矿热炉电极把持器的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了电极把持器的作用功能,并从电极把持器发展的历程出发,结合工程实际对现有的把持器形式进行客观的分析评价,指出了传统的大螺钉式、径向顶紧的压力环式、锥形环式及近年来从国外引进了波纹管式、胶囊式及组合式把持器等类型的优缺点。在其中,目前国内应用最为广泛的是锥形环式把持器,这种夹紧、压放电极的锥形环技术对电极的夹紧、压放工作质量不稳定、连续运行可靠性能较差,从而导致检修频率高,严重影响了电炉的正常生产,热停炉多,甚至引发电极、电器等事故。
     为此设计一种在技术上先进可靠,经济上利于推广的把持器显得极有必要,论文提出的新型压力环电极把持器是作为锥形环把持器的替代品,以解决生产中出现的诸多问题的。
     设计的新型压力环把持器是以液压油缸和大螺栓顶头代替波纹管,夹紧方式上采用一对一的径向顶紧导电铜瓦,目的是使接触力均匀,在压力环油缸尾部端盖法兰采用耐高温的密封设计,达到了优良的密封效果,水冷套改为固定大套与活动小套结合,密封、导向作用优良。通过适当改进冷却水循环路线,减少拐弯和死区,主要部件和高温部件单独供水冷却;采用软水冷却、减少焊缝数量、提高焊接工艺水平等技术措施,使新型把持器在工程应用中效果更加优良。
     在结构设计的基础上,对把持器三个水冷部件的传热进行了系统的计算和分析。通过传热分析得知把持器中的传热可分为烟气、空气与冷却水传热两个部分:烟气侧的传热可分为三个部分,即烟气与壁体的对流和辐射换热,壁体的热传导,壁体与冷却水的对流换热;空气侧的传热也可分为三个部分。利用MATLAB(Matrix Laboratory)计算机语言编写了传热计算程序并运行成功。计算结果表明:把持器内的冷却水温度和壁面温度随高度升高而降低,烟气侧壁面温度高于空气侧壁面温度;水垢热阻的增大会削弱冷却水传热;提高冷却水流速可以在一定程度上降低器壁最高温度,本体较厚的水冷器壁尽管能降低一定量的热量损失,但降低了冷却水的换热效率;烟气温度是影响传热的重要因素。同时得到了冷却水的出口温度和本体壁面厚度及壁温。用传热计算的结果指导把持器的设计,并以此作为选择设计参数的依据。同时对把持器的水冷部件中冷却水流动阻力损失进行了计算,为水泵的选择提供了理论依据。
     本文利用AutoCAD绘制了7500kV·A矿热炉矮烟罩系统的设备施工图,并可直接供其它类似工程施工借用。该把持器已在多项工程中得到应用,取得了良好的应用效果。
Submerged-arc furnace is a kind of primary equipment for ferroalloy smelting, and the electrode holder system is used for transferring powerful electric current to the electrode, clamping the contact shoe to the electrode, controlling the sintering of electrode. Through the electrode holder's developing course and the practice on the engineering, the types of electrode holder are analyzed. And it points out the advantages and disadvantages of these types.
     At present, the conical ring electrode holder is the mostly used in China, but this kind of structure is relatively old, it is precarious on clamping and pressing electrode, which results in the longtime and high-frequency repairing. It affected production badly, so much as bringing on accidents of electrode, and so on.
     According to the practical experience and the situation of China , a design that a new pressure ring holder was put forward , which is a substitute for the conical ring electrode holder. The method of design can be described as below: substituting fluid oil urn and bolt for the bellows, perfect clamping structure for the contact shoes, which make the contact force symmetrical, taking the high temperature -resistant pressurize at the tail end of the oil urn, which reach the good effect, adopting the design of settled big cover and active cover, which make good pressurize and guiding effect. A lot of measures were put forward to solve these problems, which are mentioned above, for instance, ameliorating the channels of cooling water and using soft water, reducing the quantities of welding line, improving the jointing process, and so on. These measures have made definite effect.A calculation had been used for the heat transfer of electrode holder, which rectified the mistake that existed in the conventional designs of electrode holder, and lessen the investment of cooling equipment. In virtue of the heat transfer calculating of the electrode holder, the configuration designing and parameters choosing of the electrode holder are researched. The factors which affect the heat transfer of the electrode holder are listed as follows: velocity of the cooling water, thickness of the water cooling wall, water scale thickness, and temperature of the flue gas. It fully considers the boundary conditions for electrode holder and analyzes the variation tendency of heat transfer in the different parameters. All these provide a basis for the design and apply of the electrode holder. The computational programs had been written and run by MATLAB (Matrix Laboratory).The results of heat transfer indicate the following. The temperature of cooling water and wall will drop along with the rise of the altitude, and the wall's temperature of smoke gas side is higher than that of air side. the increase of water's capacity will be propitious to debasing the wall's temperature at a certain extent. The thicker wall will not propitious to cooling water's heat transferring. The temperature of smoke gas is the important factor of the heat transferring. At the same time, the temperature of the exit water and wall are found out. At the some time, resistance losing of the water passage in the holder is calculated, and it will provide theory gist for water pump's choosing.
