铬铁矿粉球团烧结新工艺及固结机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬铁合金是制造不锈钢的重要原料,而冶炼铬铁合金的主要矿物原料为铬铁矿。目前天然铬铁矿块矿资源急剧减少,且价格急剧攀升,而粉矿价格低廉,但粉矿必须通过造块才能大量用于电炉冶炼铬铁合金。通过查阅国内外大量文献,在对不同铬铁矿造块方法进行综合分析对比的基础上,开展了铬铁矿球团烧结工艺及机理研究。
     铬铁矿常规烧结试验研究表明:在焦粉用量8.0%,混合料水分8.0%,膨润土A添加3%,点火温度1100±50℃,点火时间2min,点火负压5000Pa,烧结负压10000Pa,冷却负压5000Pa,冷却时间3min,料层高度580mm的条件下,铬铁烧结矿成品率为73.16%,利用系数1.17 t·m~(-2)·h~(-1),转鼓指数61.03%,固体燃耗115.80 kg·t~(-1)。采用常规烧结工艺,存在烧结矿成品率低,强度差,烧结利用系数低,固体燃耗高等问题。
     铬铁矿球团烧结试验研究表明:在所有原料破碎到小于1mm,焦粉用量为7.5%,焦粉内外分加比例为60:40,混合料水分8.0%,膨润土用量为1%,干燥温度200—250℃,干燥时间3min,干燥负压4000Pa,点火温度1100±50℃,点火时间2min,点火负压4000Pa,烧结负压8000Pa,冷却负压4000Pa,冷却时间3min,料层高度580mm的条件下,铬铁烧结矿成品率为77.18%,利用系数1.47t·m~(-2)·h~(-1),转鼓指数83.78%,固体燃耗107.32 kg·t~(-1)。球团烧结工艺可显著改善烧结矿产质量,成品率、转鼓指数、利用系数分别提高5.50%、37.28%、25.64%,固体燃耗下降7.32%。
     采用光学显微镜、扫描电镜、电子探针等微观检测手段,对铬铁矿球团烧结工艺的固结机理进行了研究,结果表明:铬铁烧结矿主要由铁铬尖晶石、镁铬尖晶石、镁铝尖晶石、各种橄榄石矿物组成。烧结矿的固结以铁铬尖晶石、镁铬尖晶石、镁铝尖晶石再结晶固结为主,橄榄石等液相固结为辅。焦粉分加比例对烧结矿微观结构及矿物组成有显著影响:a、焦粉全部外加到球团表面,球团内外结构不一致,欠烧,强度差;b、焦粉内外分加比例为60:40,球团结构均匀,呈中孔厚壁结构,孔隙适中,强度好;c、焦粉全部加入球团内部,球团内出现大孔薄壁结构,孔隙多,烧结矿强度差。
     原料的粒度对球团烧结矿固结有重要影响,当所有原料(包括返矿)粒度<1mm时,球团烧结矿结构最均匀,各种尖晶石与橄榄石胶
    
    结良好所以强度最高。
     球团烧结矿宏观结构为葡萄状团块。
     球团烧结工艺是强化铬铁矿烧结、提高烧结矿产质量、节省固体
    燃耗的重要技术方案,为强化电炉冶炼CrFe合金供应优质炉料提供
    技术支持,有重要的理论价值和现实意义。
Chromite is main raw material for smelting ferrochromium which can be used to make stainless steel products. And ore feed of smelting ferrochromium is chromite. At present resources of natural chromite lump is decreasing rapidly and its price is going higher than before. But the price of chromite fines is cheap. Agglomeration is one necessary process to utilize. So by comparing with conventional sintering, chromite pellet sintering technology (PST) and its agglomeration mechanism have been studied.
    The investigation on conventional sintering of chromite shows that the rate of finished sinter, the productivity, tumbler index and fuel comsuption are 73.16%, 1.17 t-m-2h-1, 61.03%, 115.80 kg-t -1 respectively under fuel content of 8.0%, moisture content of 8.0%, bentonite addition of 3%, ignition temperature of 1100 + 50 C, ignition time of 2min, ignition pressure of 5000Pa, sintering pressure of 10000Pa, cooling pressure of 5000Pa, cooling time of 3min and bed depth of 580mm.
    The investigation on pellet sintering of chromite shows that the rate of finished sinter reaches 77.18% and the productivity reaches 1.47 t-m. -2h-1 and tumbler index reaches 83.78% and fuel comsuption reaches 107.32 kg-t-1 under all feed size of -lmm,fuel content of 7.5%, 60% coke added into pellet inside, bentonite addition of 1%, moisture
    
