用户名: 密码: 验证码:
固定化少孢根霉处理含铅废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞固定化技术是一种很有发展前景的废水处理技术。本文以少孢根霉作为首选生物,以含铅废水作为研究对象,对细胞固定化技术处理重金属废水的工艺过程和基础理论进行了系统研究,其主要内容如下:
     研究了毛霉目真菌少孢根霉的生长繁殖规律,考察了培养温度、培养基的pH值对其生长的影响。首次开发了一种新型的少孢根霉培养方法——马铃薯切片培养,该方法操作简单,省时省力,少孢根霉生长迅速,生长速率常数为0.1685h~(-1),远大于在马铃薯浸汁培养基上的生长速率常数0.1433h~(-1):而且降低了成本,可以用来进行少孢根霉的大规模培养。
     比较研究了三种细胞固定化载体的诸多性质——传质速度、机械强度、耐酸碱性等,根据这些性质的比较,选择了由包埋剂海藻酸钠与交联剂CaCl_2交联所得的海藻酸钙凝胶作为细胞固定化载体;由其包埋非活性少孢根霉细胞制得的生物吸附剂具有一定的机械强度,传质性能良好,能够耐受一定的pH值。在此基础上对细胞固定化技术的制备工艺条件进行了选择与优化,分别考察了包埋剂浓度,交联剂浓度以及交联时间对吸附剂性质的影响,获得了最佳工艺条件:包埋剂海藻酸钠浓度4%,交联剂CaCl_2浓度3%,交联时间24小时。Langmuir吸附等温模型的计算结果表明固定化少孢根霉对铅离子的最大吸附量为42.918mgPb(Ⅱ)/g吸附剂。
     研究了固定化少孢根霉处理含铅废水工艺过程中几种主要理化参数对吸附效果的影响。pH选择在2—5之间,温度以室温为宜:共存离子会使生物吸附剂对铅离子的吸附量下降,其中以铜离子的影响最大。
     对生物吸附动力学进行了初步研究。悬浮非活性少孢根霉吸附水溶液中铅离子的动力学过程可以用班厄姆吸附速率方程来描述,当初始铅离子浓度为200mg/L时,吸附速率常数k为0.8775min~(-1);而固定化少孢根霉生物吸附剂吸附铅离子的过程受颗粒扩散步骤控制,铅离子在以海藻酸钙作为载体的细胞固定化小球中的粒内扩散系数D_e为1.31×10~(-10)m~2/s。利用红外光谱对少孢根霉吸附铅离子的机理进行了分析,结果表明:少孢根霉吸附铅的主要部位为脱乙酰几丁质上的氨基,铅离子与氮原子的未共用电子对结合。
     对铅离子的解吸,固定化少孢根霉的再生、循环及动态吸附进行了详细的研究。选择0.3mol/L柠檬酸作为解吸剂,解吸时间3小时,解吸率可以达到98%以上。用K~+、Ca~(2+)、Mg~(2+)浓度均为0.01 mol/L的混合溶液对生物吸附剂进行再生,
    
    中南大学硕士论文 摘 要
    是一种有效的再主方法,经过五次吸附一解吸一再生的循环,固定化少抱根霉仍
    然可以保持较高的吸附能力和良好的机械性能。在此基础上使用自行设计的动态
    吸附装置对固定化少抱根霉对铅离子的动态吸附进行了研究,得到其动态饱和吸
    附量为 48 mg Ph川)/g吸附剂。研究结果为细胞固定化技术处理重金属废水实现
    工业化提供了重要的基础数据。
Fundamental and technological studies on treatment of lead-bearing wastewater by immobilized Rhizopus oligosporus were carried on. The main subjects in this dissertation are as follows.
    Factors affecting growth and propagation of Rhizopus oligosporus, temperature and pH value, were discussed. A new cultivation was developed, which offers several advantages over traditional cultivation, such as simple operation, time saving and low cost. Rhizopus oligosporus grows fast on the new culture medium, with the growth rate constant being 0.1685 h-1, and a large-scale culture can be proceeded.
