symptom concept. Schizophr Bull 2009, 35(1):5-8.
    [5] Zhang PL, Santos JM, Newcomer J, Pelfrey BA, Johnson MC, de Erausquin GA: Impactof atypical antipsychotics on quality of life, self-report of symptom severity, and demandof services in chronically psychotic patients. Schizophr Res 2004, 71(1):137-144.
    [6] Seeman P, Tallerico T, Corbett R, Van Tol HH, Kamboj RK: Role of dopamine D2, D4and serotonin(2A) receptors in antipsychotic and anticataleptic action. JPsychopharmacol 1997, 11(1):15-17.
    [7] Kapur S, Barsoum SC, Seeman P: Dopamine D(2) receptor blockade by haloperidol.(3)H-raclopride reveals much higher occupancy than EEDQ. Neuropsychopharmacology2000, 23(5):595-598.
    [8] Weiss EM, Bilder RM, Fleischhacker WW: The effects of second-generationantipsychotics on cognitive functioning and psychosocial outcome in schizophrenia.Psychopharmacology (Berl) 2002, 162(1):11-17.
    [9] Beasley CM, Jr., Tollefson G, Tran P, Satterlee W, Sanger T, Hamilton S: Olanzapineversus placebo and haloperidol: acute phase results of the North American double-blindolanzapine trial. Neuropsychopharmacology 1996, 14(2):111-123.
    [10] Jibson MD, Tandon R: New atypical antipsychotic medications. J Psychiatr Res 1998,32(3-4):215-228.
    [11] Robinson DG, Woerner MG, Delman HM, Kane JM: Pharmacological treatments forfirst-episode schizophrenia. Schizophr Bull 2005, 31(3):705-722.
    [12] Woerner MG, Robinson DG, Alvir JM, Sheitman BB, Lieberman JA, Kane JM:Clozapine as a first treatment for schizophrenia. Am J Psychiatry 2003,160(8):1514-1516.
    [13] Tsai GE, Lin PY: Strategies to Enhance N-Methyl-D-aspartate Receptor-MediatedNeurotransmission in Schizophrenia, a Critical Review and Meta-Analysis. Curr PharmDes 2009.
    [14] Melrose S: Schizophrenia: a brief review of what nurses can do and say to help. J PractNurs 2009, 59(2):3-4.
    [15] Suzuki T, Uchida H, Watanabe K, Kashima H: Treatment target in schizophrenia: acritical review and a clinical suggestion. Psychopharmacol Bull 2008, 41(4):80-102.
    [16] Stone JM, Morrison PD, Pilowsky LS: Glutamate and dopamine dysregulation inschizophrenia--a synthesis and selective review. J Psychopharmacol 2007, 21(4):440-452.
    [17] Hunter MJ, Hippman C, Honer WG, Austin JC: Genetic counseling for schizophrenia: areview of referrals to a provincial medical genetics program from 1968 to 2007. Am JMed Genet A, 152A(1):147-152.
    [18] Yamada S: [Disruption of prepulse inhibition of acoustic startle as an animal model forschizophrenia]. Nihon Shinkei Seishin Yakurigaku Zasshi 2000, 20(4):131-139.
    [19] Scholes KE, Martin-Iverson MT: Disturbed prepulse inhibition in patients withschizophrenia is consequential to dysfunction of selective attention. Psychophysiology2009.
    [20] Swerdlow NR, Geyer MA, Braff DL: Neural circuit regulation of prepulse inhibition ofstartle in the rat: current knowledge and future challenges. Psychopharmacology (Berl)2001, 156(2-3):194-215.
    [21] Lipska BK, Weinberger DR: To model a psychiatric disorder in animals: schizophrenia asa reality test. Neuropsychopharmacology 2000, 23(3):223-239.
    [22] O'Neill MF, Shaw G: Comparison of dopamine receptor antagonists on hyperlocomotioninduced by cocaine, amphetamine, MK-801 and the dopamine D1 agonist C-APB in mice.Psychopharmacology (Berl) 1999, 145(3):237-250.
    [23] Sun T, Hu G, Li M: Repeated antipsychotic treatment progressively potentiates inhibitionon phencyclidine-induced hyperlocomotion, but attenuates inhibition onamphetamine-induced hyperlocomotion: relevance to animal models of antipsychoticdrugs. Eur J Pharmacol 2009, 602(2-3):334-342.
    [24] Freed WJ, Bing LA, Wyatt RJ: Effects of neuroleptics on phencyclidine (PCP)-inducedlocomotor stimulation in mice. Neuropharmacology 1984, 23(2A):175-181.
    [25] Tamminga CA, Lahti AC, Medoff DR, Gao XM, Holcomb HH: Evaluating glutamatergictransmission in schizophrenia. Ann N Y Acad Sci 2003, 1003:113-118.
    [26] Becker T, Elmer K, Schneider F, Schneider M, Grodd W, Bartels M, Heckers S,Beckmann H: Confirmation of reduced temporal limbic structure volume on magneticresonance imaging in male patients with schizophrenia. Psychiatry Res 1996,67(2):135-143.
    [27] Rossi A, Stratta P, Mancini F, Gallucci M, Mattei P, Core L, Di Michele V, Casacchia M:Magnetic resonance imaging findings of amygdala-anterior hippocampus shrinkage inmale patients with schizophrenia. Psychiatry Res 1994, 52(1):43-53.
