含钛高炉渣制取碳氮化钛的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面总结回顾国内外含钛高炉渣,特别是攀钢含钛高炉渣的综合利用现状的基础上,提出综合利用攀钢含钛高炉渣的一种方案,即将含钛高炉渣进行碳氮化处理以提取Ti(C,N)作耐火材料,而残渣用于生产水泥或直接铺路等,或将含钛高炉渣直接应用在耐火材料中,以达到全量和高附加值利用的目的。具体研究内容包括:
     一热力学分析表明,渣中钛的氧化物碳氮化比碳化更容易,在1200℃左右就可以与C、N2反应生成TiN,而在1300℃左右才可碳化生成TiC。本论文碳(氮)化实验研究温度范围为1300~1500℃。
     二在热力学分析的基础上,首先以TiO_2-CaO-SiO_2-Al_2O_3-MgO五元合成渣为主要原料,分别在氩气或氮气气氛下进行了碳化或碳氮化还原实验,并采用X-射线衍射仪和扫描电镜研究了产物的相组成和显微结构,结果表明在氩气气氛下,产物主要为TiC;在氮气气氛下,产物主要是以TiN为主的Ti(C,N);氩气气氛下TiC的粒度比同一实验条件氮气气氛下Ti(C,N)的粒度要小1~4μm。
     三以攀钢含钛高炉渣为原料,在氮气气氛下进行碳氮化实验,考察碳氮化处理温度、保温时间及配碳量对Ti(C,N)的形成及其晶粒大小的影响。结果是较理想的碳氮化工艺条件为:碳氮化处理温度1450℃、保温时间2h、配碳比为1。此时,碳氮化比较完全,Ti(C,N)的平均粒径可达2μm以上。在此基础上,讨论了添加剂(如K_2CO_3、CaF_2和Fe_2O_3)的作用,结果表明,渣中加入适量的添加剂对Ti(C,N)的生成量影响不大,但可有效地促进其晶粒的生长及团聚,其中最大Ti(C,N)团聚体尺寸可达23μm左右,加入Fe_2O_3的试样中Ti(C,N)晶粒及团聚体最大,不加任何添加剂的试样中Ti(C,N)晶粒最小,且没有聚集长大的趋势。四初步研究了攀钢含钛高炉渣或经(1300℃,3h)碳氮化处理后的攀钢含钛高炉渣对铁沟捣打料性能的影响,并探讨了其在1450℃下保温3h后的抗渣性能。结果表明攀钢含钛高炉渣或经处理后的攀钢含钛高炉渣均能有效地改善铁沟捣打料的各项常规物理性能及抗渣性。
The situation for utilizing of titanium-bearing blast furnace slag comprehensively in Panzhihua Iron and Steel Company is systematically reviewed, then the carbonitridation of titanium-bearing slag is brought up to produce Ti(C, N) for refractories. Moreover, the residual slag can be used for cement, pavement, etc. after Ti(C, N) is separated from carbonitrized slags. So it may be an innovative approach for the comprehensive utilization of titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company. The research work is summarized as follows: First, the thermodynamic analysis shows that reaction between titanates in slag, C and N2 occurs to produce TiN at 1200℃and TiC at 1300℃. The temperature range of 1300~1500℃is selected to treat the slag.
     Second, based on thermodynamic analysis, carbothermal reduction process was carried out in argon and nitrogen atmosphere for the pre-molten slag of TiO2-CaO-SiO2-Al2O3-MgO system according to titanium-bearing blast furnace slags in Panzhihua Iron and Steel Company. The phase evolution and microstructure of the products were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the final products mainly consist of TiC in argon atmosphere and Ti(C, N) (mainly TiN) in nitrogen atmosphere. The grain size of TiC in argon atmosphere are less about 1~4μm than that of Ti(C, N) in nitrogen atmosphere in the same of experiment condition.
