四川会理拉拉铜矿地球化学特征及其大陆动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对四川会理拉拉铜矿矿床地球化学特征及其成矿大陆动力学背景进行了深入研究。全文共分七章内容进行阐述。
     论文首先概述了大陆动力学及成矿作用的诞生和意义,指出了大陆动力学是确定成矿系统的形成、演化与区域构造演化的关键,其研究是对传统成矿理论的突破,也是最终确定矿床成矿作用过程和矿床成因模式的关键,对于矿区的找矿勘探工作部署具有重要的指导意义。本文根据拉拉铜矿构造成矿动力学机制,河口群、辉长岩群年龄和岩石地球化学特征分析岩石成因和构造背景,建立起拉拉铜矿区域大陆动力学演化序列;根据矿床年龄和矿床地球化学特征,矿床成矿物质和成矿流体来源研究矿床成因和成矿期次,确定不同时期不同地质体与矿床之间的成矿关系(物质、流体、热动力),并最终以各地质体为媒介反演该区大陆动力学演化的不同构造背景下的成矿作用,从而确定矿床成矿过程和矿床成因模式。首先,矿体严格产于古元古代晚期河口群中部的变钠质火山岩层位,矿石地球化学特征和河口群相似,河口群火山岩属于海底喷发的碱性系列,形成于陆间裂谷或坳拉槽环境,说明拉拉铜矿具有伴随河口群火山喷流—沉积的早期同生沉积成岩成矿作用;其次,矿区东西向构造对矿床展布具有明显的控制作用,这些区域和矿床地质特征显示了新元古代早期(1000Ma左右)华南地块西南缘格林威尔构造运动(早晋宁运动)南北向的挤压导致了拉拉地区含矿岩系东西向叠瓦式冲断-褶皱构造体系的形成和变质成矿作用的发生;第三,矿区辉长岩与矿床时空分布密切相关,辉长岩可能是新元古代中期(850Ma)Rodinia超大陆裂解时超级地幔柱源成因,由此推断,拉拉铜矿成矿作用晚期地幔柱辉长岩浆热事件对矿床巨量金属元素堆积起到极其重要的成矿“引擎”的作用,辉长岩侵位时携带的巨大热量与早期含矿地层发生“引潮共振”,为成矿元素的重新活化、迁移、富集提供了强大的热动力,最终形成拉拉地区巨量金属元素的富集。
This paper has done the thorough researches on the geochemical characteristics and continental geodynamics of LaLa copper deposit. The whole paper contains 7 chapters to expatiate.
     The paper summarizes the naissance and significance of continental geodynamics and it's mineralization, and points out that continental geodynamics is the key of confirming metallogenic system formation, evolvement, and regional structure evolvement. This research is a breakthrough of traditional mineralization theory, and also is the key of confirming the mineralization process and genetic mode of deposit, which is very important significance for ore-searching and exploration work in mining district. Based on analysis of regional tectonics, deposit signature, age and geochemical characers of Hekou group and gabbro, this paper points out rock origin and structure background and sets up the continental geodynamics evolvement sequence of Lala area. Based on the research of source of mineralizing materials and mineralizing fluid, confirm the attribute of a relation (content, water, heat) between different geologic body and deposit, inverse the mineralization in different continental geodynamics evolvement background by geologic body, and confirm the deposit mineralizing process and genetic mode in the end.
     Firstly, the ore body strictly lies in volcanic rocks of middle layer of hekou group of late Paleoproteozoic. Ores and hekou group have similar geochemical characters. The volcanic rocks, Hekou group, which belongs to alkalescence system erupted under the sea, formed in intercontinental cracks and aulacogen. According to what mentioned above, it is explained that Lala copper is associated with early syngenetic sediment diagenetic mineralization accompanying with hekou group eruption.
     Secondly, east-west axis' structure in this area constrain the association of deposits which show that north-south direction compression of Greenwiller movement caused the east-west axis' imbricate thrust-fold structure system and metamorphic mineralization in upper Proterozoic era(about 1000Ma).
     Thirdly, The spatiotemporal distribution of this gabbros closely relate to the deposits. Gabbro waspossibly the super mantle plume source whih the Rodinia supercontinent dividing in middle Proterozoic era(850Ma). It is deduced that mantle plume gabbro magma happening is the "engine" of large metal accumulation in late mineralization process of LaLa copper. The great heat and ore containing stratum caused " tide-producing resonance", that is the power of ore-forming element reactived, transfered and enriched, and finally lead to huge metal element enrichment in LaLa area.