    The characteristics of three gelatinous materials, namely calcium alginate, zinc alginate and aluminum alginate were evaluated for immobilizing biomass of the common mycete, Rhizopus oligosporus. And calcium alginate was found to be the most ideal matrix. The microbeads in which nonliving Rhizopus oligosporus cells were immobilized possess favorable properties with a potential for industrial use, such as adsorption rate, mechanical property and endurance for acid and base. The optimized conditions for preparing biosorbents based on the immobilization of nonliving Rhizopus oligosporus were obtained, i.e., the concentration of imbedding agent sodium alginate is 4%, the concentration of cross-linker CaCb is 3% and the time of cross linkage is 24 hours. Application of the Langmuir isotherm to the system yields the maximum sorption capacity of 42.918 mg Pb( II ) per gram biosorbent.
    Basic physicochemical parameters, significantly influencing bioremoval of Pb( II ), such as pH value, temperature and interfering cations, were investigated. The results show that the process can be proceeded at room temperature, with the pH value being controlled in the range of 2-5. The immobilized Rhizopus oligosporus accumulates less Pb( II ) when interfering cations exist in the lead-bearing wastewater, and the copper ion has the obvious effect on decreasingthe adsorption amount of Pb( II ) by the biosorbent.
    The kinetics on biosorption of Pb( II ) by immobilized Rhizopus oligosporus was studied. An initial rapid step of lead binding to Rhizopus oligosporus cell walls is followed by a subsequent slow phase of ions diffusion in the microbeads. The process
    
    
    
    for adsorbing Pb(II ) to suspended cells can be described by Bangham model. At initial Pb( II ) concentration of 200 mg / L the adsorption rate constant was calculated to be 0.8775 min-1 according to the model. The diffusion of lead ion in the pellet is intrapartically controlled and the transfer coefficient De was assessed to be 1.31 X 10"10 m2/s. By analyzing the IR spectrograms of several pretreated biomass, the main mechanism on accumulation of Pb( II ) by nonliving Rhizopus oligosporus cells was regarded as chelation between metal cations and amino groups of chitoson.
    Immobilized systems are well suit for non-destructive recycling. Elution by citrate acid of 0.3 mol / L was found to be the best for Pb(II) desorption over 98%. The biosorbed immobilization Rhizopus oligosporus was regenerated by contacting with a solution containing 0.01 mol / L K\ Ca2+ and Mg2+ ions before further adsorption. With five cycles of biosorption-elution-regeneration the microbeads still keep high lead biosorption capacity. In addition, a series of flow studies was carried out using columns containing biosorbents. The results indicated that the saturation biosorption capacity reaches 48 mg Pb( II ) per gram biosorbent. The study provides an important base for the commercial application of the immobilized nonliving Rhizopus oligosporus in the removal of lead ions from wastewater.
引文
