铌酸钾钠基无铅压电陶瓷的相结构和性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人们对环境问题的关注度越来越高,压电陶瓷的无铅化是未来发展的目标。铌酸钾钠(KNN)基无铅压电陶瓷被认为是最有可能替代传统的锆钛酸铅基陶瓷的材料之一,引起了人们广泛的研究。相结构对KNN基压电陶瓷的电学性能影响很大,本文从调控该陶瓷的相结构出发,致力提高其压电性能,获得了具有优异电学性能的KNN基无铅压电陶瓷。
     在一般条件下,发现了除组分和温度之外影响KNN基陶瓷的第3个因素,即应力状态对该陶瓷相结构的影响。在特定组分的该类陶瓷中,残余压应力会使得正交相更容易存在。当对块体样品进行退火处理之后,其相结构从处理前的两相共存转变为以四方相为主,这样使得其压电性能的温度稳定性得到提高。
     对于室温时两相共存的KNN基无铅压电陶瓷,我们分析了该陶瓷中复杂的相界,以及相结构和性能之间的关系。发现以Na/K=52/48为界,存在着两种不同的四方相和正交相。对应于这种准同型相界的四方相KNN陶瓷表现出高的压电性能;但是相比于四方相与正交相之间的多晶型相转变效应,这两种四方相之间的相转变对压电和铁电性能的影响较小。
     通过采用BiFeO_3和BiAlO_3来调控KNN基陶瓷的相结构,获得了具有良好温度稳定性的KNN基无铅压电陶瓷。BiFeO_3的加入可以使得该陶瓷发生相转变,而且有利于提高其烧结致密度和力学性能。在室温附近,我们获得了压电性能优异的KNN基陶瓷,d_(33)~*~340pm/V, k_p~47.0%和Q_m~75。通过进一步精确控制陶瓷的相结构,可以获得压电性能的温度稳定性很好的KNN基陶瓷。当温度从室温上升到150oC时,该陶瓷压电常数d_(33)~*仅仅从303pm/V下降到264pm/V。适量BiAlO_3的加入既提高KNN基陶瓷的烧结致密度,又增强电学性能及其温度稳定性,d_(33)~*~322pm/V,Pr~15.9μC/cm2。
     使用AgSbO_3来精确调控组分优化后的KNN基陶瓷的相结构,获得了逆压电常数d_(33)~*高达598pm/V的KNN基陶瓷。为了将其应用到低温共烧的多层陶瓷驱动器中,我们分别添加LiF和CuO来实现该陶瓷的低温烧结。对于添加LiF的KNN基陶瓷,我们可以在低至900oC的烧结温度下获得d_(33)~*高达375pm/V的高密度块体。通过加入0.25wt%CuO,可以低至970oC的烧结温度下,获得d_(33)~*~383pm/V,Q_m~188和相对介电常数为860的KNN基无铅压电陶瓷。
Lead-based piezoelectric ceramics such as Pb(Zr, Ti)O_3(PZT) have been widelyused for decades. Because of the toxicity of lead, lead-free piezoceramics have receivedincreasing attention from the view point of environment in recent years. Potassiumsodium niobate (KNN)-based ceramics are considered as one of the promising lead-freecandidates for its high piezoelectric properties. The electrical properties of KNN-basedpiezoceramics are strongly influenced by the phase structure. As one approach toimprove the piezoelectric property of KNN-based piezoceramics, modifying anddesigning its phase structure to gain high performance KNN-based piezoceramics.
     It is widely known that the composition and temperature greatly influence the phasestructure of KNN-based ceramics. Besides these two factors, we found that the internalstress could also influence its phase structure. For KNN-based ceramics with specificcomposition, the internal stress that existed in the ceramics favored the formation oforthorhombic phase. However, the phase structure would change from the coexistenceof orthorhombic and tetragonal to dominant tetragonal when the stress was released byannealing, which enhanced the thermal stability of piezoelectricity.
     We investigated the phase structure and electrical properties of KNN-basedpiezoceramics which show the coexistence of orthorhombic and tetragonal phases atroom temperature. When the Na/K ratio changed across52/48, it seemed that there wasa phase transition both for orthorhombic and tetragonal phases. The existence ofmorphotropic phase boundary in tetragonal KNN-based ceramics was verified, whichcould lead to the peak of electrical properties. However, when orthorhombic andtetragonal phases co-existed, the change of Na/K ratio made a little difference on thepiezoelectric and ferroelctric properties of the ceramics because of the predominantpolymorphism phase transition effect.
     BiFeO_3and BiAlO_3were used to modify the phase structure of KNN-basedpiezoceramics and KNN-based piezoceramics with good temperature-stablepiezoelectric property were obtained. The addition of BiFeO_3not only induced a seriesof phase transformations from orthorhombic to tetragonal and further to pseudocubic inKNN-based ceramics, but also enhanced its sintering densification behavior and mechanical strength. Enhanced room-temperature electrical properties of d_(33)~*~340pm/V,k_p~47.0%and Q_m~75could be achieved in BiFeO_3-modified KNN-based piezoceramics.Furthermore, better piezoelectric properties with improved temperature stability couldalso be obtained in this ceramics, whose d_(33)~*changed a little from~303pm/V at roomtemperature to~264pm/V at150C. The addition of BiAlO_3into KNN-basedpiezoceramics showed a similar effect to that of the addition of BiFeO_3. Improvedelectrical properties of d_(33)~*~322pm/V, Pr~15.9μC/cm2could be obtained inBiAlO_3-modified KNN-based piezoceramics.