引文
[1]陈根文,夏斌.四川拉拉铜矿床成因研究[J].矿物岩石地球化学通报,2001,20(1):42-44.
    [2]陈好寿,冉崇英.康滇地轴铜矿床同位素地球化学[M].北京:地质出版社,1992,20-74.
    [3]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004,150-155.
    [4]成都地质矿产研究所.拉拉铜矿含矿岩系特征及矿床成因探讨[R].1982.
    [5]邓军,翟裕生,杨立强.构造演化与成矿系统动力学[J].地学前缘,1999,6(2)
    [6]杜利林,耿元生,杨崇辉,等.扬子地台西缘盐边群玄武质岩石地球化学特征及SHRMP 锆石U-Pb年龄.地质学报,2005,79(6):805-813.
    [7]方维萱.秦岭造山带大型-超大型金属矿床形成大陆动力学条件分析[J].西北地质,1998.
    [8]甘晓春,李献华,赵风春,等.广西龙胜丹洲群细碧岩U-Pb及Sm-Nd等时线年龄[J].地球化学,1996,25(3):270-276.
    [9]高庚,徐兆文,杨小男,王云健,张军,蒋少涌,凌洪飞.安徽铜陵白芒山辉石闪长岩体的成因:Sr-Nd-Pb-O同位素制约[J].南京大学学报(自然科学),2006.5,42(3):269-270.
    [10]顾连兴,胡文瑄,倪培,等.再论大陆地壳断裂拗陷带中的华南型块状硫化物矿床[J].高校地质学报,2003,9(4):592-608.
    [11]顾雪祥,刘建明,Oskar Sehulz,等.湖南沃溪钨-锑-金建造矿床同生成因的微量元素和硫同位素证据[J].地质科学,2004,39(3):424-439.
    [12]侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006a,33.
    [13]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006b,25(5).
    [14]侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006c,25(4).
    [15]姜勇彪,张世红,吴怀春,等.华南地块西南缘格林威尔期区域构造解析[J].大地构造与成矿学,2006,30(2):127-135.
    [16]李才,和钟铧,李惠民.青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构造意义[J].中国地质,2004,31(4):384-389.
    [17]李承德,冯祖杰,宋嘉.会理拉拉铜矿矿床中金的赋存状态分布规律及成矿机制研究[R].成都地质学院矿床教研室,1990,1-95.
    [18]李德威,庄育勋.青藏高原大陆动力学的科学问题[J].地质科技情报,2006,25(2).
    [19]李复汉.康滇地区的前震旦系[M].重庆:重庆出版社,1988,31-73.
    [20]李献华,周汉文,李正祥,等.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年 龄和岩石化学特征[J].地球化学,2001,30(4):315-322.
    [21]李献华,周汉文,李正祥,等.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd 同位素制约及其大地构造意义[J].地质科学,2002a.7,37(3):264-276.
    [22]李献华,李正祥,周汉文,等.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义[J].地学前缘,2002b.10,9(4):329-338.
    [23]李献华,祁昌实,刘颖,等.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约,科学通报,2005.10,50(19):2155-2160.
    [24]李勇,周荣军.青藏高原东缘大陆动力学过程与地质响应[J].地质出版社,2007.
    [25]李泽琴,王奖臻,刘家军,等.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛,2002,18(1):39-42.
    [26]林广春,李献华,李武显.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义[J].中国科学D辑,2006,36(7):630-645.
    [27]凌其聪,刘丛强.低级变质岩在热液蚀变过程中的微量元素地球化学行为——以赣东北银山地区双桥山群为例[J].岩石学报,2002,18(1):100-108.
    [28]凌文黎,高山,张本仁,等.扬子陆核古元古代晚期构造热事件与扬子克拉通演化[J].科学通报,2000,45(21):2343-2347.
    [29]刘宝珺,青藏高原东缘地质及大陆动力学研究的新进展[J].地质通报,2007,26(8).
    [30]刘显凡,刘家铎,张成江,等.地幔柱和地幔流体作用与深部找矿应用研究[J].地球科学进展,2004,19(增刊):93-101.
