苯胺基乙腈车间生产废水预处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯胺基乙睛化工废水是一种高浓度难生化降解的有毒性废水;其主要成分为苯胺类物质及氰化物,毒性强,危害大。本研究主要针对此废水生物处理前的预处理进行了试验研究。
     膨润土是以蒙脱石为主要成分的一类含水铝硅酸盐粘土矿物,由于其具有特殊的物理化学性能,经过有机改性或重金属改性后的膨润土对废水具有较好的处理效果,在对含有机污染物、重金属的废水处理中,改性膨润土是一种高效吸附剂。因此,改性后的膨润土产品在废水处理中的应用受到了广大环保工作者的关注与开发。
     本研究首先以原膨润土矿为原料,经过提纯后,采用微波辐射法制备了钠化1膨润土,钠化的工艺条件为:以NaCl为钠化改性剂,改性剂用量与膨润土投加量比为0.6:5(g/g),溶剂使用量与膨润土投加量比7:5(ml/g),反应时间为4min,结果表明,制备所得的钠基膨润土的阳离子交换容量由62.4mmol/100g土提高到93mmol/100g土,有利于后续的有机化改性及铁交联柱撑改性。
     其次,以钠基膨润土为原料,经阳离子表面活性剂CTMAB改性,制备获得有机膨润土,并在试验过程中考察了有机膨润土的适宜制备条件以及有机膨润土对苯胺基乙腈车间废水中污染物的去除性能。试验结果表明,有机膨润土适宜的制备条件为:有机改性剂用量为90CEC,微波辐射时间采用2min,溶剂使用量与膨润土投加量比6:1(ml/g);有机膨润土处理苯胺基乙腈车间废水的较优工艺条件为:有机膨润土投加量为20g/L,处理系统pH值为6.0,吸附温度为30℃,吸附时间为60 min,处理效果为:CODcr及苯胺去除率分别达到了23.3%及54.4%,可生化性BOD5/CODcr可提高到0.11左右,并且有机膨润土对废水有机污染物的吸附符合Linear等温吸附模型和伪二级动力学模型,而采用原土矿处理苯胺基乙腈生产废水,CODcr及苯胺的去除率仅达到3.4%及8%,可生化性BOD5/CODcr难以测出,说明有机膨润土吸附能力有很大的提高,但是由于苯胺基乙睛生产废水浓度高,毒性强,采用有机膨润土对此废水的处理能力有限,去除率不高,难以满足后续生化处理的要求。
     因此,本研究尝试采用铁交联膨润土与H2O2联合氧化处理苯胺基乙腈废水,并且考察其对污染物的去除性能。试验结果表明,相对于有机膨润土的吸附方法,铁交联膨润土-H2O2氧化法对废水的处理能力大大提高,铁交联膨润土-H2O2氧化吸附处理苯胺基乙腈废水的较适宜的工艺条件为废水pH值为4.0、过氧化氢投加量为6.66g/L、交联膨润土投加量为20g/L、处理温度为30℃、处理时间为60min,与有机膨润土吸附处理苯胺基乙腈车间生产废水的处理效果相比较,采用铁交联膨润土+H2O2氧化法处理,CODcr及苯胺的去除率分别达了40.6%及92.6%,苯胺含量低于500mg/L,可生化性BOD5/CODcr提高到0.32左右,基本上可满足了后续生化处理进水的要求,论文同时对铁交联-H2O2氧化法处理苯胺基乙腈废水进行了动力学研究。
     另外,在制备改性膨润土的过程中,本研究分别采用X-射线衍射,红外光谱,电镜扫描比较研究了钠化膨润土,有机膨润土以及铁交联膨润土的结构方面的变化,经过有机化或铁交联后,膨润土的层间距大于钠化膨润土;在红外光谱分析中,有机膨润土以及铁交联膨润土出现了新的特征峰,扫描电镜分析结果进一步说明了膨润土经过改性后,其表面填塞了改性基团,使得改性后的膨润土处理生产废水的性能提高,从而说明膨润土经过改性后结构及性质上的变化是有利于处理苯胺基乙腈生产废水。
     论文最后,对提纯膨润土、有机膨润土、铁交联膨润土-H2O2、活性炭处理苯胺基乙腈废水的处理效果进行了比较,确定了较优方法,即采用铁交联膨润土+H2O2联合氧化处理苯胺基乙腈废水,并通过对产酸段污泥活性的测定确定了其要求的预处理段出水的最佳pH值范围为6.0~6.5。
N-phenylglycinonitrile chemical wastewater is one of the refractory wastewater with high concentration, low biodegradability and high toxicity; the main components are anilines and cyanides which are harmful to organisms at low concentration and classed as hazardous pollutants. Experiments study on the pre-treatment of this wastewater before the biological-treatment was introduced in this paper.