     AgSbO_3was doped into KNN-based lead-free piezoceramics with an optimizedcomposition to precisely control its phase structure and enhance its piezoelectricproperty. A large converse piezoelectric coefficient d_(33)~*up to598pm/V was obtained inthis kind of KNN-based piezoceramics. For the applications in lead-free multilayerpiezo-actuators, low-temperature sintering of KNN-based piezoceramics was developed.For LiF-doped KNN-based piezoceramics, dense sintered body with d_(33)~*~375pm/Vcould be obtained at a low sintering temperature of900oC. The addition of0.25wt%CuO could also lead to the low temperature sintering of the ceramics. Electricalproperties of d_(33)~*~383pm/V, Q_m~188and εr~860were achieved in the CuO-dopedKNN-based piezoceramics sintered at970oC.
引文
[1] Jaffe B, Jaffe H, Cook W R. Piezoelectric ceramics. Academic Press, London,1971.
    [2] Scott J. Applications of Modern Ferroelectrics. Science,2007,315:954~959.
    [3] Cross E. Lead-free at last. Nature,2004,432(4):24~25.
    [4] Saito Y, Taokao H, Tani T, et al. Lead-free piezoceramics. Nature,2004,432(4):84~87.
    [5] Rodel J, Jo W, Seifert K T P, et al. Perspective on the Development of Lead-freePiezoceramics. Journal of the American Ceramic Society,2009,92(6):1153~1177.
    [6]张福学.现代压电学[中].北京:科学出版社,2002.
    [7]钟维烈.铁电体物理学.北京:科学出版社,1996.
    [8] Haertling G H. Ferroelectric Ceramics: History and Technology. Journal of the AmericanCeramic Society,1999,82(4):797~818.
    [9] Li J Y, Rogan R C, Ustundag E, et al. Domain switching in polycrystalline ferroelectricceramics. Nature Materials,2005,4:776~781.
    [10]龚文.压电薄膜材料制备与性能研究[博士学位论文].北京:清华大学材料科学与工程系,2005.
    [11] http://www. Sestechno. Com/pro1/2a3htm.
    [12] http://www.pc-control.co.uk/piezoelectric_effect.htm.
    [13] Park S E, Shrout T R. Ultrahigh strain and piezoelectric behavior in relaxor basedferroelectric single crystals. Journal of Applied Physics,1997,82(4):1804~1811.
    [14]黄荣厦. KNN基无铅压电陶瓷的低温烧结和多层次畴结构[博士学位论文].北京:清华大学材料科学与工程系,2011.
    [15]陈重华,肖鸣山,刘云书主编.压电陶瓷应用.济南:山东大学出版社,1985.
    [16] http//www.innoresearch.net/Press_Release.aspx?id=13.
    [17]张福学.现代压电学[上].北京科学出版社,2002.
    [18]徐莹.无铅压电陶瓷有序复合微结构的制备和性能研究[博士学位论文].北京:清华大学材料科学与工程系,2012.
    [19] Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates. Journal of theEuropean Ceramic Society,2005,25:2701~2706.
    [20] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. New Ferroelectrics of ComplexComposition. Soviet Physics—Solid State,1961,2(11):2651~2654.
    [21] Elkechai O, Manier M, Mercurio J P. Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3(NBT–KBT) System: AStructural and Electrical Study. Physica Status Solidi A,1996,152(2):499~506.
    [22] Sasaki A, Chiba T, Mamiya Y, et al. Dielectric and Piezoelectric Properties of(Bi1/2Na1/2)TiO3–(Bi0.5K0.5)TiO3Systems. Japanese Journal of Applied Physics Part1,1999,38(9B):5564~5567.
    [23] Takennaka T, Maruyama K, Sakata K.(Bi1/2Na1/2)TiO3–BaTiO3System for Lead-FreePiezoelectric Ceramics. Japanese Journal of Applied Physics,1991,30(9B):2236~2239.
    [24] Hu H, Zhu M, Xie F, et al. Effect of Co2O3Additive on Structure and Electrical Properties of85(Bi1/2Na1/2)TiO3–12(Bi1/2K1/2)TiO3–3BaTiO3Lead-Free Piezoceramics. Journal of theAmerican Ceramic Society,2009,92(9):2039~2045.
    [25] Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT?. Journal ofElectroceramics,2007,19:111~124.
    [26] Kakimoto K, Masuda I, Ohsato H. Lead-free KNbO3piezoceramics synthesized bypressure-less sintering. Journal of the European Ceramic Society,2005,25:2719~2722.
    [27] Egerton L, Dillon D M. Piezoelectric and Dielectric Properties of Ceramics in the SystemPotassium Sodium Niobate. Journal of the American Ceramic Society,1959,42(9):438~442.
    [28] Jaeger R E, Egerton L. Hot Pressing of Potassium-Sodium Niobates. Journal of the AmericanCeramic Society,1962,45(5):209~213.
    [29] Du H, Li Z, Tang F, et al. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3lead-free piezoelectric ceramics with pressure-less sintering. Materials Science andEngineering: B,2006,131(1-3):83~87.
    [30] Birol H, Damjanovic D, Setter N. Preparation and characterization of (K0.5Na0.5)NbO3ceramics. Journal of the European Ceramic Society,2006,26:861~866.
    [31] Li J F, Wang K, Zhang B P, et al. Ferroelectric and Piezoelectric Properties of Fine-GrainedNa0.5K0.5NbO3Lead-Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering. Journalof the American Ceramic Society,2006,89(2):706~709.
    [32] Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of(Na0.5K0.5) NbO3–LiNbO3ceramics. Applied Physics Letters,2004,85(18):4121~4123.