    [31]刘亚轩,张勤,黄珍玉,等.ICP-MS法测定地球化学样品中As、Cr、Ge、V等18种微量痕量元素的研究[J].化学世界,2006(1):16-20.
    [32]刘肇昌.元古代会理—东川坳拉槽与川滇铜铁成矿带[J].矿床地质,1994,13(增刊):23-25.
    [33]刘肇昌,李凡友,钟康惠,等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1996,48-100.
    [34]刘正南.四川会理拉拉地区细碧—角斑岩系的某些特征及其成矿作用[J].矿物岩石,1985.12,5(4):35-47.
    [35]卢良兆,林强,刘招君.成因岩石学[M].长春:吉林大学出版社,2004:97-106.
    [36]陆松年.从罗迪尼亚到冈瓦纳大陆——对新元古代超大陆研究几个问题大思考[J].地学前缘,2001,8(4).
    [37]毛光周,华仁民,高剑峰,等.江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J].矿床地质,2006,25(4):412-415.
    [38]毛景文,李红艳,宋学信,等.湖南柿竹园钨锡铝铋多金属矿床地质地球化学[M].北 京:地质出版社,1998:1-215.
    [39]毛景文,谢桂青,李晓峰,等.大陆动力学演化与成矿研究:历史与现状[J].矿床地质,2005a,24(3):193-205.
    [40]毛景文,李晓峰,李厚民,等.中国造山带内生属矿床类型、特点利成矿过程探讨[J].地质学报,2005b,79(3).
    [41]毛景文,张作衡,余金杰,等.华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学(D辑),2003,33(4):289-380.
    [42]聂凤军,江思宏.地球演化过程中金属矿产的形成[J].中国地质,2001,28(4):24-30.
    [43]牛树银,侯泉林,侯增谦,等.地幔热柱多级演化与核幔源元素成矿作用[J].地质学报,2003,(4):591.
    [44]攀西地质大队.四川省会理县拉拉铜矿床详细勘探地质报告[R].成都:四川省地质矿产局,1984:12-128.
    [45]裴荣富,梅燕雄.论异常成矿作用.矿床地质,2002,21(增刊):48-51.
    [46]裴荣富,梅燕雄,李进文.特大型矿床与异常成矿作用,地学前缘,2004,11(2),323-331.
    [47]裴荣富,梅燕雄,李进文,等.事件地质激发成矿作用异常与超巨量金属工业堆积.地质学报,2006,80(10):1510-1511.
    [48]裴荣富,李进文,梅燕雄,等.中国大陆边缘构造属性与超巨量金属工业堆积,高校地质学报,2007,13(2):137-147.
    [49]申屠保涌.钠长岩类地质地球化学特征及变质变形与铜矿的形成——以四川会理拉拉铜矿床为例[J].沉积与特提斯地质,2000,20(3):77-91.
    [50]孙燕,舒晓兰,肖渊甫.四川省拉拉铜矿床同位素地球化学特征及成矿意义[J].地球化学,2006,35(5):553-559.
    [51]沈渭洲,高剑峰,徐士进,等.四川石棉蛇绿岩的地球化学特征及其构造意义[J].地质论评,2003,49(1):17-27.
    [52]苏犁.中国中西部几个新元古代镁铁、超镁铁岩体研究及对Rodinia超大陆裂解事件的制约[D].西安:西北大学,2004,1-117.
    [53]滕吉文.地球深部物质和能量交换的动力过程与矿产资源的形成[J].大地构造与成矿学,2003,27(1):3-21.
    [54]王登红.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨[J].地学前缘,2001,8(3):67-72.
    [55]王登红,西南三江地区新生代大陆动力学过程与大规模成矿[M].地质出版社,2006.6.
    [56]韦昌山,杨振强,魏君奇,等.刘山岩矿床矿石的稀土元素和硫、铅同位素的地质意义[J].华南地质与矿产,2002,(4):41-46.
    [57]吴根耀.会理-东川裂堑的发育及形成机制[M].北京:北京科技出版社,1983,30-62.
    [58]吴懋德..云南昆阳群地质.云南科技出版社,1990,60-98.
    [59]夏林圻,夏祖春,徐学义,等.碧口群火山岩岩石成因研究[J].地学前缘,2007,14(3):84-101.