[1]常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学,2000,19(1):59~61
    [2]王绍文,姜风有编著.重金属废水治理技术.冶金工业出版社,1993
    [3]居乃琥.固定化细胞技术研究和应用的现状与展望.工业微生物,1989,19(1):25~32
    [4]张蔚文,张灼.固定化微生物在废水处理中的应用与研究.上海环境科学,1991,10(10):20~104
    [5]陈铭,周晓云.固定化细胞技术在有机废水中的应用与前景.水处理技术,1997,23(2):98~103
    [6]李广胜.江西德兴铜矿大流量酸碱废水的综合治理.有色矿山,1995(3):59~64
    [7]彭铁辉.硫化沉淀法在有色冶金废水深度净化中的应用.桂林工学院学报,1995,25(1):77~82
    [8]孔荟.日本矿山废水的治理.冶金矿山设计与建设,1998,30(5):58~62
    [9]彭根槐,吴上达.电石渣—铁屑法去除硫酸废水中的氟和砷.化工环保,1995,15(5):280~288
    [10]鲁关怀.一种含铬废水的治理方法.中国发明专利,CN1245781A,2000
    [11]许民,余淑娴,胡全红等.全湿法炼锌厂的环保工艺设计.江西化工,2000(2):9~10
    [12]王钧扬.矿山废水的治理与利用.中国资源综合利用,2000(3):4~7
    [13]田小荣.中和气浮法处理含铜废水.化工设计,1997(6):44~46
    [14]王雅琼,许文林.电化学沉积法处理含铜废水.水处理技术,1995,21(6):359~362
    [15]许文林,王雅琼.固定床电化学反应器处理含铜废水研究.环境科学,1994,15(1):46~49
    [16]Hatfield T L, Kleven T L, Pierce D T. Electrochemical remediation of metal-bearing wastewaters Part I: copper removal from simulated mine drainage waters[J]. Journal of Applied Electrochemistry. 1996, 26(6): 567~574
    [17]Widner R C, Sousa M F B, Bertazzoli R et al. Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode Source[J]. Journal of Applied Electrochemistry, 1998, 28(2): 201~207
    [18]St-Pierre J, Masse N, Frechette E et al. Zinc removal from dilute solutions using a rotating cylinder electrode reactor[J]. Journal of Applied Electrochemistry. 1996, 26(4): 369~377
    
    
    [19] Njau K N, Hosseini Y M, Janssen L J J. Electrochemical reduction of nickel ions from dilute artificial solutions in a GBC reactor[J]. Journal of Applied Electrochemistry. 1998, 28(7): 689~349
    [20] Zwart I P, Janssen L J J. Reduction of metal ions in dilute solutions using a GBC-reactor. Part I: Experimental study on the laboratory scale reduction of ferric ions[J]. Journal of Applied Electrochemistry. 1998, 28(1): 1~9
    [21] Trabelsi F, Ait-Lyazidi H, Ratsimba B et al. Oxidation of phenol in wastewater by sonoelectrochemistry[J]. Chemical Engineering Science. 1996, 51(10): 1857~1865
    [22] Butterfield I M, Christensen P A, Hamnett A et al. Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water[J]. Journal of Applied Electrochemistry. 1997, 27(4): 385~395
    [23] 朱苓,王毓芳,徐伯兴.生物膜电极法在废水处理中的应用.污染防治技术.1998,11(1):45~47
    [24] 高以火亘,叶凌碧.膜分离技术基础.科学出版社.1984
    [25] Thompson J A, Jarvimen G. Using water-soluble polymers to remove dissolved metal ions[J]. Filtration and Separation. 1999, 36(5): 28~32
    [26] Gu Z M, Ho W S, Li N N. Design considerations of emulsion liquid membranes. In: Ho W S, Sirkar K K, eds. Membrane Handbook. New York: Chapman and Hall, 1992
    [27] Danesi P R, Reichley-Yinger L, Rickert P G. Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes[J]. J Member Sci,1987, 31(2-3): 117~145
    [28] Fabiani C, Merigiola M, Seibona G, et al. Degradation of supported liquid membranes under an osmotic pressure gragient[J]. J Member Sci, 1987, 31(1): 97~104
    [29] Majumda S, Sirkar K K, Sengupta A. Hollow-fiber contained liquid membrane. In: Ho W S, Sirkar K K, eds. Membrane Handbook. New York: Chapman and Hall:1992