     The drawings of electrode holder of 7500kVA submerged-arc furnace had been finished by using AutoCAD. The drawings can be used to project construction directly. The design for the electrode holder at submerged-arc furnace has been applied in many corporations and factories. It has made great benefit to the corporations and factories.
引文
1 袁熙志.加入WTO后的中国铁合金工业[J].铁合金,2002,(4):42~46.
    2 兰格钢铁.2007年我国铁合金行业供需分析[M].兰格钢铁,2007.1.19.
    3 许传才编.铁合金冶炼工艺学[M].西安:西北大学出版社,1993:5.
    4 戴维.铁合金冶金工程[M].北京:冶金工业出版社,1999:1.
    5 付晓燕,袁熙志,宋小刚.我国矿热炉电极把持器的现状和发展[J].铁合金,2005(3):29~35.
    6 张显鹏.铁合金辞典[M].沈阳:辽宁科技出版社,1996:400~401.
    7 Tatevosyan, K.M.; Kostanyan, K.A. New Electrode holders for molybdenum Electrodes [J]. Glass anal Ceramics, v40, n5-6, May-Jun, 1983: 219~221.
    8 金春花,姜德荀,韩东熙等.铁合金电炉中的液压传动技术[J].延边大学学报,1998(9):166.
    9 黄积福,黄超桂.无集电环把持器在铁合金电炉上的应用实践[J].铁合金,2001(2):39~42.
    10 程良能.有色金属冶炼设备第一卷——火法冶炼设备[M].北京:冶金工业出版社,1994:238~259.
    11 温维强.组合式电极把持器技术[J].太化科技,1996(2):55~58.
    12 祝建华.采用标准组件电极把持器提高铁合金电炉装备水平[J].铁合金,1996(3):22~27.
    13 Arnfinn Vatland,Knut Fidje and Reidar Innvar.Data registration and calculations on soderberg electrodes with modular holders [J] . Elkem a/s, R&D center, Kristiansand, Norway.
    14 毕宝臣,周昌明,邓小东.铁合金电炉用压力环[P].实用型专利,01206484.X,2002:1~2.
    15 董维德.铁合金电炉设备的设计与改造[J].铁合金,1999(5):33~37.
    16 李铁钢.用于矿热炉的电极把持器[P].实用型专利,02223692.9:4.
    17 周敏惠.焊接缺陷与对策[M].上海科学出版社:64.
    18 渡边正纪.不锈钢的焊接[M].机械工业出版社:44、76、113.
    19 Goodrich, R.A. (IBM, Armonk, NY, USA).Welding electrode and holder [J]. IBM Tochnical Disclosure Bulletin, v 17, n 11, April 1975, p3417-19.
    20 成大先.机械设计手册第1卷[M].北京:化学工业出版社,2002:1-11.
    21 高峰,李洪新.12.5MV·A矮烟罩矿热炉电极把持器结构的改进和选材[J].铁合金,1998(3):30.
    22 冯超,顾飞,冯根生等.我国高炉冷却系统软水质量现状及改进措施[J].炼铁,2002,21(5):14.
    23 程素森,薛庆国,苍大强等.高炉冷却壁的传热学分析[J].钢铁,1999,3(5):11~13
    24 Zinurov, I.Yu.; Stroganov,A.I. SELECTING HOLDINGCONDITIONS AND MATERIAL FOR ELECTRODE HOLDER HEADS ARC FURNACES [J] . Steel in the USSR, v7, n7, Jul, 1977: 387~389.
    25 李远西.6300kV·A封闭烟罩工业硅电炉介绍[J].铁合金,1993(5):30~32.
    26 毕宝臣.25MV·A封闭电炉压力环的改进[J].铁合金,2002(5):40~42.
    27 梅炽.有色冶金炉设计手册[M].北京:冶金工业出版社,2000:894.
    28 李洪新.6.3MV工业硅车间的改造和设计[J].铁合金,1998(5):34.
    29 顾飞,姚家瑜,李静.我国高炉冷却水水质调查及评价[J].炼铁,1996(4):27~29.
    1 金春花,姜德荀,韩东熙等.铁合金电炉中的液压传动技术[J].延边大学学报,1998(9):166.
    2 付晓燕,袁熙志,宋小刚.我国矿热炉电极把持器的现状和发展[J].铁合金.2005(3):30~34.
    3 董维德.铁合金电炉设备的设计与改造.铁合金,1999(5):33~37.
    4 李铁钢.用于矿热炉得电极把持器[P].中国:CN2540080Y,2003.
    5 高峰,李洪新.12.5MV·A矮烟罩矿热炉电极把持器结构的改进与选材[J].铁合金.1998(3):28~31.
    6 李远西.6300kV·A矮烟罩工业硅电炉介绍[J].铁合金.1993(5):29~32.
    7 毕宝臣,周昌明,邓小东.铁合金电炉用压力环[P]..实用型专利,01206484.X,2002:1~2.
    8 梅炽.有色冶金炉设计手册[M].北京:冶金工业出版社,2000:890.