    [33] Li H T, Zhang B P, Shang P P, et al. Phase Transition and High Piezoelectric Properties ofLi0.058(Na0.52+xK0.48)0.942NbO3Lead-Free Ceramics. Journal of the American Ceramic Society,2011,94(2):628~632.
    [34] Wang K, Li J F. Analysis of crystallographic evolution in (Na,K)NbO3-based lead-freepiezoceramics by x-ray diffraction. Applied Physics Letters,2007,91(26):262902.
    [35] Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li-and Ta-modified(K0.5Na0.5)NbO3ceramics. Applied Physics Letters,2005,87(18):182905.
    [36] Saito Y, Takao H. High Performance Lead-free Piezoelectric Ceramics in the(K,Na)NbO3-LiTaO3Solid Solution System. Ferroelectrics,2006,338:17~32.
    [37] Zuo R, Fu J, Lv D, et al. Antimony Tuned Rhombohedral-Orthorhombic Phase Transition andEnhanced Piezoelectric Properties in Sodium Potassium Niobate. Journal of the AmericanCeramic Society,2010,93(9):2783~2787.
    [38] Zhang S, Xia R, Shrout T R, et al. Piezoelectric properties in perovskite0.948(K0.5Na0.5)NbO3–0.052LiSbO3lead-free ceramics. Journal of Applied Physics,2006,100(10):104108.
    [39] Du H, Zhou W, Zhu D, et al. Sintering Characteristic, Microstructure, and Dielectric RelaxorBehavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3Lead-Free Ceramics. Journal of the AmericanCeramic Society,2008,91(9):2903~2909.
    [40] Zuo R, Fang X, Ye C. Phase structures and electrical properties of new lead-free(Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3ceramics. Applied Physics Letters,2007,90(9):092904.
    [41] Guo Y, Kakimoto K, Ohsato H. Dielectric and piezoelectric properties of lead-free(Na0.5K0.5)NbO3–SrTiO3ceramics. Solid State Communications,2004,129(5):279~284.
    [42] Park H Y, Cho K H, Paik D S, et al. Microstructure and piezoelectric properties of lead-free(1x)(Na0.5K0.5)NbO3-xCaTiO3ceramics. Journal of Applied Physics,2007,102(12):124101.
    [43] Ahn C W, Park H Y, Nahm S, et al. Structural variation and piezoelectric properties of0.95(Na0.5K0.5)NbO3–0.05BaTiO3ceramics. Sensors and Actuators A: Physical,2007,136(1):255~260.
    [44] Park H Y, Ahn C W, Song H C, et al. Microstructure and piezoelectric properties of0.95(Na0.5K0.5)NbO3–0.05BaTiO3ceramics. Applied Physics Letters,2006,89(6):62906.
    [45] Zhao P, Zhang B P, Li J F. High piezoelectric d33coefficient in Li-modified lead-free(Na,K)NbO3ceramics sintered at optimal temperature. Applied Physics Letters,2007,90(24):242903.
    [46] Niu X K, Zhang J L, Wu L, et al. Crystalline Structural Phase Boundaries in (K,Na,Li)NbO3Ceramics. Solid State Communications,2008,146(9-10):395~398.
    [47] Chu S Y, Water W, Juang Y D, et al. Properties of (Na,K)NbO3and (Li, Na, K)NbO3Ceramic Mixed Systems. Ferroelectrics,2003,287(23-33).
    [48] Du H L, Zhou W, Luo F, et al. An Approach to Further Improve Piezoelectric Properties of(K0.5Na0.5)NbO3-Based Lead-Free Ceramics. Applied Physics Letters,2007,91(20):202907.
    [49] Hollenstein E, Damjanovic D, Setter N. Temperature stability of the piezoelectric propertiesof Li-modified KNN ceramics. Journal of the European Ceramic Society,2007,27:4093~4097.
    [50] Higashide K, Kakimoto K, Ohsato H. Temperature dependence on the piezoelectric propertyof (1x)(Na0.5K0.5)NbO3–xLiNbO3ceramics. Journal of the European Ceramic Society,2007,27:4107~4110.
    [51] Matsubara M, Yamaguchi T, Kikuta K, et al. Effect of Li Substitution on the PiezoelectricProperties of Potassium Sodium Niobate Ceramics. Japanese Journal of Applied Physics Part1,2005,44(8):6136~6142.
    [52] Du H L, Tang F, Liu D J, et al. The Microstructure and Ferroelectric Properties of(K0.5Na0.5)NbO3–LiNbO3Lead-Free Piezoelectric Ceramics. Materials Science andEngineering: B,2007,136(2-3):165~169.
    [53] Wang K, Li J F. Low-Temperature Sintering of Li-Modified (K, Na)NbO3Lead-FreeCeramics: Sintering Behavior, Microstructure, and Electrical Properties. Journal of theAmerican Ceramic Society,2010,93(4):1101~1107.
    [54] Lv Y G, Wang C L, Zhang J L, et al. Tantalum influence on physical properties of(K0.5Na0.5)(Nb1-xTax)O3ceramics. Materials Research Bulletin,2009,44:284~287.
    [55] Lv Y G, Wang C L, Zhang J L, et al. Modified (K0.5Na0.5)(Nb0.9Ta0.1)O3ceramics with HighQm. Materials Letters,2008,61(19):3425~3427.
    [56] Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and Piezoelectric Properties ofLead-Free (K,Na)(Nb,Ta) O3Ceramics. Journal of the American Ceramic Society,2005,88(5):1190~1196.