     Third, carbothermal reduction experiment was carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in nitrogen atmosphere at high temperature. The effects of nitriding temperature, isothermal treatment time and carbon content on formation and grain size of Ti(C, N) were studied by XRD, SEM and electron probe micro-analysis (EPMA). The results showed the better technical conditions are that nitriding temperature is 1450℃, isothermal treatment time is 2 hours, and carbon ratio is 1. The average grain size of Ti(C, N) is about 2μm in this experiment condition. Based on the above, the effect of additives such as K2CO3, CaF2 and Fe2O3 on the formation and grain growth of Ti(C, N) was studied. The results show that all the additives could modify the liquid slag properties and promote effectively the grain growth of Ti(C, N). Among them, Fe2O3 is the most effective additive and the agglomerate of Ti(C, N) grain grew up as its amount increased. Its maximum size reached up to 23μm. Meanwhile, the minimum grain size was found in the samples where no additive was added.
     Fourth, the effects of titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company on the physical properties of ramming refractory and its slag resistance at 1450℃for 3 hours were investigated in blast furnace trough. The results showed titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company could improve the physical properties of ramming refractories in blast furnace trough and slag resistance effectively.
引文
[1] 周旭, 李江龙, 罗崇理. 高钛高炉渣碎石用做砼骨料的研究. 钢铁钒钛, 2001, 22(4): 43-44
    [2] 兰尧中, 许述林. 攀钢含钛高炉渣综合利用科研现状及今后工作的建议. 钢铁钒钛, 1993, (1/2): 45-48
    [3] 梁经冬. 高炉渣碳氮化—选矿初步研究及设想. 钢铁钒钛, 1998, (2): 72-75
    [4] 冯成建, 张建树. 采用攀钢高炉渣制取碳化钛的试验研究. 矿产综合利用, 1997, (6): 34-41
    [5] 李慧, 仇永全, 杨则器. 等离子炉碳(氮)化处理高钛高炉渣. 北京科技大学报, 1996, 18(3): 231-235
    [6] 汪镜亮. 原苏联某些钛磁铁矿的利用. 钒钛, 1992, (1): 28-37
    [7] 谭若斌. 含钛高炉渣的生产和应用. 钒钛, 1994: 1-11
    [8] 汪子和. 国外钒钛工业和钒钛磁铁矿的综合利用. 钒钛, 1993, (4): 1-20
    [9] Hunter W L, Mauser J E, Stickney W A. Titanium carbide from domestic titanium ores. Werksttatt and abaetrieb. 1973: 257-270
    [10] Sui Z T, Zhang P X. Selective precipitating behavior of the boron components from the boron slags. Acta Metallurgica Sinica. 1997, 33(9): 943-951
    [11] Lou T P. Selective precipitation and growth of Ti-rich phase in titanium-bearing blast furnace slags. Shenyang: Northeastern University, 1999
    [12] Xia Y H, Li B, Sui Z T. Computer simulation of phase separation in glass. Journal of Northeastern University (Natural Science). 1999, 20(5): 511-514
    [13] 徐楚韶, 李祖树. 高炉钛矿渣的综合利用(1). 钒钛, 1993, (5): 47-50
    [14] 徐楚韶, 李祖树. 高炉钛矿渣的综合利用(2). 钒钛, 1993, (5): 51-56