    9 程良能.有色金属冶炼设备第一卷—火法冶炼设备[M].北京:冶金工业出版社,1994:245~246.
    10 李洪新.6.3MV·A工业硅车间的改造与设计[J].铁合金.1998(5):33~35.
    11 成大先.机械设计手册第四版第四卷[M].北京:冶金工业出社,2002:17-293.
    12 张其枢.不锈钢焊接.北京:机械工业出版社,2001:54~119.
    13 V. I. Danilov, L. B. Zuev, V. P. Gaqaus. Structural Strength of the Blast Furnaces Hood Welded Joints. [J]. Svarochroe Proizvodstvo. 2002, n11: 29-31.
    1 许传才编.铁合金冶炼工艺学[M].西安:西北大学出版社,1993:71~74.
    2 戴维编.铁合金冶金工程[M].北京:冶金工业出版社,1999:1~5.
    3 周进华编.铁合金[M].北京:冶金工业出版社,1993:1~14.
    4 顾飞,姚家瑜,李静等.我国高炉冷却水水质调查及评价[J].炼铁,1996.4:27-29.
    5 付晓燕,袁熙志,宋小刚等.新型压力环电极把持器的设计与研究[J].铁合金.2006.5:32~36.
    6 L. Bout, H. Delenghe, M. Depamelare, et al. Installing copper staves and operational practice at Sidmar[J]. Iron and Steel Engineer. 1999.6.
    7 袁熙志.铁合金电炉设计中几个问题的讨论[J].铁合金,1991,(4):14~18.
    8 赵乃成,张启轩编.铁合金生产实用技术手册[M].北京:冶金工业出版社,1998:864~865.
    9 田拥军.热空气在管道中的传热计算[J].化纤与纺织技术.2001.1:34~39.
    10 吴懋林,王立民,刘述临.高炉冷却壁和炉衬的三维传热模型[J].钢铁.1995.3:6~11.
    11 曹建,袁熙志,张明君.矿热炉无水冷骨架矮烟罩的设计与研究[J].铁合金.2005.1:33~38.
    13 宋阳生,杨天钧,吴懋林等.高炉冷却壁冷却冷却能力的计算与分析[J].钢铁.1996.10:11~13.
    14 张典波.从传热分析看高炉冷却制度的确立[J].宝钢技术.1991.3:43~46.
    15 王长瀮.高炉炉体冷却的传热计算及其理论[J].安徽冶金.2001.1:34~39.
    16 那威,邹平华,宋艳.蒸汽热力管道空气复合传热计算的研究[J].煤气与热力.2006.26(9):54~57.
    17 朱家骅,叶世超,夏素兰.化工原理[M].北京:科学出版社,2001:376.
    18 刘人达编.冶金炉热工基础[J].北京:冶金工业出版社,1995:229.
    19 成大先编.机械设计手册[M].北京:化学工业出版社,2002第四版:3~52.
    20 梅炽.冶金传递过程原理[M].长沙:中南工业大学出版社,1987:188~202.
    21 张志涌编.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003:1~3.
    22 张智星.MATLAB程序设计与应用[M].北京:清华大学出版社,2002.
    23 程素森,薛庆国,苍大强.高炉冷却壁的传热学分析[J].钢铁.1999.5:11~13.
    24 程素森,马祥,杨天均.冷却水水垢对冷却壁冷却能力影响的传热学分析[J].钢铁.2002.7:16~19.
    1 华建社,朱军,李小明,马优平.冶金传输原理[M].西安:西北工业大学出版社,2005:49~55.
    2 闫小林.冶金传输原理[M].北京:冶金工业出版社,2002:57~63.
    3 朱家骅,叶世超,夏素兰.化工原理[M].北京:科学出版社,2001:97~107.
    4 鲁德洋.冶金传输原理[M].西安:西北工业大学出版社,1999:89~115.
    5 梅炽.冶金传递过程原理[M].长沙:中南工业大学出版社,1987:78~91.
    6 张先倬.冶金传递过程原理[M].北京:冶金工业出版社,1987:83.
    7 刘巍.冷换设备工艺计算手册[M].北京:中国石化出版社,2003:9~28.
    8 赵立娟、倪福生.细泥沙管道输送阻力损失计算的Wasp方法[J].河南大学常州分校学报,2006年9月:62~64.
    9 邓祥吉,倪福生,罗荣民.管道输沙阻力损失的2种计算模型[J].河南大学常州分校学报,2005年3月:54~56.
    11 陈小金.经济管径与阻力损失[J].IM&P化工矿物与加工,1999.11:24~25.
    12 史登望.煤气管网的设计计算[J].河北冶金,2000.1:24~25.
    13 周希春,董维财,吉明.转炉氧枪水阻力损失测定实验与分析[J].冶金设备管理与维修,2005.4:44~45.
    14 张英普,何武全,蔡明科,王玉宝.关于浑水管道阻力损失规律的试验研究[J].灌溉排水学报,2004.4:16~18.
    15 朱亦仁.局部阻力损失计算中注意的一个问题[J].阜阳师范学院学报:自然科学版,1990.1:13~17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700