    [57] Sung Y S, Baik S, Lee J H, et al. Enhanced piezoelectric properties of(Na0.5+y+zK0.5-y)(Nb1-xTax)O3ceramics. Applied Physics Letters,2012,101(1):012902.
    [58] Lin D, Kwok K W, Chan H L W. Phase transition and electrical properties of(K0.5Na0.5)(Nb1xTax)O3lead-free piezoelectric ceramics. Materials Science&ProcessingApplied Physics A,2008,91:167~171.
    [59] Chang Y, Poterala S F, Yang Z, et al.<001> textured (K0.5Na0.5)(Nb0.97Sb0.03)O3piezoelectricceramics with high electromechanical coupling over a broad temperature range. AppliedPhysics Letters,2009,95(23):232905.
    [60] Chan I H, Sun C T, Houng M P, et al. Sb doping effects on the piezoelectric andferroelectric characteristics of lead-free Na0.5K0.5Nb1-xSbxO3piezoelectric ceramics. CeramicsInternational,2011,37:2061~2068.
    [61] Wu J, Xiao D, Wang Y, et al. K/Na Ratio Dependence of the Electrical Properties of
    [(KxNa1-x)0.95Li0.05](Nb0.95Ta0.05)O3Lead-Free Ceramics. Journal of the American CeramicSociety,2008,91(7):2385~2387.
    [62] Wang Y, Damjanovic D, Klein N, et al. High-Temperature Instability of Li-and Ta-Modified(K,Na)NbO3Piezoceramics. Journal of the American Ceramic Society,2008,91(6):1962~1970.
    [63] Wang Y, Damjanovic D, Klein N, et al. Compositional Inhomogeneity in Li-andTa-Modified (K, Na)NbO3Ceramics. Journal of the American Ceramic Society,2007,90(11):3485~3489.
    [64] Guo Y, Kakimoto K, Ohsato H.(Na0.5K0.5)NbO3–LiTaO3lead-free piezoelectric ceramics.Materials Letters,2005,59:241~244.
    [65] Chang Y, Yang Z, Ma D, et al. Phase transitional behavior, microstructure, and electricalproperties in Ta-modified [(K0.458Na0.542)0.96Li0.04] NbO3lead-free piezoelectric ceramics.Journal of Applied Physics,2008,104(2):24109.
    [66] Kim M S, Lee D S, Park E C, et al. Effect of Na2O additions on the sinter ability andpiezoelectric properties of lead-free95(Na0.5K0.5)NbO3–5LiTaO3ceramics. Journal of theEuropean Ceramic Society,2007,27(13-15):4121~4124.
    [67] Wu L, Zhang J, Zheng P, et al. Influences of morphotropic phase boundaries on physicalproperties in (K,Na,Li)Nb0.80Ta0.20O3ceramics. Journal of Physics D: Applied Physics,2007,40:3527~3530.
    [68] Lin D, Kwok K W, Chan H L W. Microstructure, phase transition, and electrical properties of(K0.5Na0.5)1xLix(Nb1yTay)O3lead-free piezoelectric ceramics. Journal of Applied Physics,2007,102(3):034102.
    [69] Shen Z Y, Zhen Y, Wang K, et al. Influence of Sintering Temperature on Grain Growth andPhase Structure of Compositionally Optimized High-Performance Li/Ta-Modified(Na,K)NbO3Ceramics. Journal of the American Ceramic Society,2009,92(8):1748~1752.
    [70] Zhang J L, Zong X J, Wu L, et al. Polymorphic phase transition and excellent piezoelectricperformance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3lead-free ceramics. Applied PhysicsLetters,2009,95(2):022909.
    [71] Skidmore T A, Comyn T P, Milne S J. Temperature stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) lead-free piezoelectric ceramics. Applied Physics Letters,2009,94(22):222902.
    [72] Chang Y, Yang Z, Ma D, et al. Phase coexistence and high electrical properties in(KxNa0.96xLi0.04)(Nb0.85Ta0.15)O3piezoelectric ceramics. Journal of Applied Physics,2009,105(5):054101.
    [73] Morozov M I, Kungl H, Hoffmann M J. Effects of poling over the orthorhombic-tetragonalphase transition temperature in compositionally homogeneous (K,Na)NbO3-based ceramics.Applied Physics Letters,2011,98(13):132908.
    [74] Cho H J, Kim M H, Song T K, et al. Piezoelectric and ferroelectric properties of textured(Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3ceramics by using template grain growth method. Journal ofElectroceramics,2012, DOI10.1007/s10832-012-9721-8.
    [75] Zhao P, Zhang B P, Li J F. Enhanced dielectric and piezoelectric properties in LiTaO3-dopedlead-free (K,Na)NbO3ceramics by optimizing sintering temperature. Scripta Materialia,2008,58:429~432.
    [76] Shen Z Y, K W, Li J F. Combined effects of Li content and sintering temperature onpolymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3lead-free piezoceramics. Applied Physics A Materials Science&Processing,2009,97:911~917.
    [77] Wu J, Xiao D, Wang Y, et al. Effects of K content on the dielectric, piezoelectric, andferroelectric properties of0.95(KxNa1x)NbO30.05LiSbO3lead-free ceramics. Journal ofApplied Physics,2008,103(2):024102.
    [78] Wu J, Xiao D, Wang Y, et al. CaTiO3-Modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3Lead-Free Piezoelectric Ceramics with Improved Temperature Stability. Scripta Materialia,2008,59:750~752.
    [79] Wu L, Xiao D, Wu J, et al. Good temperature stability of K0.5Na0.5NbO3based lead-freeceramics and their applications in buzzers. Journal of the European Ceramic Society,2008,28(15):2963~2968.