    [60]徐备,乔广生.赣东北晚元古代蛇绿岩的Sm-Nd同位素年龄及原始构造环境[J].南京大学学报(地球科学),1989,(3):108-114.
    [61]许志琴,姜枚,杨经绥,等.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉[J].地学前缘,2004,11(4).
    [62]许志琴.青藏高原大陆动力学(1984-2006).地质出版社,2006.
    [63]杨经绥,刘福来,吴才来,等.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据[J].地质学报,2003,77(4).
    [64]杨文采,东大别超高压变质带的深部构造,中国科学(D辑),33(2),2003,183-192.
    [65]杨晓松,金振民.西藏亚东淡色花岗岩Rb-Sr和Sm-Nd同位素研究[J].地质论评,2001,47(3):295-300.
    [66]杨学明,杨晓勇,M.J.Le Bas.碳酸岩的地质地球化学特征及其大地构造意义[J].地球科学进展,1998,13(5):458-466.
    [67]袁海华,张树发,张平.康滇地轴基底时代的初步轮廓[J].见:张云湘,刘秉光主编.中国攀西裂谷文集tM].北京:地质出版社,1987,51-60.
    [68]曾乔松,陈广浩,王核,李鹏春.基于多因复成矿床理论探讨阿舍勒铜矿的成因,大地构造与成矿,2005,29(4).
    [69]张本仁,傅家谟.地球化学进展[M].北京:化学工业出版社,2005:200-240.
    [70]张国伟,董云鹏,赖绍聪,等.秦岭一大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑),2003,33(12):1121-1135.
    [71]张鸿翔,刘丛强,徐志方,等.扬子板块西缘早古生代俯冲体系的地球化学证据[J].矿物学报,2001,21(2):231-238.
    [72]张健,石耀霖.东亚陆缘带构造扩张的深部热力学机制[J].大地构造与成矿学,2003,27(3).
    [73]张建新,孟繁聪,万渝生,等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据[J].地质通报,2003,22(6).
    [74]张克信,朱云海,林启祥,寇晓虎,樊光明,陈奋宁,罗根明.青海同仁县隆务峡地区首次发现镁铁质—超镁铁质岩带[J].地质通报,2007,26(6):661-667.
    [75]张招崇,闫升好,陈柏林,等.阿尔泰造山带南缘镁铁质—超镁铁质杂岩体的Sr、Nd、O同位素地球化学及其源区特征探讨[J].地质论评,2006,52(1):38-42.
    [76]赵彻终,刘肇昌,李凡友.会理—东川元古代海相火山岩带的特征与形成环境[J].矿物岩石,1999,19(2):17-24.
    [77]赵葵东.华南两类不同成因锡矿床同位素地球化学及成矿机理研究(博士论文)[D]. 南京大学,2005,39-51.
    [78]赵文津,中国大陆动力学研究进展——纪念中国地球物理学会成立60周年[J].2007,22(4):1113-1121.
    [79]郑永飞,从同位素到板块构造:化学地球动力学[J].地学前缘,1998,5(增刊):55-69.
    [80]周家云,郑荣才,朱志敏.拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J].矿物岩石,2008.9
    [81]周金城,王孝磊,邱检生,等.桂北中—新元古代镁铁质—超镁铁质岩的岩石地球化学.岩石学报,2003,19(1):9-18.
    [82]周新民,邹海波,杨杰东,等.安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义[J].科学通报,1989,34(16):1243-1245.
    [83]朱维光,刘秉光,邓海琳.扬子地块西缘新元古代镁铁—超镁铁质岩研究进展[J].2物岩石地球化学通报,2004a,Vol.23,No.3:255-263.
    [84]朱维光,邓海琳,刘秉光,等.四川盐边高家村镁铁-超镁铁质杂岩体的形成时代:单颗粒锆石U-Pb和角闪石40Ar/39Ar年代学制约[J].科学通报,2004b.5,49(10):985-992.
    [85]Bajwah Z U,seccombe P K,Offler R.Trance element distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit,New South wales,Australia[J].Mineralium De posita,1987,22:292-303.
    [86]Brill B A.Trance element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit,Australia[J].Can Mineral,1989,27:263-274.
    [87]Campbell I H,Lesher C M,Coad P,Franklin J M,Gorton M P and Thurston P C.Rare earth element mobility in alteration pipes below massive Cu-Zn sulfide deposits.Chem.Geol.,1984,45;184-202.