    [28] Bishop C, Walker PD: Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptorstimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine-lesionedrats. Neuroscience 2003, 121(3):649-657.
    [29] Filip M, Bubar MJ, Cunningham KA: Contribution of serotonin (5-hydroxytryptamine;5-HT) 5-HT2 receptor subtypes to the hyperlocomotor effects of cocaine: acute andchronic pharmacological analyses. J Pharmacol Exp Ther 2004, 310(3):1246-1254.
    [30] Sadalge A, Coughlin L, Fu H, Wang B, Valladares O, Valentino R, Blendy JA: alpha 1dAdrenoceptor signaling is required for stimulus induced locomotor activity. MolPsychiatry 2003, 8(7):664-672.
    [31] Loscher W, Honack D: The behavioural effects of MK-801 in rats: involvement ofdopaminergic, serotonergic and noradrenergic systems. Eur J Pharmacol 1992,215(2-3):199-208.
    [32] Stuchlik A, Petrasek T, Vales K: Effect of alpha(1)-adrenergic antagonist prazosin onbehavioral alterations induced by MK-801 in a spatial memory task in Long-Evans rats.Physiol Res 2009, 58(5):733-740.
    [33] File SE, Hyde JR: Can social interaction be used to measure anxiety? Br J Pharmacol1978, 62(1):19-24.
    [34] Sams-Dodd F, Lipska BK, Weinberger DR: Neonatal lesions of the rat ventralhippocampus result in hyperlocomotion and deficits in social behaviour in adulthood.Psychopharmacology (Berl) 1997, 132(3):303-310.
    [35] Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG,Tonegawa S: Conditional calcineurin knockout mice exhibit multiple abnormal behaviorsrelated to schizophrenia. Proc Natl Acad Sci U S A 2003, 100(15):8987-8992.
    [36] Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN:Sociability and preference for social novelty in five inbred strains: an approach to assessautistic-like behavior in mice. Genes Brain Behav 2004, 3(5):287-302.
    [37] Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP,Piven J, Magnuson TR et al: Automated apparatus for quantitation of social approachbehaviors in mice. Genes Brain Behav 2004, 3(5):303-314.
    [38] Schneider CW, Chenoweth MB: Effects of hallucinogenic and other drugs on thenest-building behaviour of mice. Nature 1970, 225(5239):1262-1263.
    [39] Green MF: Cognitive remediation in schizophrenia: is it time yet? Am J Psychiatry 1993,150(2):178-187.
    [40] Elvevag B, Goldberg TE: Cognitive impairment in schizophrenia is the core of thedisorder. Crit Rev Neurobiol 2000, 14(1):1-21.
    [41] Moritsugu KP: A report from the office of the Surgeon General. J Am Diet Assoc 2000,100(9):1013-1014.
    [42] Andreasen NC, Olsen S: Negative v positive schizophrenia. Definition and validation.Arch Gen Psychiatry 1982, 39(7):789-794.
    [43] Andreasen NC, Flaum M, Swayze VW, 2nd, Tyrrell G, Arndt S: Positive and negativesymptoms in schizophrenia. A critical reappraisal. Arch Gen Psychiatry 1990,47(7):615-621.
    [44] Steele RJ, Morris RG: Delay-dependent impairment of a matching-to-place task withchronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus1999, 9(2):118-136.
    [45] Moghaddam B, Adams BW: Reversal of phencyclidine effects by a group II metabotropicglutamate receptor agonist in rats. Science 1998, 281(5381):1349-1352.
    [46] Sweatt JD: Memory mechanisms: the yin and yang of protein phosphorylation. Curr Biol2001, 11(10):R391-394.
    [47] Silva AJ: Molecular and cellular cognitive studies of the role of synaptic plasticity inmemory. J Neurobiol 2003, 54(1):224-237.
    [48] Braff DL, Geyer MA: Sensorimotor gating and schizophrenia. Human and animal modelstudies. Arch Gen Psychiatry 1990, 47(2):181-188.
    [49] Paylor R, Crawley JN: Inbred strain differences in prepulse inhibition of the mouse startleresponse. Psychopharmacology (Berl) 1997, 132(2):169-180.
    [50] Geyer MA, McIlwain KL, Paylor R: Mouse genetic models for prepulse inhibition: anearly review. Mol Psychiatry 2002, 7(10):1039-1053.
    [51] Braff DL, Geyer MA, Swerdlow NR: Human studies of prepulse inhibition of startle:normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl)2001, 156(2-3):234-258.
    [52] Weiner I: The "two-headed" latent inhibition model of schizophrenia: modeling positiveand negative symptoms and their treatment. Psychopharmacology (Berl) 2003,169(3-4):257-297.
    [53] Lubow RE: Construct validity of the animal latent inhibition model of selective attentiondeficits in schizophrenia. Schizophr Bull 2005, 31(1):139-153.
    [54] Caldarone BJ, Duman CH, Picciotto MR: Fear conditioning and latent inhibition in micelacking the high affinity subclass of nicotinic acetylcholine receptors in the brain.Neuropharmacology 2000, 39(13):2779-2784.
    [55] Li M, Parkes J, Fletcher PJ, Kapur S: Evaluation of the motor initiation hypothesis ofAPD-induced conditioned avoidance decreases. Pharmacol Biochem Behav 2004,78(4):811-819.