     Montmorillonite, the primary constituent of bentonite, is an aqueous aluminosilicate clay mineral with expandable layer structure. With its special physical and chemical properties, the bentonite has better effect for wastewater treatment by the course of organic or heavy metal modification, modified bentonite is an effective adsorbent for the removal of organic contaminates and heavy metals from wastewater. Therefore, the application of modified bentonite in wastewater treatment has been emphasized and investigated by environmentalists.
     First, using Ca-bentonite as raw material, Na-bentonite was prepared by microwave radiation after purification, and the preparation conditions were follows: use NaCl as modified regents, the reagent volume of 50% C2H5OH to the bentonite quality is 7:5(ml/g)and the reaction time is 4min, the experimental results showed that the CEC of Na-bentonite increased to 93mmol/100g after modification from 62.4mmol/100g which is useful to the organic modified and the Fe-pillared modified.
     Secondely, the organo-bentonite was prepared from Na-bentonite by cation surfactant CTMAB. The preparation conditions were optimized and the ability of organo-bentonite to remove organic compounds in N-pHenylglycinonitrile chemical wastewater was investigated. The experiment results show that the appropriate preparation conditions of organic bentonite were follows: the amount of surfactant is 90CEC, the microwave radiation time is 2min,the reagent volume of H2O2 to the bentonite quality is 6:1(ml/g); the feasible treating conditions of N-pHenylglycinonitrile chemical wastewater by organo-bentonite were follows: the organo-bentonite concentration is 20g/L, the pH of wastewater is 6.0, the adsorption temperature is 30℃and the adsorption time is 60min. The organo-bentonite has a high ability of adsorption compared to Na-bentonite, the removal rate of CODcr and anilines can reach 23.3%, 54.4% and the BOD5/CODcr increased to 0.11, the adsorption can be well represented by linear isothermal adsorption model and pseudo secondary kinetics model, however, the removal rate only can reach 3.4%and 8% if using the raw bentonite as adsorption regent. However, the organo- bentonite adsorption ability to the N-pHenylglycinonitrile chemical wastewater was rather limited, the removal rate didn’t achieve the ideal degree to meet the requirement of subsequent biochemical treatment.
     For the wastewater treatment limitation of organo-bentonite, using the Fe-pillared bentonite and H2O2 to treat the N-pHenylglycinonitrile chemical wastewater by oxiditon was tried, and the removal ability was investigated, too. The experimental results showed that the optimal treatment conditions were obtained as follows: pH value is about 4.0, added amount of H2O2 is 6.66g/L, amount of Fe-pillared bentonite added is 20g/L, temperature is 30℃, and treatment time is 60min, he removal rate can reach 23.3%, 54.4% and the BOD5/CODcr increased to 0.11 which meet to the requirement of subsequent biochemical treatment. Comparing to the ogano-bentonite adsorption, the effect of oxidation method by Fe-pillared bentonite and H2O2 had been improved effectively. Simultaneously, the reaction kinetics was studied.
     Thirdly, the structures of Na-bentonite, organo-bentonite and Fe-pillared bentonite was investigated by XRD, IR and SEM respectively. Studies on X-ray diffraction date (XRD) demonstrated that the interlayer spacing were obviously enlarged through organic modification or Fe-crosslinked modification ; results of infrared spectrum (IR) discovered that some new characteristic peaks appeared, and the basic structure didn’t destroy; SEM indicate that the bentonite surface was packed modified groups via modification, which improved the treatment effect, therefore, the change of structure and properties of bentonite is usful to the treatment effeciecy during modification.
     Finally, this paper put forward using Fe-pillared bentonite-H_2O_2 to treat N-pHenylglycinonitrile chemical wastewater by comparing the treatment effect of each method, including purified bentonite, Na-bentonite, organo-bentonite and Fe-pillared bentonite-H_2O_2, and determined the optimal pH of the pre-treatment process effluent which is about 6.0~6.5 through testing the sludge activity in hydrolysis-acidification reactor.