    [88]Campbell I H.The mantle's chemical structure:insights from the melting:composition,structure and ebolution[C].New York:Cambridge Univ.Press,1998,259-310.
    [89]Condie K C.Mantle plumes and their record in earth histoy[M].Oxford,UK:Cambrigde univ Press,2001,1-306.
    [90]Condie K C.High field strength element ratios in Archean basalts:a window to evolving sources of mantle plumes[J].Lithos,2005,70:491-504.
    [91]Chen J F,Foland K A,Xing F M,et al.Magmatism along the southeastern margin of the Yangtze Block:Precambrian collison of the Yangtze and Cathaysia blocks of Chian[J].Geology,1991,19:815-818.
    [92]Ernst R E and Buchan K L.Recognizing mantle plumes in the geological record[J].Rev.Earth Plant.Sci,2003,31:469-523.
    [93]Fitton J G.Coupled molybdenum and niobium depletion in continental basalts[J].Earth Planet. Sci Lett.. 1995, 136:715-721.
    [94] Fittion J G. James D. Kempton P D, et al. The role of the lithospheric mantle in the generation of cate cenozoic basic magmas in the western United States[J]. Journal of petrology, 1998, 29(special Lithosphere issue):331-349
    [95] Halls et al. The importance and potential of mafic dyke swarms in studies of geodynamic processes[J]. geoscience Canada, 1982, 9(3): 145-154.
    [96] Hutchinson R W. Massive base metal sulphide deposits as guides to tectonics evolution[A]. ln:Strangway D W, ed. The continental crust and its mineral deposits[M]. Geological Association of Canada Special Paper. 1980,20:659-684.
    [97] Humayun M, Qin L P, Norman M D. Geochemical evidence for excess iron in the Hawaiian mantle: implications for mantle dy-namics. Science, 2004, 306: 91-94.
    [98] Irvine T. N. A guide to the chemical classification of the common volcanic rocks[J]. Earth. Sci. 1971,(5).
    [99] Jenner G A, Dunning G R, Malpas J, Bay of islands and little port complexes, revisited, age, geochemical and isotopic evidence confirm suprasubduction-zone origin[J]. earth Sci. 1971(8):1635-1652.
    [100] Kieffer B. Arndt N, Lapierre H, et al. Flood and shield basalts from Ethiopia: Geol Soc Spec Pub, 1992, 68: 41-60.
    [101] Kieffer B, Arndt N, Lapierre H, et al. Flood and shield basalts from Ethiopia: magmas from the Arican superswell[J]. J. Petrol., 2004, 45(4)793-834.
    [102] Lee C Y, Tsai J H, Ho H H, et al. Qualitative analysis in rock samples by an X-ray fluorescence spectrometer, ( I ) major elements[J]. Ann Meet Geol Soc China, 1997, Abstract Vol:418-420.
    
    [103] Lee C T. Are earth's core and mantle on speaking terms? Science, 2004, 306:64-65.
    [104] Li X H, Li Z X,Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of neoproterozoic bimodal volcanic rocks in the Kangdian rift of South China: Implications for the initial rifting of Rodinia[J]. Precambrian Rearch,2002,113:135-154.
    [105] Li X H, Li Z X, Ge W, et al. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma[J]. Precambrian Rearch, 2003, 122:45-83.
    [106] Li Z X, Li X H, Kinny P D. et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China[J]. Earth planet Sci Lett, 1999, 173: 171-181.
    [107] Li Z X, Li X H, Zhou H W, et al. Grenville-aged continental collision in south china: new SHRMP U-Pb zircon results and implications for Rodinia configuration[J]. Geology, 2002,30(2): 163-166.
    [108]Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a superplume that broke up Rodinia[J]. Precamb. Res., 2003, 122:85-109.
    [109] Ling W, Gao S, Zhang B, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: Implications for amalgamation and breakup of the Rodinia supercontinent[J]. Precambrian Research, 2003, 122:111-140.
    [110] M. O. Andreae. Chemical and stable isotope composition of the high grade metamorphic rocks from the arendal area, southern Norway[J]. contributions to mineralogy and petrology, 1874,47(4):299-316.
    
    [111] McDonough W F, Sun S S. The composition of the earth. Chem Geol, 1995, 120: 223-253.