    [56] Li M, He W, Mead A: Olanzapine and risperidone disrupt conditioned avoidanceresponding in phencyclidine-pretreated or amphetamine-pretreated rats by selectivelyweakening motivational salience of conditioned stimulus. Behav Pharmacol 2009,20(1):84-98.
    [57] Lipska BK, Weinberger DR: A neurodevelopmental model of schizophrenia: neonataldisconnection of the hippocampus. Neurotox Res 2002, 4(5-6):469-475.
    [58] Lipska BK, Jaskiw GE, Weinberger DR: Postpubertal emergence of hyperresponsivenessto stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potentialanimal model of schizophrenia. Neuropsychopharmacology 1993, 9(1):67-75.
    [59] Black MD, Selk DE, Hitchcock JM, Wettstein JG, Sorensen SM: On the effect ofneonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model ofschizophrenia. Neuropharmacology 1999, 38(9):1299-1306.
    [60] Stevens KE, Johnson RG, Rose GM: Rats reared in social isolation showschizophrenia-like changes in auditory gating. Pharmacol Biochem Behav 1997,58(4):1031-1036.
    [61] Smith S, Thakurdas H, Lawes TG: Perceptual isolation and schizophrenia. J Ment Sci1961, 107:839-844.
    [62] Rethelyi JM, Bakker SC, Polgar P, Czobor P, Strengman E, Pasztor PI, Kahn RS, Bitter I:Association study of NRG1, DTNBP1, RGS4, G72/G30, and PIP5K2A withschizophrenia and symptom severity in a Hungarian sample. Am J Med Genet BNeuropsychiatr Genet, 153B(3):792-801.
    [63] Rodrigo GC, Standen NB: ATP-sensitive potassium channels. Curr Pharm Des 2005,11(15):1915-1940.
    [64] Liss B, Roeper J: Molecular physiology of neuronal K-ATP channels (review). MolMembr Biol 2001, 18(2):117-127.
    [65] Wang Y, Haider HK, Ahmad N, Ashraf M: Mechanisms by which K(ATP) channelopeners produce acute and delayed cardioprotection. Vascul Pharmacol 2005,42(5-6):253-264.
    [66] Ashcroft FM: ATP-sensitive potassium channelopathies: focus on insulin secretion. J ClinInvest 2005, 115(8):2047-2058.
    [67] Liang HW, Xia Q, Bruce IC: Reactive oxygen species mediate the neuroprotectionconferred by a mitochondrial ATP-sensitive potassium channel opener during ischemia inthe rat hippocampal slice. Brain Res 2005, 1042(2):169-175.
    [68] Blondeau N, Plamondon H, Richelme C, Heurteaux C, Lazdunski M: K(ATP) channelopeners, adenosine agonists and epileptic preconditioning are stress signals inducinghippocampal neuroprotection. Neuroscience 2000, 100(3):465-474.
    [69] Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT: Neurobiology ofschizophrenia. Neuron 2006, 52(1):139-153.
    [70] Mannhold R: Structure-activity relationships of K(ATP) channel openers. Curr Top MedChem 2006, 6(10):1031-1047.
    [71] Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J: K-ATP channels promote thedifferential degeneration of dopaminergic midbrain neurons. Nat Neurosci 2005,8(12):1742-1751.
    [72] Illes P, Nieber K, Norenberg W: Electrophysiological effects of ATP on brain neurones. JAuton Pharmacol 1996, 16(6):407-411.
    [73] Hu LF, Wang S, Shi XR, Yao HH, Sun YH, Ding JH, Liu SY, Hu G: ATP-sensitivepotassium channel opener iptakalim protected against the cytotoxicity of MPP+ onSH-SY5Y cells by decreasing extracellular glutamate level. J Neurochem 2005,94(6):1570-1579.
    [74] Jahangir A, Terzic A: K(ATP) channel therapeutics at the bedside. J Mol Cell Cardiol2005, 39(1):99-112.
    [75] Akhondzadeh S, Mojtahedzadeh V, Mirsepassi GR, Moin M, Amini-Nooshabadi H,Kamalipour A: Diazoxide in the treatment of schizophrenia: novel application ofpotassium channel openers in the treatment of schizophrenia. J Clin Pharm Ther 2002,27(6):453-459.
    [76] Yang YJ, Wang QM, Hu LF, Sun XL, Ding JH, Hu G: Iptakalim alleviated the increase ofextracellular dopamine and glutamate induced by 1-methyl-4-phenylpyridinium ion in ratstriatum. Neurosci Lett 2006, 404(1-2):187-190.
    [77] Liu Q, Li Z, Ding JH, Liu SY, Wu J, Hu G: Iptakalim inhibits nicotine-inducedenhancement of extracellular dopamine and glutamate levels in the nucleus accumbens ofrats. Brain Res 2006, 1085(1):138-143.
    [78] Yang J, Hu LF, Liu X, Zhou F, Ding JH, Hu G: Effects of iptakalim on extracellularglutamate and dopamine levels in the striatum of unilateral 6-hydroxydopamine-lesionedrats: a microdialysis study. Life Sci 2006, 78(17):1940-1944.