    [80] Zang G Z, Wang J F, Chen H C, et al. Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3Lead-FreePiezoceramics. Applied Physics Letters,2006,88(21):212908.
    [81] Lin D, Kwok K W, Chan H L W. Structure, piezoelectric and ferroelectric properties of Li-and Sb-modified K0.5Na0.5NbO3lead-free ceramics. Journal of Physics D: Applied Physics,2007,40(11):3500~3505.
    [82] Lin D, Kwok K W, Lam K H, et al. Structure and electrical properties of K0.5Na0.5NbO3–LiSbO3lead-free piezoelectric ceramics. Journal of Applied Physics,2007,101(7):074111.
    [83] Wu J, Xiao D, Wang Y, et al. Effects of K/Na ratio on the phase structure and electricalproperties of (KxNa0.96x)Li0.04(Nb0.91Ta0.05Sb0.04)O3lead-free ceramics. Applied PhysicsLetters,2007,91(25):252907.
    [84] Chang Y, Yang Z, Hou Y, et al. Effects of Li content on the phase structure and electricalproperties of lead-free (K0.46x/2Na0.54x/2Lix)(Nb0.76Ta0.20Sb0.04)O3ceramics. Applied PhysicsLetters,2007,90(23):232905.
    [85] Akdogan E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity inferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3ceramics. Applied Physics Letters,2008,92(11):112908.
    [86] Lin D, Kwok K W, Chan H L. Effect of Alkali Elements Content on the Structure andElectrical Properties of (K0.48Na0.48Li0.04)(Nb0.90Ta0.04Sb0.06)O3Lead-Free PiezoelectricCeramics. Journal of the American Ceramic Society,2009,92(11):2765~2767.
    [87] Fu J, Zuo R, Wang X, et al. Polymorphic phase transition and enhanced piezoelectricproperties of LiTaO3-modified (Na0.52K0.48)(Nb0.93Sb0.07)O3lead-free ceramics. Journal ofPhysics D: Applied Physics,2009,42:1~2006.
    [88] Ochoa D A, Garcia J E, Perez R, et al. Extrinsic contribution and non-linear response inlead-free KNN-modified piezoceramics. Journal of Physics D: Applied Physics,2009,42:25402.
    [89] Rubio-Marcos F, Navarro-Rojero M G, Romero J J, et al. Piezoceramics Properties as aFunction of the Structure in the System (K,Na,Li)(Nb,Ta,Sb)O3. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequecy Control,2009,56(9):1835~1842.
    [90] Leveque G, Marchet P, Levassort F, et al. Lead free (Li,Na,K)(Nb,Ta,Sb)O3piezoelectricceramics: Influence of sintering atmosphere and ZrO2doping on densification, microstructureand piezoelectric properties. Journal of the European Ceramic Society,2011,31:577~588.
    [91] Kang Y, Zhao Y, Huang R, et al. Effect of Changing Na/K Ratio on Structure and ElectricalProperties of (NaxKy)(Nb0.885Sb0.08)–0.035LiTaO3Lead-Free Piezoelectric Ceramics. Journalof the American Ceramic Society,2011,94(6):1683~1686.
    [92] Wang R, Bando H, Itoh M. Universality in phase diagram of (K,Na)NbO3–MTiO3solidsolutions. Applied Physics Letters,2009,95(9):092905.
    [93] Du H L, Zhou W, Luo F, et al. Design and electrical properties investigation of(K0.5Na0.5)NbO3–BiMeO3lead-free piezoelectric ceramics. Journal of Applied Physics,2008,104(3):34104.
    [94] Li X, Jiang M, Liu J, et al. Phase transitions and electrical properties of(1x)(K0.5Na0.5)NbO3xBiScO3lead-free piezoelectric ceramics with a CuO sintering aid.Physica Status Solidi A,2009,206(11):2622~2626.
    [95] Jiang M, Deng M, Lu H, et al. Piezoelectric and dielectric properties ofK0.5Na0.5NbO3-LiSbO3-BiScO3lead-free piezoceramics. Materials Science and Engineering B,2011,176(2):167~170.
    [96] Zhao J, Du H L, Qu S, et al. The effects of Bi(Mg2/3Nb1/3)O3on piezoelectric and ferroelectricproperties of K0.5Na0.5NbO3lead-free piezoelectric ceramics. Journal of Alloys andCompounds,2011,509:3537~3540.
    [97] Liang W, Wu W, Xiao D, et al. Effect of the Addition of CaZrO3and LiNbO3on the PhaseTransitions and Piezoelectric Properties of K0.5Na0.5NbO3Lead-Free Ceramics. Journal of theAmerican Ceramic Society,2011,94(12):4317~4322.
    [98] Zuo R, Fu J, Lu S, et al. Normal to Relaxor Ferroelectric Transition and Domain MorphologyEvolution in (K,Na)(Nb,Sb)O3–LiTaO3–BaZrO3Lead-Free Ceramics. Journal of theAmerican Ceramic Society,2011,94(12):4352~4357.
    [99] Wu J, Wang Y, Xiao D, et al. Piezoelectric and ferroelectric properties of[(K0.4725Na0.4725)Li0.055]NbO3–(Ag0.5Li0.5)TaO3lead-free ceramics. Physica Status SolidiRapid Research Letters,2007,1(5):214~216.
    [100] Bomlai P, Sinsap P, Muensit S, et al. Effect of MnO on the Phase Development,Microstructures, and Dielectric Properties of0.95Na0.5K0.5NbO3–0.05LiTaO3Ceramics.Journal of the American Ceramic Society,2008,91(2):624~627.