    [15] 嵇琳, 任祥泰, 赵鹰立, 李在妙. 用攀钢高炉残渣生产水泥. 中国建材科技, 1997, 6(6): 37-41
    [16] 方荣利, 金成昌, 许安益. 利用钛矿渣生产道路水泥的试验. 水泥, 1998, (7): 1-3
    [17] 潘宝凤, 戴亚堂. 钛矿渣实心砖的制备. 四川建筑, 2003, 23(5): 87-88
    [18] Ma J W, Sui Z T, Chen B C. Separating titanium from treated slag by gravity separating or flotation. Transactions of Nonferrous Metals Society of China. 2000, 10(4): 520-523
    [19] Ryosuke O, Suzuki. Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. Journal of Physics and Chemistry of Solids. 2005, (66): 461-465
    [20] 王道奎, 用稀盐酸处理高炉渣的方法. 钒钛, 1995, 3: 32-36
    [21] 陈启福, 攀钢含钛高炉渣提取TiO2及Sc2O3扩大实验. 钢铁钒钛, 1991, 2(3): 30-34
    [22] 彭兵, 易文质. 攀枝花钢铁公司高炉渣综合利用的一条途径. 矿产综合利用, 1997, 6: 26-30
    [23] Lou T P, Li Y H, Sui Z T. Study of precipitation of perovskite phase from the oxide slag. Acta Metallurgica Sinica. 2000, 36(2): 141-144
    [24] Li C X, Sui Z T, Li Y H, Computer simulation of perovskite phase pattern on the section of solidified slag. Iron & Stee1. 2001, 36(9): 4-6
    [25] Xia Y H, Lou T P, Sui Z T. Computer simulation of phase separation in CaO-MgO-Fe2O3-Al2O3-SiO2 glass. Acta Metallurgica Sinica (English letters). 1999, 12(5): 1119-1124
    [26] 王道奎, 雷茂林等. 用稀盐酸处理高炉渣的方法. 中国专利: 94108086.2, 1994
    [27] 杨大为, 杨小萍等. 用盐酸分解高炉渣制取化工产品的方法. 中国专利: 89105865.6, 1989
    [28] 周志明, 张丙怀等. 高钛型高炉渣的渣钛分离试验. 钢铁钒钛. 1999, 20(4): 35
    [29] 孙康, 吴剑辉等. 相分离法处理攀钢高炉渣新工艺基础研究. 钢铁钒钛. 2000, 21(3): 54
    [30] 马俊伟, 隋智通, 陈炳辰. 改性高炉渣中钛的赋存状态及分离可能性的研究. 矿产综 合利用, 2000, (1/2): 22-26
    [31] 黄守华, 潘竞业, 张荣禄. 攀钢高炉渣熔融还原碳化TiO2半工业试验研究. 钢铁钒钛. 1994, 15(2): 17
    [32] 张荣禄. 含钛高炉渣制取四氯化钛的方法. 中国专利: 87107488.5, 1987
    [33] Huet S, Belmonte T, Thiebaut J M, Bockel S, Michel H. Reduction of TiO2 assisted by a microwave plasma at atmospheric pressure. Thin Solid Films. 2005, (11): 63-67
    [34] 贺成红. 攀枝花高炉渣中钙钛矿选矿试验研究[硕士学位论文]. 昆明: 昆明理工大学, 2002
    [35] 梁崇顺. 攀枝花高炉渣选矿工艺矿物学性质研究[硕士学位论文]. 昆明: 昆明理工大学, 2001
    [36] 贺成红, 文书明等. 钙钛矿资源分布及选矿概况. 国外金属矿选矿, 2002, (5): 16
    [37] 白晨光, 徐幸梓. 攀钢高炉渣分布及钙钛矿磁选分离初步研究. 第三届全国青年冶金学术会议论文集. 1994, 5
    [38] 李玉海, 娄太平等. 含钛高炉渣中钛组分选择性富集及钙钛矿结晶行为. 2000: 719-722
    [39] Huang Z Q, Wang M H, Du X H, Sui Z T. Recovery of titanium from the rich titanium slag by H2SO4 method. Journal of Materials Science & Technology. 2003, 19(2): 191-192
    [40] 薛向欣, 董志远, 杨合, 段培宁. 攀钢高炉渣碳氮化处理中矿化剂对碳氮化钛晶粒的影响. 东北大学学报, 2004, 25(12): 1165
    [41] Datta K, Sen P K, Gupta S S, Chatterjee A. Effect of titania on the characteristics of blast furnace slags. Steel Research. 1993, 5(64): 232-238
    [42] Morizane Y, Ozturk B, Fruehan R J. Thermodynamics of TiOx in blast furnace type slag. Metallurgical and Materials Transactions B. 1999, 30B: 29-43
    [43] 王心让. 钒钛磁铁矿护炉作用的研究. 四川冶金, 1993, (4): 21-23
    [44] 李永全. 高炉钛矿护炉的机理研究. 宝钢技术, 2002, (1): 12-16