    [79] Wang S, Hu LF, Zhang Y, Sun T, Sun YH, Liu SY, Ding JH, Wu J, Hu G: Effects ofsystemic administration of iptakalim on extracellular neurotransmitter levels in thestriatum of unilateral 6-hydroxydopamine-lesioned rats. Neuropsychopharmacology 2006,31(5):933-940.
    [80] Matsubayashi H, Amano T, Sasa M: Inhibition by aripiprazole of dopaminergic inputs tostriatal neurons from substantia nigra. Psychopharmacology (Berl) 1999, 146(2):139-143.
    [81] Li Z, Ichikawa J, Dai J, Meltzer HY: Aripiprazole, a novel antipsychotic drug,preferentially increases dopamine release in the prefrontal cortex and hippocampus in ratbrain. Eur J Pharmacol 2004, 493(1-3):75-83.
    [82] Wang H, Zhang YL, Tang XC, Feng HS, Hu G: Targeting ischemic stroke with a novelopener of ATP-sensitive potassium channels in the brain. Mol Pharmacol 2004,66(5):1160-1168.
    [83] Yang Y, Liu X, Long Y, Wang F, Ding JH, Liu SY, Sun YH, Yao HH, Wang H, Wu J et al:Systematic administration of iptakalim, an ATP-sensitive potassium channel opener,prevents rotenone-induced motor and neurochemical alterations in rats. J Neurosci Res2005, 80(3):442-449.
    [84] Wang S, Hu LF, Yang Y, Ding JH, Hu G: Studies of ATP-sensitive potassium channels on6-hydroxydopamine and haloperidol rat models of Parkinson's disease: implications fortreating Parkinson's disease? Neuropharmacology 2005, 48(7):984-992.
    [85] Agid O, Kapur S, Arenovich T, Zipursky RB: Delayed-onset hypothesis of antipsychoticaction: a hypothesis tested and rejected. Arch Gen Psychiatry 2003, 60(12):1228-1235.
    [86] Leucht S, Busch R, Hamann J, Kissling W, Kane JM: Early-onset hypothesis ofantipsychotic drug action: a hypothesis tested, confirmed and extended. Biol Psychiatry2005, 57(12):1543-1549.
    [87] Arnt J: Pharmacological specificity of conditioned avoidance response inhibition in rats:inhibition by neuroleptics and correlation to dopamine receptor blockade. ActaPharmacol Toxicol (Copenh) 1982, 51(4):321-329.
    [88] Ellenbroek BA, Peeters BW, Honig WM, Cools AR: The paw test: a behaviouralparadigm for differentiating between classical and atypical neuroleptic drugs.Psychopharmacology (Berl) 1987, 93(3):343-348.
    [89] Hoffman DC, Donovan H: Catalepsy as a rodent model for detecting antipsychotic drugswith extrapyramidal side effect liability. Psychopharmacology (Berl) 1995,120(2):128-133.
    [90] Robertson GS, Fibiger HC: Neuroleptics increase c-fos expression in the forebrain:contrasting effects of haloperidol and clozapine. Neuroscience 1992, 46(2):315-328.
    [91] Abekawa T, Ito K, Koyama T: Different effects of a single and repeated administration ofclozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the ratmedial prefrontal cortex at short- and long-term withdrawal from this antipsychotic.Naunyn Schmiedebergs Arch Pharmacol 2007, 375(4):261-271.
    [92] Arnt J: Differential effects of classical and newer antipsychotics on the hypermotilityinduced by two dose levels of D-amphetamine. Eur J Pharmacol 1995, 283(1-3):55-62.
    [93] Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J, Newman-Tancredi A,Audinot V, Maurel S: Contrasting mechanisms of action and sensitivity to antipsychoticsof phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sitesfor PCP-induced locomotion in the rat. Eur J Neurosci 1999, 11(12):4419-4432.
    [94] Gleason SD, Shannon HE: Blockade of phencyclidine-induced hyperlocomotion byolanzapine, clozapine and serotonin receptor subtype selective antagonists in mice.Psychopharmacology (Berl) 1997, 129(1):79-84.
    [95] Maurel-Remy S, Bervoets K, Millan MJ: Blockade of phencyclidine-inducedhyperlocomotion by clozapine and MDL 100,907 in rats reflects antagonism of 5-HT2Areceptors. Eur J Pharmacol 1995, 280(2):R9-11.
    [96] Fletcher PJ, Sinyard J, Higgins GA: The effects of the 5-HT(2C) receptor antagonistSB242084 on locomotor activity induced by selective, or mixed, indirect serotonergicand dopaminergic agonists. Psychopharmacology (Berl) 2006, 187(4):515-525.
    [97] Millan MJ, Veiga S, Girardon S, Brocco M: Blockade of serotonin 5-HT1B and 5-HT2Areceptors suppresses the induction of locomotor activity by 5-HT reuptake inhibitors,citalopram and fluvoxamine, in NMRI mice exposed to a novel environment: acomparison to other 5-HT receptor subtypes. Psychopharmacology (Berl) 2003,168(4):397-409.
    [98] Redmond AM, Harkin A, Kelly JP, Leonard BE: Effects of acute and chronicantidepressant administration on phencyclidine (PCP) induced locomotor hyperactivity.Eur Neuropsychopharmacol 1999, 9(1-2):165-170.