    [101] Rubio-Marcos F, Marchet P, Vendrell X, et al. Effect of MnO doping on the structure,microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3lead-free piezoceramics.Journal of Alloys and Compounds,2011,509(35):8804~8811.
    [102] Zuo R, Xu Z, Li L. Dielectric and piezoelectric properties of Fe2O3-doped(Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3lead-free ceramics. Journal of Physics and Chemistry ofSolids,2008,69:1728~1732.
    [103] Yang W, Zhou Z, Yang B, et al. Structure and Piezoelectric Properties of Fe-DopedPotassium Sodium Niobate Tantalate Lead-Free Ceramics. Journal of the American CeramicSociety,2011,94(8):2489~2493.
    [104] Shao B, Qiu J H, Zhu K J, et al. Effect of CuO on dielectric and piezoelectric properties of(K0.4425Na0.52Li0.0375)(Nb0.87Ta0.06Sb0.07)O3ceramics. Journal of Alloys and Compounds,2012,515(25):128~133.
    [105] Azough F, Wegrzyn M, Freer R, et al. Microstructure and piezoelectric properties of CuOadded (K, Na, Li)NbO3lead-free piezoelectric ceramics. Journal of the European CeramicSociety,2011,31(4):569~576.
    [106] Huang R, Zhao Y, Zhang X, et al. Low-Temperature Sintering of CuO-Doped0.94(K0.48Na0.535)NbO3–0.06LiNbO3Lead-Free Piezoelectric Ceramics. Journal of theAmerican Ceramic Society,2010,93(12):4018~4021.
    [107] Rubio-Marcos F, Romero J J, Navarro-Rojero M G, et al. Effect of ZnO on the structure,microstructure and electrical properties of KNN-modified piezoceramics. Journal of theEuropean Ceramic Society,2009,29:3045~3052.
    [108] Park H Y, Seo I T, Choi J H, et al. Low-Temperature Sintering and Piezoelectric Properties of(Na0.5K0.5)NbO3Lead-Free Piezoelectric Ceramics. Journal of the American Ceramic Society,2010,93(1):36~39.
    [109] Lee S H, Lee S G, Kim H J, et al. Effect of sintering temperature on piezoelectric anddielectric properties of0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83) O3+0.01wt%ZnO ceramics.Journal of Electroceramics,2012, DOI10.1007/s10832-012-9686-7.
    [110] Rubio-Marcos F, Marchet P, Romero J J, et al. Structural, microstructural and electricalproperties evolution of (K,Na,Li)(Nb,Ta,Sb)O3lead-free piezoceramics through NiO doping.Journal of the European Ceramic Society,2011,31:2309~2317.
    [111] Rubio-Marcos F, Marchet P, Duclere J R, et al. Evolution of structural and electricalproperties of (K,Na,Li)(Nb,Ta,Sb)O3lead-free piezoceramics through CoO doping. SolidState Communications,2011,151(20):1463~1466.
    [112] Zheng L, Wang J, Ming B, et al. Phase structure and electrical properties of strontiummodified (Na0.48–xK0.48–xLi0.04Srx)Nb0.89Ta0.05Sb0.06O3ceramics. Physica Status Solidi A,2009,206(7):1602~1605.
    [113] Lim J B, Zhang S, Jeon J H, et al.(K,Na)NbO3-Based Ceramics for Piezoelectric “Hard”Lead-Free Materials. Journal of the American Ceramic Society,2010,93(5):1218~1220.
    [114] Liu Y, Chu R, Xu Z, et al. Effects of K4CuNb8O23on phase structure and electrical propertiesof K0.5Na0.5NbO3–LiSbO3lead-free piezoceramics. Physica B: Condensed Matter,2012,407(13):2573~2577.
    [115] Yang M R, Tsai C C, Hong C S, et al. Piezoelectric and ferroelectric properties of CN-dopedK0.5Na0.5NbO3lead-free ceramics. Journal of Applied Physics,2010,108(9):094103.
    [116] Gao Y, Zhang J L, Qing Y, et al. Remarkably Strong Piezoelectricity of Lead-Free(K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3Ceramic. Journal of the American Ceramic Society,2011,94(9):2968~2973.
    [117] Li X, Jiang M, Liu J, et al. Enhanced Piezoelectric Properties in Mn-Doped0.98K0.5Na0.5NbO3–0.02BiScO3Lead-Free Ceramics. Journal of the American CeramicSociety,2009,92(7):1625~1628.
    [118] Li E, Suzuki R, Hoshina T, et al. Dielectric, piezoelectric, and electromechanical phenomenain (K0.5Na0.5)NbO3–LiNbO3–BiFeO3–SrTiO3ceramics. Applied Physics Letters,2009,94(13):132903.
    [119] Lin D, Kwok K W, Chan H L W. Dielectric and piezoelectric properties of K0.5Na0.5NbO3–AgSbO3lead-free ceramics. Journal of Applied Physics,2009,106(3):034102.
    [120] Zuo R, Fu J. Rhombohedral–Tetragonal Phase Coexistence and Piezoelectric Properties of(NaK)(NbSb)O3–LiTaO3–BaZrO3Lead-Free Ceramics. Journal of the American CeramicSociety,2011,94(5):1467~1470.
    [121] Maeda T, Takiguchi N, Ishikawa M, et al.(K,Na)NbO3lead-free piezoelectric ceramicssynthesized from hydrothermal powders. Materials Letters,2010,64(2):125~128.