引文
[1]国家环境保护总局.全国环境统计公报(2006).二OO七年九月.
    [2]国家环境保护总局.长江三峡工程与生态环境监测公报.二OO六年五月.
    [3]国家环境保护总局.长江三峡工程与生态环境监测公报.二OO七年五月.
    [4]张自杰.排水工程下册[M].北京:中国建筑工业出版社, 1996,6.
    [5]金奇庭,张希衡,王志盈.合成有机物在厌氧生物处理中的抑制特性研究[J].西安冶金建筑学院学报, 1991,9: 1- 12.
    [6]重庆大学.重庆清华紫光英力公司年产1250吨化工中间体产业化项目技改工程环境影响报告书. 2004, 1.
    [7]李超伟,谢鹃.萃取预处理苯胺基乙腈生产废水试验研究[J].中国环保产业, 2007, 11: 30~34.
    [8]何强,何孟狄等.兼养-好氧工艺处理苯胺基乙腈废水试验研究[J].重庆建筑大学学报,2004,24(8):49~52.
    [9]何强,李健等.兼养-好氧工艺处理苯胺基乙腈废水[J].中国给水排水, 2004, 20(2): 79~80.
    [10]聂永平,邓正栋,袁进.苯胺废水处理技术研究进展[J].环境污染治理技术与设备, 2003, 4(3) : 77~81.
    [11] P. C. Chiang, E. E. Chang, J. S. Wu. Comparison of chemical and thermal regeneration of aromatic compounds on exhausted activated carbon.[J]. Wat . Sci. Tech., 1997, 35 (7) : 279~ 285.
    [12]陶红,周仕林高廷耀. 13X分子筛处理含苯胺废水的试验研究[J].环境科学学报, 2002 , 22 (3) : 408~411.
    [13]徐洪秋,王思人,汪平等.用废炭黑吸附处理二苯胺生产废水[J].化工环保, 1998 ,18 (6) : 323 ~327.
    [14]朱利中,陈曙光,陈元等. CTMAB2粘土吸附处理水中苯酚、苯胺和对硝基苯酚的性能及应用研究[J].水处理技术,1997 ,23 (5) : 291~296.
    [15]于德爽,彭永臻,李梅.二氧化氯氧化法去除染料废水中苯胺类物质的生产性试验研究[J].哈尔滨商业大学学报, 2001 ,17 (3) : 19~21.
    [16]冯易君,李跃虎,谢家理.用二氧化氯降解废水中的苯胺类化合物(1) COD去除规律的研究[J].环境保护科学, 1994 ,20 (3) : 13~16.
    [17]冯易君,李跃虎,谢家理.用二氧化氯降解废水中的苯胺类化合物(2)降解机理的探讨[J].环境保护科学, 1994 ,20 (4) :29~31,36.
    [18]漆新华,庄源益,袁有才等.超临界水氧化法处理苯胺废水[J].环境污染与防治, 2001 , 23(2) :56~58.
    [19]丁军委,陈丰秋,吴素芳等.苯胺在超临界水中氧化反应动力学的研究[J].高校化学工程学报, 2001 , 15 (1) : 66 ~70.
    [20]丁军委,陈丰秋,吴素芳等.苯胺在超临界水中氧化反应路径[J].化工学报, 2000 ,51 (5) : 690~694.
    [21] Fenton H J H. Oxidation of tartaric acid in the presence of iron[J], J. chem., oc, 1894, 65: 899~910.
    [22] Eisenhauer H R. Oxidation of pHenolic wastes[J]. Journal WPCF, 1964, 36: 1116~1128.
    [23] Eisenhauer H R. Chemical removal of ABS from wastewater effluents[J]. Journal WPCF 1965, 37: 1567~1577.
    [24]田依林,李明玉,刘佩红等.催化氧化法预处理苯胺类废水[J].城市环境与城市生态, 2003, 16(2): 31~33.
    [25]李明玉,熊林,尚微等. Fenton反应催化降解苯胺及影响因素研究[J].给水排水, 2005, 31(7): 58~61.