    
    
    content of 8.0%, drying temperature of 200-250 C, drying time of 3min, drying pressure of 4000Pa, ignition temperature of 1100 + 50 C, ignition time of 2min, ignition pressure of 5000Pa, sintering pressure of lOOOOPa, cooling pressure of 5000Pa, cooling time of 3min and bed of 580mm. The quality and productivity of sinter are improved by using PST. The rate of finished sinter, tumbler index, productivity are increased by 5.50%, 37.28%, 25.64% respectively and meanwhile fuel consumption is decreased by 7.32%.
    The solidification mechanism of pellet sintering was studied by using microscope, SEM, EPMA. Results show that sinter of chromite consist of Fe-Cr spinel, Mg-Cr spinel, Mg-Al spinel spinel and olivine. The agglomeration of sinter mainly depends on recrystallization of spinels and liquid phase of olivine plays an assistant role as well. The micro-structure and composition of sinter was affected remarkablely by divided coke addition. There is big different between outer structure and inner, and strength of pellet is poor under 100% coke adhered at the surface of pellet. Pellets have good structure and strengthen under 60% coke added into inside pellet and 40% coke adhered at the surface of pellet. The big pore appeared and poor strengthen under 100% coke added into inside pellet. Besides, the agglomeration of pellet was affected obviously by size of balling feed. The structure of sinter is reasonable and has good connection of chromite and olivine and
    
    
    powerful strength when all feed size is under lmm(including returns).
    The macroscopical structure of sinter is recemose.
    PST is important process that can strength chromite sintering and improve the quality and productivity of sinter. PST can give technical support for smelting ferrochromium by electric arc furnace.
引文
[1] 刘承科.大学化学.中南工业大学出版社.1994.10 165~166
    [2] 戴维,舒利.铁合金冶金工程,北京:冶金工业出版社.1999,92,121~122
    [3] 罗贤昌.矿物学.长沙:中南矿冶学院出版社.1980
    [4] 刘元根.西藏铬铁矿资源的合理开采和利用刍议.冶金矿山设计与建设.1996,5:9
    [5] 张智雄.矿石学.冶金工业出版社.1979.2 180~181
    [6] 贾振海.粉状铬矿的预处理技术.铁合金,1989,3:39~40
    [7] 方实.国外铬矿概况与顿斯克铬矿山.地质与勘探,1998,34(2):16
    [8] 杨世明.我国铬铁生产发展中的问题与思路.铁合金,1996,3:50
    [9] 企发办.上海申佳铁合金有限责任公司内部资料.2003,1:10
    [10] 张明俊,刘传福.铬矿烧结工艺研究.铁合金,1994,3:7
    [11] 朱大镛.国外铬粉矿的利用途径,铁合金,1981,2:32
    [12] 王首元,黄仁哲.铬粉矿蒸养球团试验,铁合金,1987,6:37~40
    [13] Lopes G O.巴西巴利亚铁合金铬公司的铬矿粉烧结.见:第四届国际铁合金大会论文集,吉林:铁合金编辑部,1987,72~77
    [14] 张启轩.我国铁合金工业的现状及加快实施创新对策.铁合金,2000,2:34
    [15] Lindberg, Nils G. COBO process applied to chromite agglomeration. CIM Bulletin, 1976(9). 117~126
    [16] 郭顺勤.铬锰的性质及其应用.北京:高等教育出版社,1992.
    [17] 鲍佩声.中国铬铁矿床.北京:科学出版社,1999.
    [18] 王恒升.中国铬铁矿床及成因.北京:科学出版社,1983.
    [19] 沈承衍.世界黑色金属矿产资源.北京:地质出版社,1995.
    [20] 王正樵.不锈钢.北京:化学工业出版社,1991.
    [21] Lekatou A, Walker RD. Microstructure change in chromite concentrate during calcining in air and argon atosphere. Ironmaking and Steelmaking, 1995. 22(3):227~238
    [22] Banerjee, Reddy, B.R. etc. Alkali roasting of chromite by agglomeration technique. Proceedings of the International Symposium on Agglomeration, 1993. 111
    [23] Lekatou A, Walker RD. Compressive strength and microstructure of chromite pellets. Proceedings of the International Symposium on Agglomeration. 1993. 397
    [24] Rao R, Bhima etc. Beneficiation of off-grade chromite ores
    