    [99] Arnt J, Hyttel J, Overo KF: Prolonged treatment with the specific 5-HT-uptake inhibitorcitalopram: effect on dopaminergic and serotonergic functions. Pol J Pharmacol Pharm1984, 36(2-3):221-230.
    [100] Sills TL, Greenshaw AJ, Baker GB, Fletcher PJ: Acute fluoxetine treatment potentiatesamphetamine hyperactivity and amphetamine-induced nucleus accumbens dopaminerelease: possible pharmacokinetic interaction. Psychopharmacology (Berl) 1999,141(4):421-427.
    [101] Sills TL, Greenshaw AJ, Baker GB, Fletcher PJ: Subchronic fluoxetine treatment inducesa transient potentiation of amphetamine-induced hyperlocomotion: possiblepharmacokinetic interaction. Behav Pharmacol 2000, 11(2):109-116.
    [102] Javitt DC, Zukin SR: Recent advances in the phencyclidine model of schizophrenia. Am JPsychiatry 1991, 148(10):1301-1308.
    [103] Sams-Dodd F: A test of the predictive validity of animal models of schizophrenia basedon phencyclidine and D-amphetamine. Neuropsychopharmacology 1998, 18(4):293-304.
    [104] Kane J, Honigfeld G, Singer J, Meltzer H: Clozapine for the treatment-resistantschizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry1988, 45(9):789-796.
    [105] Meltzer HY, Li Z, Kaneda Y, Ichikawa J: Serotonin receptors: their key role in drugs totreat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27(7):1159-1172.
    [106] Li M, Fletcher PJ, Kapur S: Time course of the antipsychotic effect and the underlyingbehavioral mechanisms. Neuropsychopharmacology 2007, 32(2):263-272.
    [107] Jentsch JD, Roth RH: The neuropsychopharmacology of phencyclidine: from NMDAreceptor hypofunction to the dopamine hypothesis of schizophrenia.Neuropsychopharmacology 1999, 20(3):201-225.
    [108] Doat-Meyerhoefer MM, Hard R, Winter JC, Rabin RA: Effects of clozapine and2,5-dimethoxy-4-methylamphetamine [DOM] on 5-HT2A receptor expression in discretebrain areas. Pharmacol Biochem Behav 2005, 81(4):750-757.
    [109] Robinson TE, Becker JB: Behavioral sensitization is accompanied by an enhancement inamphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol1982, 85(2):253-254.
    [110] Xu X, Domino EF: Phencyclidine-induced behavioral sensitization. Pharmacol BiochemBehav 1994, 47(3):603-608.
    [111] Johnson KM, Phillips M, Wang C, Kevetter GA: Chronic phencyclidine inducesbehavioral sensitization and apoptotic cell death in the olfactory and piriform cortex. JNeurosci Res 1998, 52(6):709-722.
    [112] Siegel S, Baptista MA, Kim JA, McDonald RV, Weise-Kelly L: Pavlovianpsychopharmacology: the associative basis of tolerance. Exp Clin Psychopharmacol 2000,8(3):276-293.
    [113] Crombag HS, Badiani A, Chan J, Dell'Orco J, Dineen SP, Robinson TE: The ability ofenvironmental context to facilitate psychomotor sensitization to amphetamine can bedissociated from its effect on acute drug responsiveness and on conditioned responding.Neuropsychopharmacology 2001, 24(6):680-690.
    [114] Badiani A, Oates MM, Fraioli S, Browman KE, Ostrander MM, Xue CJ, Wolf ME,Robinson TE: Environmental modulation of the response to amphetamine: dissociationbetween changes in behavior and changes in dopamine and glutamate overflow in the ratstriatal complex. Psychopharmacology (Berl) 2000, 151(2-3):166-174.
    [115] Browman KE, Badiani A, Robinson TE: The influence of environment on the inductionof sensitization to the psychomotor activating effects of intravenous cocaine in rats isdose-dependent. Psychopharmacology (Berl) 1998, 137(1):90-98.
    [116] Crombag HS, Badiani A, Robinson TE: Signalled versus unsignalled intravenousamphetamine: large differences in the acute psychomotor response and sensitization.Brain Res 1996, 722(1-2):227-231.
    [117] Badiani A, Anagnostaras SG, Robinson TE: The development of sensitization to thepsychomotor stimulant effects of amphetamine is enhanced in a novel environment.Psychopharmacology (Berl) 1995, 117(4):443-452.
    [118] Badiani A, Browman KE, Robinson TE: Influence of novel versus home environments onsensitization to the psychomotor stimulant effects of cocaine and amphetamine. BrainRes 1995, 674(2):291-298.
    [119] Dragunow M, Robertson GS, Faull RL, Robertson HA, Jansen K: D2 dopamine receptorantagonists induce fos and related proteins in rat striatal neurons. Neuroscience 1990,37(2):287-294.
    [120] Seeman P, Lee T, Chau-Wong M, Wong K: Antipsychotic drug doses andneuroleptic/dopamine receptors. Nature 1976, 261(5562):717-719.
    [121] Meltzer HY, Matsubara S, Lee JC: The ratios of serotonin2 and dopamine2 affinitiesdifferentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989,25(3):390-392.
    [122] Miyamoto S, Duncan GE, Marx CE, Lieberman JA: Treatments for schizophrenia: acritical review of pharmacology and mechanisms of action of antipsychotic drugs. MolPsychiatry 2005, 10(1):79-104.