    [26]李太友,刘琼玉.光助Fenton法氧化降解苯胺的研究[J].江汉大学学报, 2001 ,18 (6) : 13 ~17.
    [27]张超杰,孙晓宇,王玫等.苯胺的脉冲辐解和激光光解研究[J].辐射研究与辐射工艺学报, 2001 ,19 (1) : 26~31.
    [28]蔡乃才,王亚平,王鄂凤等.光催化与光化学联合降解苯胺[J].应用化学, 1999 ,16 (2) : 87~89.
    [29]何建波,张鑫,魏凤玉等. TiO2薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,16 (5): 57~60.
    [30]宋卫锋,马前,李义久等.电化学催化降解苯胺的试验研究[J].环境污染与防治,2001, 23 (4): 157 ~159.
    [31]宋卫锋,马前,李义久等.不同DSA类阳极催化降解苯胺的试验研究[J].环境保护科学, 2001 ,27 (2) : 4 ~6.
    [32] Brillas E., Mur E., Sauleda R. et al. Aniline degradation under electrochemical and pHotocatalytic conditions[J] . Adv. Oxid. Technol. , 1999 ,4 (1) : 109~114.
    [33] Meguru Tezuka, Masakazu Iwasaki. Plasma2 induced degradation of aniline in aqueous solution[J]. Thin Solid Films, 2001 , (386): 204~207.
    [34]韦朝海,任源,吴超飞等.专性好氧菌降解苯胺废水的动力学研究[J].环境科学研究, 1999 ,12 (4) : 15~18.
    [35] Giti Emtiazi , Mohamad Satarii, Fatemeh Mazaherion. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Wat. Res., 2001 ,35(5): 1219~1224.
    [36] Hyung 2 Yeel Kahng, Jerome J. Kukor, Kye -Heon Oh. Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline[J]. FEMS Microbiology Letters, 2000 , 190 : 215~221.
    [37]顾加兵,雷俐玲. H. S. B微生物生化法处理苯胺污水[J].工业用水与废水, 2000 ,31 (5) : 20~22.
    [38]王连生,张金鸿,佟树敏等.优势菌处理高浓度苯胺工业废水的研究[J].城市环境与城市生态, 1999 , 12 (6) : 13 ~15 ,21.
    [39]陈民友,袁玲.采用过氧化氢氧化法处理酸性含氰废水技术的研究[J].黄金, 1998, 19 (3): 47~ 49.
    [40]王夕亭.过氧化氢法处理含氰废水的生产实践[J].黄金, 1998, 19(5): 48~ 51.
    [41]关汇川.用磷酸过氧化氢混合液去除废水中的氰化物[J].黎明化工, 1996, 52: 11~ 13.
    [42] Monteagudo JM, Rodriguez L, Villasenor J. Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters[J]. Journal of ChemicalTechnology and Biotechnology, 2004,79(2): 117~125.
    [43]许芙蓉,刘杰,苑兆金.含SO2烟气综合治理含氰废水工业实践[J].黄金, 1991, 12(10): 55~59.
    [44]陆雪梅.高浓度含氰农药废水治理工艺研究,南京工业大学硕士论文, 2002年5月.
    [45]田秀莲,韩绿霞.二氧化氯处理含氰废水的研究[J].工业水处理, 1996, 16(2): 18~19.
    [46]杨丽芬,李友琥.环保工作者实用手册(第二版)[M].北京:冶金工业出版社, 2001,1.
    [47]钟超凡,邓建成,童钰等.含氰废水除氰方法研究[J].湘潭大学自然科学学报, 1994,16(1): 77~81.
    [48] L.Szpyrkowicz, F.Zilio-Grandi, S.N.Kau, et al. Electro-chemical treatment of copper cyanide wastewaters using stainless steel electrodes[J]. Wat.Sci.Tech, 1998, 38: 261~268.
    [49]汪大翚,徐新华,宋爽编.工业废水中专项污染物处理手册[M].北京:化学工业出版社, 2000.
    [50] Lotfi Monser, Nafaa Adhoum. Modified activated carbon for the removal of copper zinc chromium and cyanide from wastewater. Separation and Puri-fication Technology. 2002, 26: 137~ 146.
    [51] M.Kowalska, M.Bodzek, J.Bohdziewicz. Biodegradation of pHenols cyanides using embranes with immobilized microorganisms. Process Biochemistry, 1998 ,33: 189~ 197.
