含钛高炉渣的熔渣特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高效综合利用攀钢含钛高炉渣,缓解攀钢高炉炉前铁沟粘渣严重问题为出发点,首先研究了碳氮化处理前后含钛高炉渣的熔化特性,同时研究了Ti(C,N)、焦宝石、特级矾土、棕刚玉和含硼化合物对含钛高炉渣熔化特性的影响;为了进一步说明攀钢含钛高炉渣的特殊性,探讨了普通高炉渣和攀钢高炉渣对高炉炉前耐火材料(炮泥、铁沟浇注料和捣打料)的侵蚀情况;最后,研究了将碳氮化处理前后的含钛高炉渣直接引入到捣打料中,研究了捣打料的常规物理性能、抗氧化性及抗渣侵蚀性能,并与添加普通高炉渣和含硼添加剂的捣打料进行了对比,得到以下主要结论:
     (1)碳氮化处理含钛高炉渣的熔化温度随着配碳量和碳氮化处理温度的升高逐渐升高,特别是流动温度的变化更明显。焦宝石、特级矾土、棕刚玉等耐火氧化物原料加入到含钛高炉渣后,随着每种原料加入量的增加,含钛高炉渣的熔化温度不断升高,即耐火原料中Al2O3含量越高,SiO2和其它杂质含量越低,渣料体系的熔化温度越高。Ti(C,N)加入量大于6%后含钛高炉渣的熔化温度才明显提高;硼酐及含硼添加剂均能明显降低含钛高炉渣的熔化温度,并而在0.5%~1%范围内出现硼反常现象。普通高炉渣中加入耐火原料后的变化规律与含钛高炉渣相同,但变化趋势更明显。
     (2)静态坩埚法研究表明,攀钢含钛高炉渣对Al2O3-SiC-C质炮泥、铁沟浇注料、铁沟捣打料等基本无明显侵蚀和渗透,而普通高炉渣易与耐火材料反应生成低熔液相,造成明显的侵蚀破坏。当含硼添加剂加入量大于0.5%时,可使铁沟捣打料内低熔液相增多,抗渣侵蚀性能下降。
     (3)与普通高炉渣和含硼添加剂对比,将碳氮化处理前后的含钛高炉渣部分或全部替代攀钢现用捣打料中的碳化硅,含钛高炉渣的加入能明显提高捣打料的抗氧化性,不影响抗渣侵蚀性,在改善其它常规物理性能的基础上有望缓解捣打料的粘渣问题。
This thesis focused on the efficient utilization of the titanium-bearing blast furnace slag and to alleviate the serious problem of slag adhesion on ramming refractory in Panzhihua Iron and Steel Company. First of all, the melting characteristics of titanium-bearing blast furnace slag before and after the carbonitridation process were studied. In the same time, the influence of Ti(C,N), clay, bauxite, corundum and boron compounds on the melting characteristics of titanium-bearing blast furnace slag were also studied. To further illustrate the specific feature of titanium-bearing blast furnace slag, blast furnace mud gun , through castable and the ramming refractory corroded by the ordinary blast furnace slag and the titanium-bearing slag in Panzhihua Iron and Steel Company were investigated. Finally, general physical properties, oxidation and slag erosion resistance of ramming refractory were studied. The comparison ramming refractories with the ordinary blast furnace slag and boron-containing additives were performed, when the titanium-bearing blast furnace slag before and after the carbonitridation process were directly introduced into the ramming refractory. The main conclusions are listed as follows:
     Firstly, the melting temperature of the titanium-bearing slag under the carbonitridation process gradually increased with the carbon ratio and carbonitridation temperature, especially for the flowing point. These different types of refractories including clay, bauxite and corundum can increase the melting temperature of the titanium-bearing slag respectively. With the increase of each raw material, the melting temperature rised continuously, that is to say, with the increase of Al2O3, and the decrease of SiO2 and other impurities, the melting temperature of the titanium-bearing slag increased. When the addition of Ti (C, N) is more than 6%, it can improve the melting temperature of the titanium-bearing slag. Boron anhydride and boron-containing additive could reduce the melting temperature of the titanium-bearing slag significantly, and however, it occurred abnormally when the content of boron compounds are in the range of 0.5% to 1%. The ordinary blast furnace slag has the same melting characteristic as the titanium-bearing slag when refractory raw materials were added in ramming refractories.
     Secondly, the titanium-bearing slag has no obvious erosion and infiltration on the blast furnace mud gun, through castable and ramming refractory of Al2O3-SiC-C. But the ordinary blast furnace slag can react easily with refractories to generate low-melting liquid phase, and lead to the erosion damage. When the boron-containing additive is more than 0.5%, it can decrease the slag corrosion.