    [30] Sengupta A, Basu R, Sirkar K K. Separation of solutes from aqueous solution by contained liquid membrane[J]. AI Ch EJ, 1988, 34: 1698~1708
    [31] 庄震万,谷和平,黄齐鸣等.双膜分离器的研究.膜科学与技术,1993,13(2):1~7
    
    
    [32] Boyadzhiev L, Lazarova Z, Bezenshek E. Mass transfer in three-liquid phase system. In: Proc ISEC'83, Denver, Colorado, 1983:391~393
    [33] 顾忠茂,周庆江,金兰瑞.静电式准液膜分离方法及其装置.中国发明专利,CN86101730,1988
    [34] Gu Z M. Electrostatic pseudo liquid membrane. In: Ho W S, Sirkar K K, eds. Membrane Handbook. New York: Chapman and Hall, 1992
    [35] Zheng Z X, Bai S Y, Gu Z M. New baffle plate of electrostatic pseudo liquid membrane device and its performance. In: Proc of the 4th Sino-Japn Symp on Liquid Membranes. Shanghai: 1998, 104~107
    [36] 吴全锋,郑左西,顾忠茂.冠状液膜分离方法及其装置.中国发明专利,CN94107328,1994
    [37] 吴全锋,顾忠茂,汪德熙.液膜过程的新发展——内耦合萃反交替分离过程.化工进展,1997(2):30~35
    [38] 吴全锋,白书雨,顾忠茂.内耦合萃反交替反应槽改进与扩大研究.原子能科学技术,1997,31(6):524~529
    [39] Geoffrey W G, Geoffrey A C, Geoffrey M G. Accumulation of colbalt, zinc and manganese by the estuarine green microalgae Chlorella salina immobilized in alginate microbeads[J]. Environ Sci Technol, 1992, 26:1764~1770
    [40] Anoop Kapoor, Viraraghavan T, Cullimore D R. Removal of heavy using the fungus Aspergillus niger[J]. Bioresource Technology, 1999, 70: 95~104
    [41] Sag Y, Kutsal T. Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics[J]. The Chemical Engineering Journal, 1995, 60: 181~188
    [42] Phiip L, Lyengar L, Venkobachar C. Biosorption of copper by Pseudomonas aeruginosa[J]. Int J Environment and Pollution, 1995, 5:92~99
    [43] YS HO D A, JOHN WASE, et al. Batch nickel removal from aqueous solution by sphagnum moss peat[J]. Water Research, 1994, 29(5): 1327~1332
    [44] Pinghe Yin, Qiming Yu, Bo Jin et al. Biosoprtion removal of cadmium from aqueous solution by using pretreated fungal biomass of cultured from starch wastewater[J]. Water Research, 1999, 25(8): 1960~1963
    [45] Sahoo D K, Kar R N, Das R P. Bioaccumulation of heavy Metal Ions by Bacillus circulans[J].BioresourceTechnology, 1992(41): 177~179
    [46] Jiri Gabriel, Jan Vosahlo, Peter Baldrian. Biosorption of cadmium to mycelia
    
    pellets of wood-rotting fungi [J]. Biotechnology Techniques, 1996, 10(5) : 345-348
    [47] Nourbakhsh M, Sag Y, Ozer D, et al. A Comparative Study of Various Biosorbents for Removal of Chromium(VI) Ions from Industrial Waste Water[J]. Process Biochemistry, 1994, 29: 1-5
    [48] David Kratochvil , Patricia Pimentel , Bohumil. Removal of Trivalent and Hexavalent Chromium by Seaweed Biosorbent[J]. Environ Sci Technol, 1998, 32: 2693-2698
    [49] Lee C K, Low K S, Kek K L. Removal of Chromium from aqueous solution[J]. Bioresource Technology, 1995, 54: 183-189
    [50] Vinta V Panchanadikar, Radhanathp Das. Biosorption process for removing lead( II) from aqueous effluents using Pseudomonas SP[J]. Inter J Environmental Studies, 1994, 46: 243-250
    [51] Jo-Shu Chang, Juan Hong. Biosorption of Mercury by the Inactivated Cells of Pseudomonas aeruginosa PU21(Rip64) [J]. Biotechnology and Bioengineering, 1994, 44: 999-1006