    [112] Mills R A, Elderfield H. Rere earth element geochemistry of hydrothermal deposits from the active TAG Mond, 26°Min-Atlantic Ridge[J]. Geochim. Cosmochim. Acta, 1995, 59:3511-3524.
    [113] Mitchell A H G, Garson M S. Mineral deposits and global tectonic setting[M]. London:Academic Press Inc. 1981,1-405.
    [114] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M].//Thorps R S. Andesites. New York: John Wiley and Sons, 1982:525-548.
    [115] Rollinson H. Using geochemical data: evolution, presentation, interpretation[M]. Singapore: Longmsn Singapore publishers, 1993:1-352.
    [116] Ruzicka A, Snyder G A, Taylor L A. Comparative geochemistry of basalts from the Moon, Earth, HED asteroid, and Mars: Implica-tions for the origin of the Moon. Geochim Cosmochim Acta, 2001,65: 979-997.
    [117] Sauders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interaction[A]. Storey B C, Alabaster T and Pankhurst R J. Magmatism and the causes of continental break-up[C]. Geol. Soc. Spec. Pub., London, 1992, 68:41-60.
    [118] Saunders A D, Norry M J,Tarney J. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints[J]. Journal of petrology, 1998, 29(special Lithosphere issue):425-445.
    [119] Sawkins F J. Massive sulfide deposits in relation to geotectonics[A].In: Strong D F,ed.Metallogeny and plate tectonics[M]. Geol. Assoc Canada Special Publication. 1976,14:221-240.
    [120] Sawkins F J. Metal deposits in relations to plate tectonics[M]. Berlin, Heidelberg, New York, Yokyo:Springer_verlag. 1984,1-325.
    [121] Sergei P. Annual report of IGCP project No.440 in 2003 —Rodinia assmbly and breakup[J]. Grocci. Rea.NE Asia, 2004,7(1):8-14.
    [122] Sinclair J A, A re-examination of the "Yanbian ophiolite suite": Evidence for western extension of the Mesoproterozoic Sibao orogen in South China[J]. Geol. Soc. Aust. Abst., 2001, 65: 99-100.
    [123] Thompon R N, Morrison M A, Hendry G L, et al. An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach[J]. Phil. Trans. R. Soc. Lond, 1984, A310: 549-590.
    [124] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break_up[J]. Precambrian Rearch,2003, 122:141-158.
    [125] Wedepohl K. H. The composition of the continental crust. Geochim. et Cosmochim. Acta, 59:1217-1232.
    [126] Weaver B L. The origin of ocean island end-member composition: trace element and isotopic constrants[J], Earth planet. Sci. Lett., 1991, 104(2-4): 381-397.
    [127] Wilson J T. Static and mobile earth: The current scientific revolution in the earth[J]. Proc. Am. Phil. Soc, 1968, 112:309-320.
    
    [128] Wilson M. Igenous Petrogenesis[M]. London: Unwin Hyman, 1989, 1-464.
    [129] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chem Geol, 1977, 20:325-343.
    [130] Xu G. Geochemistry of sulphide minerals at Dugald River, NW Queensland, with reference to ore genesis[J]. Mineral gy and petrology, 63:119-139.
    [131] Xu S J, ShenW Z, Wang R C, et al. U-Pb dating of zircon grains from the ore-bearing plagioclase amphibolite in the Dashuigou Te deposit[J]. Chin. Sci. Bull., 1998, 43 (17): 1486-1489.
    [132] Yakubchuck A, Seltmann R, Shatov V, et al. Tectonics and metallogeny of the western part of the Altaid orogenic collage[A]. In:Mao J W, Goldfarb R J, Seltmann R, et al. Tectonic evolution and metallogeny of the Chinese Altay and Tianshan[M].2003,7-16.
    [133] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb Zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block., South China[J]. Earth Planet Sci Lett, 2002, 196: 51-67.
    [134] Zhu W G, Deng H L, Liu B G, Li C Y, Qin Y, Luo Y N, Li Z D, Pi D H. The age of the Gaojiacun mafic-ultramafic intrusive complex in the Yanbian area, Sichuan Province: Geochronological constraints by U-Pb dating of single zircon grains and 40Ar/39Ar dating of horblende[J]. Chin. Sci. Bull., 2004,49(10): 1077-1088.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700