    [45] 赵莉琼, 张卫东. 含钛矿石的护炉作用及局限性. 冶金丛刊, 2002, 140(5): 4-6
    [46] Datta.K, Sen P K, Gupta S S, Chatterjee A. Effect of titaniaon the characteristics of blast furnace slags. Steel Research. 1993, 5(64): 232
    [47] 莫畏, 邓国珠, 罗方承. 钛冶金. 北京: 冶金工业出版社, 1998, 84
    [48] 杜鹤桂. 高炉冶炼钒钛磁铁矿原理. 科学出版社, 1996, 40
    [49] 梁英教, 车荫昌. 无机物热力学数据手册. 东北大学出版社, 1993, 449
    [50] [日]长崎 诚三, 平林真. 二元合金状态图集. 刘安生译. 冶金工业出版社, 2004: 320
    [51] Berger L M, Gruner W. On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. International Journal of Refractory Metals & Hard Materials. 1999, (17): 235-243
    [52] Afir A, Achour M, Saoula N. X-ray diffraction study of Ti-O-C system at high temperature and in a continuous vacuum. Journal of Alloys and Compounds. 1999, 288: 124-140
    [53] Gruner W. A new experimental approach for accelerated investigations of carbothermal reactions. International Journal of Refractory Metals & Hard Materials. 1999, (17): 227-234
    [54] Maitre A, Tetard D, Lefort P. Role of some technological parameters during carburizing titanium dioxide. Journal of the European Ceramic Society. 2000, 20: 15-22
    [55] Koc R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture. Journal of Materials Science. 1998, 33: 1049-1055
    [56] Yu C K. Carbothermal reduction and nitridation of titanium dioxide intermediates and products. Journal of Chemical Engineering of Japan. 1998, 31(5): 804-807
    [57] Berger L M, Gruner W, Langholf E, Stolle S. On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. International Journal of Refractory Metals & Hard Materials. 1999, 17: 243
    [58] Shaviv R. Synthesis of TiN and TiNxCy: optimization of reaction parameters. Materials Science and Engineering. 1996, A209: 345-352
    [59] Berger L M, Gruner W. Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide. International Journal of Refractory Metals & Hard Materials. 2002, 20: 235-251
    [60] Berger L M, Stolle S, Gruner W, Wetzig K. Investigation of the carbonthermal reduction process of chromium oxide by micro- and lab-scale methods. International Journal of Refractory Metals & Hard Materials. 2001, 19: 109-121
    [61] 向军辉, 肖汉宁. 工艺参数对 TiO2碳热还原合成 Ti(C,N)粉末的影响. 陶瓷学报, 1997, 63-65
    [62] 邹贻薪. 攀钢高炉钛渣中TiO2的赋存性状与碱度的关系浅识. 矿产综合利用, 1992, (5): 44-47
    [63] 贺道中. 高炉高钛渣冶金物化性能的研究.湖南冶金, 1994, (5): 13-18
    [64] 黄希祜. 钢铁冶金原理. 北京: 冶金工业出版社, 2002, 211-215
    [65] 蒙世平. 高炉铁沟捣打料的研制. 柳钢科技, 2002: 21-23
    [66] 王战民, 王守业, 周宁生等.高炉出铁沟用不定形耐火材料的发展与应用. 河南冶金, 1996, (4): 3-11
    [67] 徐智谋, 易新建等. 纳米晶 Ti(C,N)固溶体粉末的制备及组织结构研究. 功能材料, 2003, 34(5): 559-561
    [68] 朱子宗, 蒋汉祥. 高钛型高炉渣渣钛分离研究. 钢铁, 2002, 37(6): 5-8
    [69] 李键, 李庭寿, 顾华志, 汪厚值等. 攀钢高炉铁沟材料粘渣机理研究. 耐火材料, 2003, 37(4):211-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700