    [122] Bai L, Zhu K, Su L, et al. Synthesis of (K, Na)NbO3particles by high temperature mixingmethod under hydrothermal conditions. Materials Letters,2010,64(1):77~79.
    [123] Kakimoto K, Hayakawa Y, Kagomiya I. Low-Temperature Sintering of Dense (Na,K)NbO3Piezoelectric Ceramics Using the Citrate Precursor Technique. Journal of the AmericanCeramic Society,2010,93(9):2423~2426.
    [124] Tan C K I, Yao K, Ma J. Effects of Ultrasonic Irradiation on the Structural and ElectricalProperties of Lead-Free0.94(K0.5Na0.5)NbO3–0.06LiNbO3Ceramics. Journal of the AmericanCeramic Society,2011,94(3):776~781.
    [125] Rojac T, Bencan A, Kosec M. Mechanism and Role of Mechanochemical Activation in theSynthesis of (K,Na,Li)(Nb,Ta)O3Ceramics. Journal of the American Ceramic Society,2010,93(6):1619~1625.
    [126] Fang J, Wang X, Tian Z, et al. Two-Step Sintering: An Approach to Broaden the SinteringTemperature Range of Alkaline Niobate-Based Lead-Free Piezoceramics. Journal of theAmerican Ceramic Society,2010,93(11):3552~3555.
    [127] Wang K, Li J F.(K, Na)NbO3-based lead-free piezoceramics: Phase transition, sintering andproperty enhancement. Journal of Advanced Ceramics,2012,1(1):24~37.
    [128]方建. KNN和BT高性能无铅压电陶瓷的制备技术及机理研究[博士学位论文].北京:清华大学材料科学与工程系,2012.
    [129] Ahn C W, Park C S, Choi C H, et al. Sintering Behavior of Lead-Free (K,Na)NbO3-BasedPiezoelectric Ceramics. Journal of the American Ceramic Society,2009,92(9):2033~2038.
    [130] Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties ofK1xNaxNbO3lead-free ceramics. Applied Physics Letters,2009,94(4):042905.
    [131] Dai Y, Zhang X, Zhou G. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3ceramics.Applied Physics Letters,2007,90(26):262903.
    [132] Damjanovic D. A morphotropic phase boundary system based on polarization rotation andpolarization extension. Applied Physics Letters,2010,97(6):62906.
    [133] Fu H, Cohen R E. Polarization rotation mechanism for ultrahigh electromechanical responsein single-crystal piezoelectrics. Nature,2000,403(20):281~283.
    [134] Fu J, Zuo R, Wu S C, et al. Electric field induced intermediate phase and polarization rotationpath in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phaseboundary. Applied Physics Letters,2012,100(12):122902.
    [135] Randall C A, Kim N, Kucera J P, et al. Intrinsic and Extrinsic Size Effects in Fine-GrainedMorphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics. Journal of the AmericanCeramic Society,1998,81(3):677~688.
    [136] Huo S, Yuan S, Tian Z, et al. Grain Size Effects on the Ferroelectric and PiezoelectricProperties of Na0.5K0.5NbO3Ceramics Prepared by Pechini Method. Journal of the AmericanCeramic Society,2012,95(4):1383~1387.
    [137] Wang K, Li J F. Domain Engineering of Lead-Free Li-Modified (K,Na)NbO3Polycrystalswith Highly Enhanced Piezoelectricity. Advanced Functional Materials,2010,20:1924~1929.
    [138] Fu J, Zuo R, Xu Z. High piezoelectric activity in (Na,K)NbO3based lead-free piezoelectricceramics: Contribution of nanodomains. Applied Physics Letters,2011,99(6):062901.
    [139]王轲.铌酸钾钠基无铅压电陶瓷材料[博士学位论文].北京:清华大学材料科学与工程系,2010.
    [140]李世普主编.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990.
    [141] http://www.keramverband.de/brevier_engl/4/1/4_1_4.htm.
    [142]李远,秦自楷,周志刚.压电与铁电材料的测量.北京:科学出版社,1984.
    [143] Shen Z Y, Li J F, Wang K, et al. Electrical and Mechanical Properties of Fine-GrainedLi/Ta-Modified (Na,K)NbO3-Based Piezoceramics Prepared by Spark Plasma Sintering.Journal of the American Ceramic Society,2010,93(5):1378~1383.
    [144] Klein N, Hollenstein E, Damjanovic D, et al. A study of the phase diagram of (K,Na,Li)NbO3determined by dielectric and piezoelectric measurements, and Raman spectroscopy. Journal ofApplied Physics,2007,102(1):014112.
    [145] Sun X, Deng J, Chen J, et al. Effects of Li Substitution on the Structure and Ferroelectricity of(Na,K)NbO3. Journal of the American Ceramic Society,2009,92(12):3033~3036.
    [146] Li J, Zhu Z, Lai F. Thickness-Dependent Phase Transition and Piezoelectric Response inTextured Nb-Doped Pb(Zr0.52Ti0.48)O3Thin Films. Journal of Physical Chemistry C,2010,114(41):17796~17801.
    [147] Wu C, Duan W, Zhang X W, et al. Effects of hydrostatic pressure on Pb(Zr1xTix)O3near themorphotropic phase boundary. Journal of Applied Physics,2010,108(12):124102.
    [148] Kakimoto K, Sumi T, Kagomiya I. Pressure-Dependent Raman Scattering Spectrum ofPiezoelectric (Li,Na,K)NbO3Lead-Free Ceramics. Japanese Journal of Applied Physics,2010,49(9):9M~10M.