    [52] Huub J.Gijzen, Elisabeth Bernal, Henry Ferrer. Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Wat.Res., 2000, 34: 2447~ 2454.
    [53]杜龙弟,余政哲,赵连荣等.含氰废水处理的现状与对策[J].石油化工环境保护, 1994,2 :12~ 16.
    [54]谢玉真,李娟.我国含氰废水处理工艺的发展方向[J].油气田环境保护, 1997, 7(2):44 ~47.
    [55]曾新民.提高酸化法从废水中回收氰化物的途径[J].工程设计与研究, 1994, 84: 46~ 51.
    [56]王炳浚.铁蓝法处理含氰废水[J].湖南冶金. 1994 , 1: 47~ 52.
    [57]王晓松等.高浓度含氰废水综合治理工艺技术[J].辽宁城乡环境科技, 2000, 19(3): 77 ~80.
    [58]姚道坤,史泰端等.中国膨润土矿床及其开发应用[M].北京:地质出版社, 1994.
    [59]朱利中,陈宝梁.有机膨润土及其在污染控制中的应用[M].北京:科学出版社, 2006,6.
    [60]沈钟等.胶体与表面化学(第二版)[M].北京:化学工业出版社, 1997.
    [61]吴东印.膨润土的提纯和开发应用[J].矿产保护与应用, 2000, (3): 14~16.
    [62]栾文楼,李明路.膨润土的开发应用[M].北京:地质出版社., 1998.
    [63] Adams J M et al. Catalysis by montmorillonites[J]. Clay Minerals, 1983, 18(4): 411~421.
    [64]邓友军等.有机粘土化学研究进展与展望[J].地球科学进展, 2000, 15(2): 197~203.
    [65] McBride M B, Pinnavaia T J, Mortland M M. Adsorption of aromatic molecules by clay in a queous suspension[J]. Adv Enivron Sci Technol, 1975, 8: 145~154.
    [66] Smith J A, Jaffe P R, Chiou C T. Effect of ten quaternary ammonium cations on tetra chloromethane sorption to clay from water[J]. Envion Sci Technol, 1990,24: 167~1172.
    [67]曹明礼,张明,刘世珍.有机膨润土制备及其对水溶液中苯胺吸附作用的研究[J].非金属矿, 2003, 26(1): 52~53.
    [68] Zhu L, Ren X, Zhang J. Sorption of organobentonites to some organic pollutants in water[J]. Environ Sci Technol, 1997, 31(5): 1407~1410.
    [69] Chen B, Zhu L. Partition of polycyclic aromatic hydrocarbons on organobentonites from water[J]. Environ Sci., 2001, 13(2): 129 ~136.
    [70]朱利中,陈宝梁,沈韩艳等.双阳离子有机膨润土吸附处理水中有机物的性能[J].中国环境科学, 1999, 19(4): 325~329.
    [71]朱利中,陈宝梁,李铭霞等.双阳离子有机膨润土吸附水中有机物的特征及机理研究[J].环境科学学报, 1999, 19(6):597~603.
    [72]朱利中,王晴,陈宝梁.阴-阳离子有机膨润土吸附水中苯胺、苯酚的性能[J].环境科学, 2000, 21(4): 42~46..
    [73]朱利中,苏玉红,沈学优等.阳离子有机膨润土协同吸附作用及其机理研究[J].中国环境科学, 2001,21(5): 408~411.
    [74]沈学优,周仁贤.改性膨润土对水中苯胺光化学降解的催化作用研究[M].环境污染与防治, 1995, 17(1): 42~46.
    [75]向阳.交联蒙脱石对水中有机优先污染物的静态吸附研究[J].同济大学学报, 1995, 23(4):273~275.
    [76]郑红,彭英春,栾兆坤. Cr3+改性彭润土苯胺的吸附性能研究[J].环境化学, 2003,22(4): 369~372.
    [77] Zielke R C, Pinnavaia T J. A thermal Study of Zr-pillared montmorillonite[J]. Clays and Clay minerals, 1988, (36): 403~404.
    [78] Jae-Hyunbae. Adsorption of anionic dye and surfactant from water onto organo-moiillouite [J].Separation Science and Technology, 2003,35(3): 353~365.