    [123] Wadenberg ML, Hicks PB: The conditioned avoidance response test re-evaluated: is it asensitive test for the detection of potentially atypical antipsychotics? Neurosci BiobehavRev 1999, 23(6):851-862.
    [124] Wadenberg MG, Browning JL, Young KA, Hicks PB: Antagonism at 5-HT(2A) receptorspotentiates the effect of haloperidol in a conditioned avoidance response task in rats.Pharmacol Biochem Behav 2001, 68(3):363-370.
    [125] Richelson E, Souder T: Binding of antipsychotic drugs to human brain receptors focus onnewer generation compounds. Life Sci 2000, 68(1):29-39.
    [126] Cornea-Hebert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, DescarriesL: Similar ultrastructural distribution of the 5-HT(2A) serotonin receptor andmicrotubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience2002, 113(1):23-35.
    [127] Jakab RL, Goldman-Rakic PS: 5-Hydroxytryptamine2A serotonin receptors in theprimate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugsin pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 1998, 95(2):735-740.
    [128] Pompeiano M, Palacios JM, Mengod G: Distribution of the serotonin 5-HT2 receptorfamily mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res MolBrain Res 1994, 23(1-2):163-178.
    [129] Amargos-Bosch M, Lopez-Gil X, Artigas F, Adell A: Clozapine and olanzapine, but nothaloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited byphencyclidine and ketamine. Int J Neuropsychopharmacol 2006, 9(5):565-573.
    [130] Broderick PA, Hope O, Okonji C, Rahni DN, Zhou Y: Clozapine and cocaine effects ondopamine and serotonin release in nucleus accumbens during psychostimulant behaviorand withdrawal. Prog Neuropsychopharmacol Biol Psychiatry 2004, 28(1):157-171.
    [131] Feasey-Truger KJ, Alzheimer C, ten Bruggencate G: Chronic clozapine versus chronichaloperidol treatment: differential effects on electrically evoked dopamine efflux in therat caudate putamen, but not in the nucleus accumbens. Naunyn Schmiedebergs ArchPharmacol 1996, 354(6):725-730.
    [132] Bowers BJ, Henry MB, Thielen RJ, McBride WJ: Serotonin 5-HT(2) receptor stimulationof dopamine release in the posterior but not anterior nucleus accumbens of the rat. JNeurochem 2000, 75(4):1625-1633.
    [133] Sanger DJ: The effects of clozapine on shuttle-box avoidance responding in rats:comparisons with haloperidol and chlordiazepoxide. Pharmacol Biochem Behav 1985,23(2):231-236.
    [134] Bateup HS, Svenningsson P, Kuroiwa M, Gong S, Nishi A, Heintz N, Greengard P: Celltype-specific regulation of DARPP-32 phosphorylation by psychostimulant andantipsychotic drugs. Nat Neurosci 2008, 11(8):932-939.
    [135] Grande C, Zhu H, Martin AB, Lee M, Ortiz O, Hiroi N, Moratalla R: Chronic treatmentwith atypical neuroleptics induces striosomal FosB/DeltaFosB expression in rats. BiolPsychiatry 2004, 55(5):457-463.
    [136] Kippin TE, Kapur S, van der Kooy D: Dopamine specifically inhibits forebrain neuralstem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 2005,25(24):5815-5823.
    [137] Yang Y, Liu X, Ding JH, Sun J, Long Y, Wang F, Yao HH, Hu G: Effects of iptakalim onrotenone-induced cytotoxicity and dopamine release from PC12 cells. Neurosci Lett 2004,366(1):53-57.
    [138] Mansbach RS, Geyer MA, Braff DL: Dopaminergic stimulation disrupts sensorimotorgating in the rat. Psychopharmacology (Berl) 1988, 94(4):507-514.
    [139] Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR: Pharmacological studies ofprepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade inreview. Psychopharmacology (Berl) 2001, 156(2-3):117-154.
    [140] Robertson GS, Matsumura H, Fibiger HC: Induction patterns of Fos-likeimmunoreactivity in the forebrain as predictors of atypical antipsychotic activity. JPharmacol Exp Ther 1994, 271(2):1058-1066.
    [141] Belujon P, Grace AA: Critical role of the prefrontal cortex in the regulation ofhippocampus-accumbens information flow. J Neurosci 2008, 28(39):9797-9805.
    [142] Miki T, Seino S: Roles of KATP channels as metabolic sensors in acute metabolicchanges. J Mol Cell Cardiol 2005, 38(6):917-925.
    [143] Bowyer JF, Spuhler KP, Weiner N: Effects of phencyclidine, amphetamine and relatedcompounds on dopamine release from and uptake into striatal synaptosomes. J PharmacolExp Ther 1984, 229(3):671-680.
    [144] Sotty F, Damgaard T, Montezinho LP, Mork A, Olsen CK, Bundgaard C, Husum H:Antipsychotic-like effect of retigabine[N-(2-Amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ potassiumchannel opener, via modulation of mesolimbic dopaminergic neurotransmission. JPharmacol Exp Ther 2009, 328(3):951-962.
    [145] Dick GM, Sanders KM: (Xeno)estrogen sensitivity of smooth muscle BK channelsconferred by the regulatory beta1 subunit: a study of beta1 knockout mice. J Biol Chem2001, 276(48):44835-44840.