    - improvement of chrome:iron ratio. Journal of Mines, Metals & Fuels,1997(8). 242~244
    [25] Burchess EW, Wedepohl A. Binding mechanisms in chromite briquettes at low and high temperatures. Proceedings, Biennial Conference - Institute for Briquetting and Agglomeration. 1985, 19.211~235
    [26] McRae L, Bruce. Investigation into the pelletizing and prereductionoftransvaal chromites. Procofthe Int SymponAgglom, 2nd,1977,5.6~10
    [27] Kuperman E. Yu. Magnesia-silicate refractories based on dunite agglomerate. Refractories (English translation of Ogneupory), 1983,24.167~170
    [28] O'SHAUGHNESSY, D. Chromite ore preparation. MINMAG. 1982,10. 291~299
    [29] 傅菊英,姜涛等.烧结球团学.长沙:中南工业大学出版社.1996.
    [30] 陈耀铭.人造矿矿相学.长沙:中南大学出版社.2002.
    [31] 徐南平.钢铁冶金实验技术和研究方法.北京:冶金工业出版社,1995.
    [32] 唐贤容,王笃阳.烧结理论与工艺.长沙:中南工业大学出版社.1992.
    [33] 陆友琪.铁合金指南.北京:北京科学技术出版社,1988.
    [34] (前苏)加西克著;张烽译.铁合金生产的理论和工艺.北京:冶金工业,1994.
    [35] (德)福尔克特(G.Volkert),(德)弗兰克(K.D.Frank)编;俞辉,顾镜清译铁合金冶金学上海:上海科学技术出版社,1978.
    [36] 吉永胜,史郑斌.长钢小球烧结工艺改造及应用效果.山西冶金,2003 26(2):8~10
    [37] 赵伟.太钢开发小球烧结技术.钢铁,2002,37(8):77~78
    [38] 张顺义,郝志强.小球烧结技术改造及效果.冶金能源,2000 19(5).22~24
    [39] 张华,温继东.论小球烧结技术在太钢应用的前景.太钢科技,2000(3):17~20
    [40] 李小钢,徐广尧.提高包钢烧结矿强度改善烧结矿粒度组成试验研究.包钢科技,1997,(3):93~106
    
    
    [41] 唐志勇.球团及小球烧结工艺浅析.首钢科技,1997,(2):39~42
    [42] 薛跃,刘永田.小球烧结生产实践.上海金属,1997,19(1):55~58
    [43] 单继国,薛跃.小球烧结工艺应用效果.烧结球团,1996,21(1):16~20
    [44] 扎克,AP 谭宏文.含小球烧结料的烧结.烧结球团,1994,19(3):47~49
    [45] 杨双平.水冶球团烧结法生产实践.钢铁研究,2001,118(01):5~6,19
    [46] 陈平,王常秋.酸性小球团烧结工艺使用TCYJ添加剂的工业试验.烧结球团,2003,28(3):8~12
    [47] 胡长庆,于勇等.小球团烧结燃料添加方式.河北理工学院学报,2003,25(1):11~16,20
    [48] 张瑞甫.济(源)钢小球团烧结生产实践.烧结球团,2002,27(6):34~36
    [49] 何群,谭庆明.等攀钢钒钛磁铁精矿小球团烧结试验研究.攀钢技术,2002,25(1):1~8
    [50] 刘金武,熊刚.攀钢小球团烧结工程化可行性研究.攀钢技术,2001,24(6):1~5
    [51] 崔辉,赵永红.天铁原料酸性球团烧结实验室试验分析与探讨.天津冶金,2001,(6):7~9
    [52] 鲁逢霖.酒钢酸性球团烧结料层透气性研究.酒钢科技,2001,(1):4~8
    [53] 胡长庆,刘克俭等.小球团烧结矿残碳量的测定.烧结球团,2001,26(3):28~29
    [54] 苏晓东,陈忠海等.凌钢小球团烧结生产实践.烧结球团,2001,26(2):43~44
    [55] 马贤国.鞍钢二烧车间小球团烧结工艺参数试验研究.烧结球团,2000,25(6):7~13
    [56] 张华,温继东.小球团烧结技术在太钢的应用前景.烧结球团,2000,25(4):16~18
    [57] 王东升,刘富庭.邯钢——烧小球团烧结工艺及设备改造.烧结球团,2000,25(3):11~14
    [58] 梁雪梅,陈文忠.小球团烧结燃料添加剂方式的研究.烧结球团,2000,25(3):8~10
    
    
    [59] 臧疆文,王梅菊等.雅满苏铁精矿球团烧结工艺研究.包头钢铁学院学报,1999,18(B09):281~285
    [60] 单继国,潘佐生.小球烧结的研究与应用.钢铁,1996,31(10):1~5
    [61] 地质科学研究院编.中国铬铁矿矿相图册.北京:地质出版社,1974,29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700