    [79]马勇,王恩德,邵红.膨润土负载壳聚糖的脱色作用[J].环境科学与技术, 2004, 27(1): 13~14.
    [80]任海贝,李明玉.,阳离子聚丙烯酰胺复合插层有机膨润土的脱色性能[J].水处理技术, 2006, 29(3): 13~14, 25.
    [81]沈学优,卢瑛莹,吴双双等.有机膨润土在Pb2+和p-硝基苯酚复合污染中的吸附及机理[J].环境科学, 2004,25(3): 168~170.
    [82] Atockmtyer M. Adsorption of Zinc and Nickel Ion and PHenol and Diethyl Ketones by Bentonites of Different Organo PHilicites[J]. Clay Minerals, 1991, 26(3): 431.
    [83]金辉,徐德才,李忠敏等.有机膨润土处理乳化油废水研究[J].环境污染与防治, 1998, 20(6): 11~14.
    [84]孙家寿,刘羽,鲍世聪.有机交联膨润土对预处理造纸黑液COD的吸附研究[J].化工生产与技术, 1998, 1: 41~43.
    [85]孙家寿等.交联粘土矿物的吸附特性研究(Ⅱ)一铝交联蒙脱石对磷酸根离子的选择吸附作用[J].武汉化工学院学报, 1997, (3): 34~37.
    [86] T.J.Estes, R.V.Shab. Adsorption of low molecular weight halocarbous by montmorillonite. Environ[J]. Sci.Technol., 1988, 22(4): 377.
    [87]孙家寿,余斌.膨润土复合吸附剂处理煤气洗涤废水研究[M].非金属矿, 1994, 1: 37~40.
    [88] K. R .Srinivassan, H.S.Foler. A formulation of the Thermodynamics of Exchange dsorption [J]. Clays and Clay Minerals, 1990, 38(3): 277.
    [89] J.Isaacson, B.L.Saehney. Adsorption studies on clay minerals[J]. Clay Minerals,1983,18: 253
    [90]邵红,王冬梅.改性膨润土处理造纸废水的研究[M].环境科学与技术, 2004,27(37): 63~64
    [91] Mortarges E, et al .Intercalation of Al 13-polyethyleroxide complex into mortmmorillonite clay[J]. Clay minerals, 1995,43 (4).
    [92]姜桂兰,张培萍.膨润土加工与应用[M].北京:化学工业出版社, 2005,4.
    [93]聂锦旭.改性膨润土吸附剂的制备及其在废水处理中的应用.中国科学院博士论文, 2005,12.
    [94]韦藤幼,曹玉红,童张法.微波强化膨润土的改性及作用机理[J].过程工程学报, 2005,5(4): 412~414.
    [95]胡秀荣,吕光烈,杨芸.六氨合钴离子交换法测定粘土中阳离子交换容量[J].分析化学研究简报, 2000, 28(11): 1402~1405.
    [96]杨雅秀,张乃娴,苏昭冰等.中国粘土矿物[M].北京:地质出版社, 1994.
    [97]王玉洁,张军等.有机膨润土的制备及测试[J].长春科技大学学报, 2004, 30 (2): 206~208
    [98]金钦汉.微波化学[M].北京:科学出版社, 1999.
    [99]王重,陈德芳.有机膨润土的研究[J].贵州化工, 1999, 24(4): 9~11.
    [100] Smith J A., Galan A. Sorption of Nonionic Organic Contaminants to Single and Dual Cation Bentonites from Water[J]. Environ.Sci.Technol., 1995,29(3): 685~692.
    [101]苗春省. X射线定量相分析方法及应用[M].北京:地质出版社, 1988.
    [102] Xu S, Boyd S A. Cationic surfactant adsorption by swelling and nonswelling layer silicates [J]. Langmuir, 1995, 11(7): 2508~2514.
    [103] Xu S, Boyd S A. Alternative model for cationic surfactant adsorption by layer silicates [J] . Environ Sci Technol, 1995, 29(12): 3022~3028.
    [104] Jaynes W F, Boyd S A. Clay mineral type and organic compound sorption by hexadecyltri- methyl ammonium-exchanged clays[J]. Soil Sci Soc Amer J, 1991, 55(1):43 ~48.
    [105] Chiou. C. T., Shoup. T. D., Porter.P. E. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions[J]. Org. Geochem., 1985, 8: 9-14.