    [146] Kulkarni J, Riedel A, de Castella AR, Fitzgerald PB, Rolfe TJ, Taffe J, Burger H:Estrogen - a potential treatment for schizophrenia. Schizophr Res 2001, 48(1):137-144.
    [147] Skarsfeldt T: Differential effect of antipsychotics on place navigation of rats in the Morriswater maze. A comparative study between novel and reference antipsychotics.Psychopharmacology (Berl) 1996, 124(1-2):126-133.
    [148] Adams B, Moghaddam B: Corticolimbic dopamine neurotransmission is temporallydissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 1998,18(14):5545-5554.
    [149] Zhang M, Ballard ME, Unger LV, Haupt A, Gross G, Decker MW, Drescher KU, RueterLE: Effects of antipsychotics and selective D3 antagonists on PPI deficits induced by PD128907 and apomorphine. Behav Brain Res 2007, 182(1):1-11.
    [150] Canal NM, Gourevitch R, Sandner G: Non-monotonic dependency of PPI on temporalparameters: differential alteration by ketamine and MK-801 as opposed to apomorphineand DOI. Psychopharmacology (Berl) 2001, 156(2-3):169-176.
    [151] Auclair AL, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A: Actions of novelantipsychotic agents on apomorphine-induced PPI disruption: influence of combinedserotonin 5-HT1A receptor activation and dopamine D2 receptor blockade.Neuropsychopharmacology 2006, 31(9):1900-1909.
    [152] Swerdlow NR, Braff DL, Taaid N, Geyer MA: Assessing the validity of an animal modelof deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 1994,51(2):139-154.
    [153] Mansbach RS, Carver J, Zorn SH: Blockade of drug-induced deficits in prepulseinhibition of acoustic startle by ziprasidone. Pharmacol Biochem Behav 2001,69(3-4):535-542.
    [154] Le Pen G, Moreau JL: Disruption of prepulse inhibition of startle reflex in aneurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine andrisperidone but not by haloperidol. Neuropsychopharmacology 2002, 27(1):1-11.
    [155] Wiley JL, Kennedy KL: Evaluation of the efficacy of antipsychotic attenuation ofphencyclidine-disrupted prepulse inhibition in rats. J Neural Transm 2002,109(4):523-535.
    [156] Hill SK, Bishop JR, Palumbo D, Sweeney JA: Effect of second-generation antipsychoticson cognition: current issues and future challenges. Expert Rev Neurother, 10(1):43-57.
    [157] Valmaggia LR, van der Gaag M, Tarrier N, Pijnenborg M, Slooff CJ:Cognitive-behavioural therapy for refractory psychotic symptoms of schizophreniaresistant to atypical antipsychotic medication. Randomised controlled trial. Br JPsychiatry 2005, 186:324-330.
    [1] Seeman P, Tallerico T, Corbett R, Van Tol HH, Kamboj RK: Role of dopamine D2, D4and serotonin(2A) receptors in antipsychotic and anticataleptic action. JPsychopharmacol 1997, 11(1):15-17.
    [2] Kapur S, Barsoum SC, Seeman P: Dopamine D(2) receptor blockade by haloperidol.(3)H-raclopride reveals much higher occupancy than EEDQ. Neuropsychopharmacology2000, 23(5):595-598.
    [3] Weiss EM, Bilder RM, Fleischhacker WW: The effects of second-generationantipsychotics on cognitive functioning and psychosocial outcome in schizophrenia.Psychopharmacology (Berl) 2002, 162(1):11-17.
    [4] Beasley CM, Jr., Tollefson G, Tran P, Satterlee W, Sanger T, Hamilton S: Olanzapineversus placebo and haloperidol: acute phase results of the North American double-blindolanzapine trial. Neuropsychopharmacology 1996, 14(2):111-123.
    [5] Robertson GS, Matsumura H, Fibiger HC: Induction patterns of Fos-likeimmunoreactivity in the forebrain as predictors of atypical antipsychotic activity. JPharmacol Exp Ther 1994, 271(2):1058-1066.
    [6] Sun T, Hu G, Li M: Repeated antipsychotic treatment progressively potentiates inhibitionon phencyclidine-induced hyperlocomotion, but attenuates inhibition onamphetamine-induced hyperlocomotion: relevance to animal models of antipsychoticdrugs. Eur J Pharmacol 2009, 602(2-3):334-342.
    [7] O'Neill MF, Shaw G: Comparison of dopamine receptor antagonists on hyperlocomotioninduced by cocaine, amphetamine, MK-801 and the dopamine D1 agonist C-APB in mice.Psychopharmacology (Berl) 1999, 145(3):237-250.
    [8] Sams-Dodd F: A test of the predictive validity of animal models of schizophrenia basedon phencyclidine and D-amphetamine. Neuropsychopharmacology 1998, 18(4):293-304.
    [9] Sills TL, Greenshaw AJ, Baker GB, Fletcher PJ: Acute fluoxetine treatment potentiatesamphetamine hyperactivity and amphetamine-induced nucleus accumbens dopaminerelease: possible pharmacokinetic interaction. Psychopharmacology (Berl) 1999,141(4):421-427.