     Thirdly, when SiC of ramming refractory was replaced by part or all of titanium-bearing blast furnace slag before and after the carbonitridation process, it can improve the oxidation resistance of ramming refractories significantly, but give no affection to the slag resistance. It can be deduced that the problem of slag adhesion on ramming refractories can be solved on the basis of improving other general physical properties.
引文
[1]敖进清.高钛型高炉渣微粉特性及其在高性能混凝土中的应用[D].武汉:武汉科技大学, 2002
    [2]敖进清,郝建璋等.大掺量高钛型高炉渣实心砖的研制[J].钢铁钒钛2007, 28(2):57-62
    [3]王怀斌,苍大强,郝建璋.含TiO2工业渣在耐火补炉料中的应用[J].钢铁钒钛,2008,29(3): 41-44
    [4]杨合.含钛高炉渣在资源化的一个启发性观点[D].沈阳:东北大学, 2005
    [5]徐楚韶,李祖树.高炉钛矿渣的综合利用(1) [J].钒钛, 1993, (5): 47-50
    [6]徐楚韶,李祖树.高炉钛矿渣的综合利用(2) [J].钒钛, 1993, (5): 51-56
    [7] Sui Z T, Zhang P X. Selective precipitating behavior of the boron components from the boron slags[J]. Acta Metallurgica Sinica. 1997, 33(9): 943-951
    [8]周志明,张丙怀等.高钛型高炉渣的渣钛分离试验[J].钢铁钒钛. 1999, 20(4): 35
    [9]孙康,吴剑辉等.相分离法处理攀钢高炉渣新工艺基础研究[J].钢铁钒钛. 2000, 21(3): 54
    [10]马俊伟.攀钢含钛高炉渣中钛组分选择性分离的研究[D].沈阳:东北大学, 2000
    [11]李慈颖,高运明,李亚伟等.碳热还原攀钢高钛高炉渣制取Ti(C,N)的研究[J].耐火材料, 2007, 41(2): 113-117
    [12]李慈颖,李亚伟,高运明,杨大兵,李远兵,聂建华.高钛渣提取碳氮化钛的研究[J].钢铁钒钛,2006, 27(3): 5-10
    [13]高运明,李慈颖,李亚伟等. TiO2碳热还原与高炉钛渣提取碳氮化钛分析[J].武汉科技大学学报(自然科学版), 2007, 30(1): 5-9
    [14]易小祥,李亚伟,杨大兵.攀钢含钛高炉渣碳氮化后磁选提钛研究[J].矿冶,2008, 17(3): 46-49
    [15]易小祥,李亚伟,杨大兵.用磁选的方法从含钦高炉渣中回收碳氮化钛[J].钢铁钒钛, 2008, 29(4): 22-25
    [16]白晨光.含钛高炉渣的若干物理化学问题研究[D].重庆:重庆大学, 2003
    [17]张军伟,李亚伟,桑绍柏,赵顺,李远兵.碳氮化处理含钛高炉渣对铁沟捣打料的抗氧化和抗渣性研究,武汉科技大学学报(自然科学版), 2010-079
    [18]覃显鹏,李远兵,洪学勤,吴勇来,李亚伟.碳氮化钛的加入量对低碳镁碳砖性能的影响[J].武汉科技大学学报(自然科学版), 2008, 31(2): 189-197
    [19]覃显鹏,李远兵,李亚伟,洪学勤等.碳氮化钛对低碳镁碳砖性能的影响[J].耐火材料, 2007, 41(3): 208-212
    [20]李键,李庭寿,顾华志,汪厚植等.攀钢高炉铁沟材料粘渣机理研究[J].耐火材料, 2003, 37(4):211-214
    [21]李健.攀钢高炉铁沟粘渣侵蚀机理及材成型性能能改进研究[D].武汉:武汉科技大学,2002
    [22] Huang Z Q, Wang M H, Du X H, Sui Z T. Recovery of titanium from the rich titanium slag by H2SO4 method[J]. Journal of Materials Science & Technology. 2003, 19(2): 191-192
    [23] Datta K, Sen P K, Gupta S S, Chatterjee A. Effect of titania on the characteristics of blast furnace slags[J]. Steel Research. 1993, 5(64): 232-238
    [24] Morizane Y, Ozturk B, Fruehan R J. Thermodynamics of TiOx in blast furnace type slag[J]. Metallurgical and Materials Transactions B. 1999, 30B: 29-43
    [25] Amitabhshankar. Experimental investigation of the viscosities in CaO-SiO2-MgO- Al2O3 and CaO-SiO2 -MgO- Al2O3–TiO2 Slags[J]. Metallurgical and Materials Transactions. 2007, 38B:911-915