    [52] Vinta V Panchanadikar, Radhanathp Das. Biorecovery of zinc from industrial effluent using native microflora[J]. Inter J Environmental Studies, 1993, 44: 251-257
    [53] Gadd G M. Fungi and yeasts for metal accumulation. In: Microbiol Mineral Recovery. Ehrlich H L, Brierley C L, eds. McGraw-Hill Publishers, New York: 1990, 249-275
    [54] Tobin J M, Cooper D G, Neufeld R J. Uptake of metal ions by R. arrhizus biomass[J].Appl Environ Microbiol, 1984, 4(7) : 821-824
    [55] Beveridge T J. Immobilization of soluble metals by bacterial wall[J]. Biotechnology and Bioengineering Symposium. 1986, 16: 127-139
    [56] 陈勇生,孙启俊,陈钧等,重金属的生物吸附技术研究,环境科学进展, 1997,5 (6) : 34-43
    [57] Tsezos M, Volesky B. The mechanism of uranium biosorption by Rhizopus arrhizus[J]. Biotechnol Bioeng, 1982, 23: 385-401
    [58] Tsezos M, Volesky B. Mechanism of thorium biosorption by Rhizopus arrhizus[J]. Biotechnol, Bioeng, 1982, 24 (4) : 955-969
    [59] Guibal E, Roulph C, Cloirec P L. Uranium biosorption by a filamentous fungus mucor miehei pH effect on mechanisms and performances of uptake[J]. Water Research, 1992, 26 (8) : 1139-1145
    
    
    [60]Treen-Sears M E, Volesky B, Neufeld R J. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent[J]. Biotechnology and Bioengineering, 1984, 26(11): 1323~1329
    [61]Crist R H, Martin J R, Carr D, et al. Interaction of metals and protons with algae.4.Ion exchange vs adsorption models and a reassessment of scatchard plots;ion-exchange rates and equilibrium compared with calcium alginate. Environmental Science and Technology[J]. 1994, 28(11):1859~1866
    [62]Strandberg G W, Shumate S E, Parrot J R. Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 1981, 41:237~245
    [63]唐莉,李家熙.藻吸附金属离子的研究——斜生栅藻富集金.岩矿测试,1994,13(3):161~167
    [64]Hosea M, Greene B, Mcpherson R, et al. Accumulation of elemental gold on the alga Chlorella vulgaris[J]. Inorganic Chemic Acta, 1986, 123: 161~165
    [65]Greene B, Hosea M, Mcpherson R, et al. Interaction of Gold(Ⅰ) and Gold(Ⅱ)Complexes with Algae Biomass[J]. Environ Sci Technol, 1986a, 20:627~632
    [66]May B H, Holan Z R. Cadmium biosorption by Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 1993,(41) 8:826~829
    [67]陈旻,甘一如.重金属的生物吸附.化学工业与工程,1999,16(1):19~25
    [68]橋本.下·排水处理概観展望,用水廃水,1985,27(11):3~13
    [69]马子骏等.固定化细胞技术及其应用.银川:宁夏人民出版社,1990
    [70]田建民.生物吸附法在含重金属废水处理中的应用.太原理工大学学报,2000,31(1):74~78
    [71]辛世崇,赵延斌,邓民.固定化淀粉酶的制备及应用.工业水处理,1991,11(6):24~26
    [72]王家玲著.环境微生物学(第一版).高等教育出版社,1988
    [73]陈陶声.固定化酶理论与应用(第一版).轻工业出版社,1987
    [74]徐和德.应用固定化脲酶处理含氨尿素废水.水处理技术,1985,11(专辑):110~111
    [75]Sanchez M A. Activity of soluble and immobilized hesperidinase on insoluble hesperidin[J]. Biotechnol Lett, 1987, 9(12): 871~874
    [76]三枝武夫著.环境保护与净化的化学(第一版).化学工业出版社,1989
    
    
    [77]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较.环境科学,1993,14(2):11~15
    [78]赵亚乾,杨镭,李康敏.海藻酸钠包埋活性炭与活性污泥的固定化技术.上海环境科学,1997,16(9):28~30
    [79]闵航,郑耀通,钱泽澍.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究.环境科学,1994,15(5):10~14
    [80]屠娟,张利,赵力等.非活性黑根霉对废水中重金属离子的吸附.环境科学,1995,16(1):12~15
    [81]张利,俞耀庭,发酵废渣黑根霉对Pb~(2+)的吸附作用.离子交换与吸附,1995,11(6):545~549