    [10] Arnt J: Differential effects of classical and newer antipsychotics on the hypermotilityinduced by two dose levels of D-amphetamine. Eur J Pharmacol 1995, 283(1-3):55-62.
    [11] Redmond AM, Harkin A, Kelly JP, Leonard BE: Effects of acute and chronicantidepressant administration on phencyclidine (PCP) induced locomotor hyperactivity.Eur Neuropsychopharmacol 1999, 9(1-2):165-170.
    [12] Skarsfeldt T: Differential effect of antipsychotics on place navigation of rats in the Morriswater maze. A comparative study between novel and reference antipsychotics.Psychopharmacology (Berl) 1996, 124(1-2):126-133.
    [13] Adams B, Moghaddam B: Corticolimbic dopamine neurotransmission is temporallydissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 1998,18(14):5545-5554.
    [14] Javitt DC, Zukin SR: Recent advances in the phencyclidine model of schizophrenia. Am JPsychiatry 1991, 148(10):1301-1308.
    [15] Gleason SD, Shannon HE: Blockade of phencyclidine-induced hyperlocomotion byolanzapine, clozapine and serotonin receptor subtype selective antagonists in mice.Psychopharmacology (Berl) 1997, 129(1):79-84.
    [16] Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J, Newman-Tancredi A,Audinot V, Maurel S: Contrasting mechanisms of action and sensitivity to antipsychoticsof phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sitesfor PCP-induced locomotion in the rat. Eur J Neurosci 1999, 11(12):4419-4432.
    [17] Sills TL, Greenshaw AJ, Baker GB, Fletcher PJ: Subchronic fluoxetine treatment inducesa transient potentiation of amphetamine-induced hyperlocomotion: possiblepharmacokinetic interaction. Behav Pharmacol 2000, 11(2):109-116.
    [18] Braff DL, Geyer MA: Sensorimotor gating and schizophrenia. Human and animal modelstudies. Arch Gen Psychiatry 1990, 47(2):181-188.
    [19] Paylor R, Crawley JN: Inbred strain differences in prepulse inhibition of the mouse startleresponse. Psychopharmacology (Berl) 1997, 132(2):169-180.
    [20] Geyer MA, McIlwain KL, Paylor R: Mouse genetic models for prepulse inhibition: anearly review. Mol Psychiatry 2002, 7(10):1039-1053.
    [21] Braff DL, Geyer MA, Swerdlow NR: Human studies of prepulse inhibition of startle:normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl)2001, 156(2-3):234-258.
    [22] Zhang M, Ballard ME, Unger LV, Haupt A, Gross G, Decker MW, Drescher KU, RueterLE: Effects of antipsychotics and selective D3 antagonists on PPI deficits induced by PD128907 and apomorphine. Behav Brain Res 2007, 182(1):1-11.
    [23] Canal NM, Gourevitch R, Sandner G: Non-monotonic dependency of PPI on temporalparameters: differential alteration by ketamine and MK-801 as opposed to apomorphineand DOI. Psychopharmacology (Berl) 2001, 156(2-3):169-176.
    [24] Auclair AL, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A: Actions of novelantipsychotic agents on apomorphine-induced PPI disruption: influence of combinedserotonin 5-HT1A receptor activation and dopamine D2 receptor blockade.Neuropsychopharmacology 2006, 31(9):1900-1909.
    [25] Swerdlow NR, Braff DL, Taaid N, Geyer MA: Assessing the validity of an animal modelof deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 1994,51(2):139-154.
    [26] Mansbach RS, Carver J, Zorn SH: Blockade of drug-induced deficits in prepulseinhibition of acoustic startle by ziprasidone. Pharmacol Biochem Behav 2001,69(3-4):535-542.
    [27] Le Pen G, Moreau JL: Disruption of prepulse inhibition of startle reflex in aneurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine andrisperidone but not by haloperidol. Neuropsychopharmacology 2002, 27(1):1-11.
    [28] Wiley JL, Kennedy KL: Evaluation of the efficacy of antipsychotic attenuation ofphencyclidine-disrupted prepulse inhibition in rats. J Neural Transm 2002,109(4):523-535.
    [29] Li M, Parkes J, Fletcher PJ, Kapur S: Evaluation of the motor initiation hypothesis ofAPD-induced conditioned avoidance decreases. Pharmacol Biochem Behav 2004,78(4):811-819.
    [30] Li M, He W, Mead A: Olanzapine and risperidone disrupt conditioned avoidanceresponding in phencyclidine-pretreated or amphetamine-pretreated rats by selectivelyweakening motivational salience of conditioned stimulus. Behav Pharmacol 2009,20(1):84-98.
    [31] Li M, Fletcher PJ, Kapur S: Time course of the antipsychotic effect and the underlyingbehavioral mechanisms. Neuropsychopharmacology 2007, 32(2):263-272.
    [32] Hill SK, Bishop JR, Palumbo D, Sweeney JA: Effect of second-generation antipsychoticson cognition: current issues and future challenges. Expert Rev Neurother, 10(1):43-57.
    [33] Valmaggia LR, van der Gaag M, Tarrier N, Pijnenborg M, Slooff CJ:Cognitive-behavioural therapy for refractory psychotic symptoms of schizophreniaresistant to atypical antipsychotic medication. Randomised controlled trial. Br JPsychiatry 2005, 186:324-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700