    [149] Zhao Y, Zhao Y, Zhang X, et al. The effect of sintering and poling processing on the phasestructure of Li0.058(Na0.51K0.49)0.942NbO3lead-free ceramics. Scripta Materialia,2012,66(2):97~100.
    [150] Zhang B P, Li J F, Wang K, et al. Compositional Dependence of Piezoelectric Properties inNaxK1-xNbO3Lead-Free Ceramics Prepared by Spark Plasma Sintering. Journal of theAmerican Ceramic Society,2006,89(5):1605~1609.
    [151] Palai R, Katiyar R S, Schmid H, et al. βphase and γ-β metal-insulator transition inmultiferroic BiFeO3. Physical Review B,2008,77(1):14110.
    [152] Zuo R, Ye C, Fang X. Na0.5K0.5NbO3–BiFeO3lead-free piezoelectric ceramics. Journal ofPhysics and Chemistry of Solids,2008,69:230~235.
    [153] Li X, Wu L, Xiao D, et al. Microstructure and electrical properties of (1–x)(K0.5Na0.5)NbO3–xBiFeO3piezoelectric ceramics. Physica Status Solidi A,2008,205(5):1211~1214.
    [154] Zylberberg J, Belik A A, Takyama-Muromachi E, et al. Bismuth Aluminate: A New High-TCLead-Free Piezo-/ferroelectric. Chemistry of Materials,2007,19:6385~6390.
    [155] Zuo R, Lv D, Fu J, et al. Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3–BiAlO3ceramics. Journal of Alloys and Compounds,2009,476:836~839.
    [156] Tanaka K, Kakimoto K, Ohsato H, et al. Composition Dependence of Crystallinity forLead-Free (Li,Na,K)NbO3Powder and Thin Films Fabricated by Sol-Gel Process.Ferroelectrics,2007,358:175~180.
    [157] Du H, Liu D, Tang F, et al. Microstructure, Piezoelectric, and Ferroelectric Properties ofBi2O3-Added (K0.5Na0.5)NbO3Lead-Free Ceramics. Journal of the American Ceramic Society,2007,90(9):2824~2829.
    [158] Jiang W, Wang G, Wu L B, et al. High Temperature Strength of Mo/PSZ Composites asEvaluated by MSP Test (I). Journal of Inorganic Materials,2002,4(17):827~832.
    [159] Hu W, Tan X, Rajan K. BiFeO3–PbZrO3–PbTiO3ternary system for high Curie temperaturepiezoceramics. Journal of the European Ceramic Society,2011,31:801~807.
    [160] Yang S L, Tsai C C, Liou Y C, et al. Investigation of CuO-Doped NKN Ceramics with HighMechanical Quality Factor Synthesized by a B-Site Oxide Precursor Method. Journal of theAmerican Ceramic Society,2012,95(3):1011~1017.
    [161] Yang Y P, Zhou L, Zhang M F, et al. Room-temperature saturated ferroelectric polarization inBiFeO3ceramics synthesized by rapid liquid phase sintering. Applied Physics Letters,2004,84(10):1731.
    [162] Valant M, Axelsson A K, Alford N. Peculiarities of a Solid-State Synthesis of MultiferroicPolycrystalline BiFeO3. Chemistry of Materials,2007,19:5431~5436.
    [163] Nalwa K S, Garg A, Upadhyaya A. Effect of samarium doping on the properties of solid-statesynthesized multiferroic bismuth ferrite. Materials Letters,2008,62:878~881.
    [164] Jiang Q H, Nan C W, Shen Z J. Synthesis and Properties of Multiferroic La-Modified BiFeO3Ceramics. Journal of the American Ceramic Society,2006,89(7):2123~2127.
    [165] Suzuki R, Uraki S, Li E, et al. Influence of Bi-perovskites on the piezoelectric properties of(K0.5Na0.5)NbO3-based lead free ceramics. Journal of the Ceramics Society of Japan,2008,116(11):1199~1203.
    [166] Randall C A, Kelnberger A, Yang G Y, et al. High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge. Journal of Electroceramics,2005,14:177~191.
    [167] Zhang S, Kounga A B, Aulbach E, et al. Lead-free piezoceramics with giant strain in thesystem Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties.Journal of Applied Physics,2008,103(3):034108.
    [168] Wu J, Wang Y, Xiao D, et al. Effects of Ag content on the phase structure and piezoelectricproperties of (K0.44xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3lead-free ceramics. Applied PhysicsLetters,2007,91(13):132914.
    [169] Morozov M I, Baurer M, Hoffmann M J. Interaction of Modified (K,Na)NbO3Ceramics withAg-Containing Electrodes. Journal of American Ceramic Society,2011,94(10):3591~3595.
    [170] Kawada S, Kimura M, Higuchi Y, et al.(K,Na)NbO3-Based Multilayer PiezoelectricCeramics with Nickel Inner Electrodes. Applied Physics Express,2009,2:111401.
    [171] Wang K, Li J F, Zhou J J. High Normalized Strain Obtained in Li-Modified (K,Na)NbO3Lead-Free Piezoceramics. Applied Physics Express,2011,4:61501.
    [172] Yang W G, Zhang B P, Ma N, et al. High piezoelectric properties of BaTiO3–xLiF ceramicssintered at low temperatures. Journal of the European Ceramic Society,2012,32(899-904).
    [173] Park H Y, Choi J Y, Choi M K, et al. Effect of CuO on the Sintering Temperature andPiezoelectric Properties of (Na0.5K0.5)NbO3Lead-Free Piezoelectric Ceramics. Journal of theAmerican Ceramic Society,2008,91(7):2374~2377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700