    [26]李兴华,王雪松,刘知路,张江平.高钛高炉渣综合利用新方向[J].钢铁钒钛, 2009, 30(3):10-16
    [27]厉英,刘承军,姜茂发等.含钛渣冷却过程中的物理化学性质[J].钢铁研究学报, 2004, 16(3): 68-70
    [28]赵志军,马恩泉,连玉锦. Al2O3在钛渣中的行为[J].钢铁钒钛,2002, 23(3): 36-44
    [29]许原.含钛熔体与耐火材料作用规律的研究[D].重庆:重庆大学, 1999
    [30]邹贻薪.攀钢高炉钛渣中TiO2的赋存性状与碱度的关系浅识[J].矿产综合利用, 1992, (5): 44-47
    [31]嵇琳,任祥泰,赵鹰立,李在妙.用攀钢高炉残渣生产水泥[J].中国建材科技, 1997, 6(6): 37-41
    [32]方荣利,金成昌,许安益.利用钛矿渣生产道路水泥的试验[J].水泥, 1998, (7): 1-3
    [33]申延明.利用攀钢含钛高炉渣制备建筑材料[D].沈阳:东北大学, 2001
    [34]潘宝凤,戴亚堂.钛矿渣实心砖的制备[J].四川建筑, 2003, 23(5): 87-88
    [35]周旭,李江龙,罗崇理.高钛高炉渣碎石用做砼原料的研究[J].钢铁钒钛, 2001, 22(4): 43-44
    [36]刘卯,薛向欣,杨合,段培宁等.含钛高炉渣光催化降解邻硝基酚的实验研究[J]..材料导报,2006, 20(1) : 140-142
    [37]梁经冬.高炉渣碳氮化—选矿初步研究及设想[J].钢铁钒钛, 1998, (2): 72-75
    [38]冯成建,张建树.采用攀钢高炉渣制取碳化钛的试验研究[J].矿产综合利用, 1997, (6): 34-41
    [39]汪镜亮.原苏联某些钛磁铁矿的利用[J].钒钛, 1992, (1): 28-37
    [40]谭若斌.含钛高炉渣的生产和应用[J].钒钛, 1994: 1-11
    [41]汪子和.国外钒钛工业和钒钛磁铁矿的综合利用[J].钒钛, 1993, (4): 1-20
    [42] Hunter W L, Mauser J E, Stickney W A. Titanium carbide from domestic titanium ores[J]. Werksttatt and abaetrieb. 1973: 257-270
    [43] Lou T P. Selective precipitation and growth of Ti-rich phase in titanium-bearing blast furnace slags[J]. Shenyang: Northeastern University, 1999
    [44] Xia Y H, Li B, Sui Z T. Computer simulation of phase separation in glass[J]. Journal of Northeastern University (Natural Science). 1999, 20(5): 511-514
    [45] Ma J W, Sui Z T, Chen B C. Separating titanium from treated slag by gravity separating or flotation[J]. Transactions of Nonferrous Metals Society of China. 2000, 10(4): 520-523
    [46] Ryosuke O, Suzuki. Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2[J]. Journal of Physics and Chemistry of Solids. 2005, (66): 461-465
    [47]王道奎,用稀盐酸处理高炉渣的方法[J].钒钛, 1995, 3: 32-36
    [48]陈启福,攀钢含钛高炉渣提取TiO2及Sc2O3扩大实验[J].钢铁钒钛, 1991, 2(3): 30-34
    [49]彭兵,易文质.攀枝花钢铁公司高炉渣综合利用的一条途径[J].矿产综合利用, 1997, 6: 26-30
    [50] Xia Y H, Lou T P, Sui Z T. Computer simulation of phase separation in CaO-MgO-Fe2O3-Al2O3-SiO2 glass[J]. Acta Metallurgica Sinica (English letters). 1999, 12(5): 1119-1124
    [51]王道奎,雷茂林等.用稀盐酸处理高炉渣的方法[P].中国专利: 94108086.2, 1994
    [52]杨大为,杨小萍等.用盐酸分解高炉渣制取化工产品的方法[P].中国专利: 89105865.6, 1989
    [53]黄守华,潘竞业,张荣禄.攀钢高炉渣熔融还原碳化TiO2半工业试验研究[J].钢铁钒钛. 1994, 15(2): 17
    [54]张荣禄.含钛高炉渣制取四氯化钛的方法[P].中国专利: 87107488.5, 1987
    [55]金胜利,李亚伟,李远兵,赵雷,敖进清.攀钢高炉钛渣对出铁沟用耐火骨料侵蚀的相图热力学模拟分析[J].耐火材料, 2009, 43(2): 145-148
    [56]王振峰,马智明,杨天均.含TiO2高炉渣对Sialon结合SiC材料的侵蚀行为[J]. 2000, 34(5): 262-264