    [82]张利,孔德领,屠娟等.发酵黑根霉对铅离子吸附机理的研究.离子交换与吸附,1996,12(4):317~323
    [83]赵力,张利,孔德领等.明胶包埋黑根霉菌丝体对水中Pb~(2+)吸附性能的研究.离子交换与吸附,1996,12(5):418~424
    [84]王琰,张利,俞耀庭.非活性菌丝体对水中铅离子的吸附.环境科学,1998,19(3):62~65,74
    [85]Wong P K. Removal and recovery of Cu(Ⅱ) from industrial effluent by immobilized cells of Psedomonas Putida Ⅱ-11[J]. Applied Microbiology Biotechnology, 1993, 39: 127~131
    [86]Barkley N P. Extraction of mercury from groundwater using immobilized algae[J]. Journal of the Air & Waste Management Association, 1991, 41(10): 1387~1393
    [87]杨晓松,殷志伟,许国强.铜铅锌冶炼厂环境污染治理及其技术对策.有色金属,200,52(1):94~96
    [88]梁冰,李小冰,张伟.铅的污染危害及天然产物防止铅中毒.四川环境,2000,19(2):17~25
    [89]郭笃发.环境中铅和镉的来源及其对人和动物的危害.环境科学进展,1994,2(3):71~76
    [90]国家环保局.污水综合排放标准GB8978—88.北京:中国标准出版社,1988,8
    [91]Fry J C, Gadd G M, Herbert R A. Microbial control of pollution, In Forty-Eighth Symposium of the Society for General Microbiology, University of Cardiff,Cambridge University Press: 1992, 59~89
    [92]Norris P R, Kelly D P. Accumulation of metals by bacteria and yeasts[J]. Dev Ind Microbiol, 1979, 20:299~308
    [93]Aksu Z, Kutsal T. A bioseparation Process for Removing Lead(Ⅱ) Ions from Waste by Using C. Vulgaris[J]. J Chem Technol Biotechnol, 1991, (52) 1: 109~118
    
    
    [94]Skowronski T. Adsorption of Cadmium on Green Microalga Stichococcus bacillaris[J]. Chemosphere (G, B), 1984, 15(1): 69~76
    [95]Chaney L R, Hundemann T P. Use of peat moss columns to remove cadmium from wastewater[J]. J Water Poll Control Fed, 1979, 51:17~21
    [96]Freer J, Barza J, Maturana H. Removal and recovery of uranium by modifiedPinus radiata Don bark[J]. J Chem Tech Biotechnol, 1989, 46:41~48
    [97]戴芳澜编著.中国真菌总汇.科学出版社,1977:53
    [98]沈萍,范秀容,李广武编.微生物学实验(第三版).高等教育出版社,1999
    [99]周德庆著.微生物学教程.高等教育出版社,2000
    [100]Wilkinson S C, Goulding K H, Robinson P K. Mercury removal by immobilized algae in batch culture systems[J]. J Appl Phycol, 1990, 2:223~230
    [101]Singh S P, Verma S K, Singh R C, et al. Copper uptake of free and immobilized cyanobacterium[J]. FEMS Microbiol Lett, 1989, 11:590~595
    [102]李学梅,林建平.霉菌固定化综述.生物工程进展,1999,19(4):62~66
    [103]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J].J Am Chem Soc, 1918, 40:1361~1403
    [104]Freundlich H. Colloid and Capillary Chemistry[M]. Methuen. London, 1926
    [105]刘建广.聚乙烯醇固定化细胞技术及特性研究.山东建筑工程学院学报,1997,12(2):65~68
    [106]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究进展.工业微生物,1998,28(2):35~39
    [107]迪安JA主编:尚久方等译.兰氏化学手册.科学出版社,1991
    [108](日)北川浩,铃木谦一郎著.吸附的基础与设计.化学工业出版社,1983
    [109]陶祖贻,赵爱民著.离子交换平衡及动力学.原子能出版社,1989
    [110]Tao Z, Niu J. Shell-progressive model with changing bulk concentration and exchanger volume in ion exchange[J]. Solvent Extraction Ion Exchange, 1990, 8(1): 99~115
    [111]Bhandari V M, Juvekar V A, et al. Modified shrinking core model for reversible sorption on ion-exchange resins[J]. Separation Science and Technology, 1992, 27(8-9): 1043~1064
    [112]蒋先明,何伟平编著.简明红外光谱识谱法.广西师范大学出版社,1992
    [113]王宗明,何欣翔,孙殿卿编著.实用红外光谱学.石油化学工业出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700