    [106] Chiou.C.T., Peters. L. J., Freed.V. H. A pHysical concept of soil-water equilibria for onionic organic compounds. Science, 1979, 213: 684~685.
    [107] Sheng.G, Xu.S., Boyd.S.A. Cosorption of organic water by hexadecyltrimethyl ammonium exchanged clays. Water Res., 1996,30: 1483~1489.
    [108]朱利中,陈宝梁.有机膨润土在废水处理中的应用及其进展[J].环境科学进展, 1998, 6(3): 51~61.
    [109] Heller-Kallai L, Yariv S, Riemer M. The Formation of Hydroxy Interlayers in Smectites under the Influence of Organic Bases[J]. Clay Mi, 1973,10: 35~40.
    [110] Sara Ozean A, Erdem Bilge, Ozcan Adnan. Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA --bentonite[J]. Journal of Colloid and Interface Science, 2004, 280: 44~54.
    [111] Chang M Y, Juang R S. Adsorption of tannic acid , humic acid, and dyes from water using the composite of chitosan and activated clay[J]. J Colloid and Interface Sci, 2004,278:18~25.
    [112] Mahmoud Nassar. Intraparticle diffusion of basic red and basic yellow dyes on palm fruit bunch[J]. Wat Sic Tech, 1999, 40(7): 133~139.
    [114] Colombo C., Violante A., Effect of ageing on the nature and interlaying of mixed hydroxy of mixed hydroxyl Al-Fe-montmorillonite complexes[J]. Clay Miner, 1997,32(1): 55~64.
    [115]刘优.柱撑粘土矿物研究新进展[J].矿物岩石, 1991 ,3(1): 101~104.
    [116] Loretta Storaro, Maurizio Lenarda, Renzo Ganzerla, Athos Rinaldi. Preparation of hydroxy A1 and Al/Fe pillared bentonites from concentrated clay suspensions[J]. Microporous Materials, 1996(6): 55~63.
    [117] Mandalia T., Crespin M., et al. Large interlayer prepeats distances observed for montmorillonites treated by mixed Al-Fe and Fe pillaring solutions[J]. Chem. Commun, 1998, 14(5): 2111~2112.
    [118] Rightor E.G, Rtzou M.S.,Pinnavaia T.J., Iron Oxide Clay with Large Gallery Height: Synthesis and properties as a Fischer-Tropsch Catalyst[J]. Journal of Catalysis, 1991, 130:2 9~40.
    [119]青岛化工学院.化学化工物性手册[M].北京:化学工业出版社. 2002, 5.
    [120] Masami Fukushima, et al. The fate of aniline after a pHoto-Fenton reaction in an aqueous system containing iron(III), humic acid, and hydrogen peroxide[J].Environ. Sci. echno1,2000, 34(10): 2006~2013.
    [121]田依林,李明玉,马同森. Fenton试剂氧化水中芳香族化合物的机理[J].污染防治技术, 2003, 16(1): 12~15.
    [122] Anber M. Reactivity of aromatic compounds towards hydroxyl radicals[J]. Journal of PHysical Chemistry, 1966,70(8): 2660~2662.
    [123] Anber M. et al. eactivity of alipHatic compounds towards hydroxyl radicals[J]. Journal of Chemistry Society,1966,13(8): 742~747.
    [124] Ensing B., Buda F., Baerends E.J. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2[J]. PHys ChemA, 2003, 107: 5722~5731.
    [125] Pignatello J.J., Liu D., Huston P. Evidence for an additional oxidant in the pHotoassisted Fenton reaction[J]. Environ Sci Technol, 1999, 33: 1832~1839.
    [126] Koo W G. Decolorizing dye wastewater with Fenton's Reagent [J]. Wat Res., 1992 , 26(7): 881~886.
    [127] Kang amgoo, Lee Dong Soo, Yoon eyong. Kinetic modeling of Fenton oxidation of pHenol and monochloropHenols [J].ChemospHere, 2002, 47 (9) : 915~924.
    [128]张科杰. Fenton试剂处理酸性玫瑰红B染色废水的试验研究.天津大学硕士学位论文, 2004,12.
    [129]周春生,尹军. TTC一脱氢酶活性检测方法的研究[[J].环境科学学报, 1996,16(4): 400~405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700