    [57]杜鹤桂,徐国涛,刁日升.含钛高炉渣铁侵蚀炉衬的显微结构分析[J].钢铁钒钛, 2002, 23(2): 1-6
    [58]徐国涛,马道贵,杜鹤桂.钒钛渣对刚玉莫来石耐火材料的侵蚀研究[J].武钢技术, 40(4): 9-13
    [59]杜鹤桂,徐国涛,孙希文,刁日升.钒钛高炉渣对炉衬材料的侵蚀研究[J].钢铁, 2003, 38(1): 55-58
    [60]刁日升,范云东.含TiO2高炉渣对不同耐火砖侵蚀的特点[J].钢铁钒钛,2003, 24(2): 1-6
    [61]徐国涛,刁日升,杜鹤桂,孙希文.高碱金属钒钛渣对高炉炉衬材料的侵蚀研究[J].钢铁钒钛,2004, 25(2): 55-58
    [62]董学文.含钛高炉渣抗菌性能的实验研究[D] .沈阳:东北大学, 2005
    [63]孔祥文,樊晓东,隋智通,涂赣峰.改性PS胶制备高掺量含钛矿渣墙体砖的研究[J].硅酸盐通报, 2006, 25(5):167-170
    [64]董海刚.从含钛高炉渣中回收钛的基础研究[D].长沙:中南大学, 2006
    [65]曹洪杨.改性含钛高炉渣盐酸浸出制备富钛料的研究[D].沈阳:东北大学, 2007
    [66]李光森,金明芳,姜鑫,储满生,沈峰满.含氟烧结矿粘结相熔化特性的研究[J].物理测试, 2008, 26(2): 5-8
    [67]李光森,金明芳,姜鑫,沈峰满.烧结矿粘结相的熔化特性[J].东北大学学报(自然科学版), 2008, 29(5): 697-700
    [68]付贵勤,鞠洪星,薛逊等.酸性钒钛渣粘度及熔化性温度[J].过程工程学报, 2008, 8(1): 277-279
    [69] Huet S, Belmonte T, Thiebaut J M, Bockel S, Michel H. Reduction of TiO2 assisted by a microwave plasma at atmospheric pressure[J]. Thin Solid Films. 2005, (11): 63-67
    [70]贺成红,文书明等.钙钛矿资源分布及选矿概况[J].国外金属矿选矿, 2002, (5): 16
    [71]李玉海,娄太平等.含钛高炉渣中钛组分选择性富集及钙钛矿结晶行为[J]. 2000: 719-722
    [72]李永全.高炉钛矿护炉的机理研究[J].宝钢技术, 2002, (1): 12-16
    [73] Datta.K, Sen P K, Gupta S S, Chatterjee A. Effect of titaniaon the characteristics of blast furnace slags[J]. Steel Research. 1993, 5(64): 232
    [74]莫畏,邓国珠,罗方承.钛冶金[M].北京:冶金工业出版社, 1998, 84
    [75]杜鹤桂.高炉冶炼钒钛磁铁矿原理[M].科学出版社, 1996, 40
    [76]梁英教,车荫昌.无机物热力学数据手册[M].东北大学出版社, 1993, 449
    [77] Gruner W. A new experimental approach for accelerated investigations of carbothermal reactions[J]. International Journal of Refractory Metals & Hard Materials. 1999, (17): 227-234
    [78] Maitre A, Tetard D, Lefort P. Role of some technological parameters during carburizing titanium dioxide[J]. Journal of the European Ceramic Society. 2000, 20: 15-22
    [79] Koc R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture[J]. Journal of Materials Science. 1998, 33: 1049-1055
    [80] Yu C K. Carbothermal reduction and nitridation of titanium dioxide intermediates and products[J]. Journal of Chemical Engineering of Japan. 1998, 31(5): 804-807
    [81] Berger L M, Gruner W. Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide[J]. International Journal of Refractory Metals & Hard Materials. 2002, 20: 235-251
    [82]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社, 2002, 211-215
    [83]蒙世平.高炉铁沟捣打料的研制[J].柳钢科技, 2002: 21-23
    [84]王战民,王守业,周宁生等.高炉出铁沟用不定形耐火材料的发展与应用[J].河南冶金, 1996, (4): 3-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700