多铁异质结的磁介电和磁电耦合效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对器件小型化、多功能化的需求越来越高,传统电子器件尺寸已经接近了量子极限,因而尺寸的进一步降低变得越来越困难。在保证器件尺寸不变的情况下,一种有效的解决办法就是采用多功能材料提供新颖的物理现象和功能,从而使得计算机能力和存储密度增加等。而同时具有铁电极化和磁极化、并且它们之间具有耦合作用的多铁材料的出现,使得电控磁或者磁控电成为可能,并且其在多功能存储器件、磁传感器件等领域具有很大的潜在应用前景,有望解决传统电子器件的瓶颈。天然的室温单相的多铁材料的匮乏、而且其磁电耦合效应比较小,而人工复合的多铁材料在材料的选取上和磁电耦合效应上都具有单相多铁材料所不可比拟的优势,因而引起了人们的广泛关注,特别是具有铁磁/铁电(FM/FE)结构的多铁异质结。尽管人们在多铁异质结中开展了广泛的研究工作并取得一些进展,然而仍然存在着一些问题亟待解决,比如如何在高温、低磁场下实现大的磁介电效应,磁场对铁电性的影响如何,以及如何在多铁隧道结中实现交换偏置与四阻态的共存等等。
     针对上述问题,本论文主要研究了多铁异质结的磁介电效应和磁场对铁电性的影响,并探讨了多铁异质结中影响磁介电效应和磁电耦合内在的因素,为实现室温大的磁电耦合效应提供了途径;初步探索了在多铁隧道结中同时实现四阻态和交换偏置效应的可能性。论文内容共分为五章,每一章的主要内容分别概括如下:
     第一章主要综述了多铁异质结中的磁介电效应、磁电耦合效应以及多铁隧道结等方面的最新研究进展;并着重的介绍了多铁异质结和隧道结中的界面效应产生的机理及性能的调控。
     第二章中,我们研究了BiFeO3/La5/8Ca3/8MnO3(BFO/LCMO)多铁异质结的磁介电效应。在BFO/LCMO异质结中实现了由LCMO的磁阻以及Maxwell-Wagner效应共同导致的高达1100%的巨磁介电效应。通过对BFO/LCMO多铁异质结在不同温度、频率以及磁场下的介电频谱的研究发现:磁介电效应随着磁场的增加而增加,并在LCMO的铁磁转变温度Tc=220K、H=10T、f=500kHz处达到最大值1100%;而且在f=500kHz,介电的损耗随着磁场的增加而降低。通过对其介电弛豫分析,发现在Tc以下,弛豫时间τ随着温度的降低而降低;而在Tc以上,τ随着温度的增加而降低,符合热激活的Arrhenius公式,在零磁场下热激活能大约为93meV,且激活能随着磁场的增加而降低。
     第三章我们研究了磁场对BFO/LCMO异质结铁电行为的影响。实验发现磁场对BFO/LCMO异质结的表观矫顽力Ec有很大的调控作用,这是由于LCMO的相分离的变化改变了LCMO和BFO/LCMO界面的导电能力,从而影响铁电矫顽力。通过系统的研究Au/BFO/LCMO复合薄膜在不同温度和磁场下铁电性质的变化,我们发现在零磁场下BFO/LCMO的Ec随着温度的增加先减小再增加,并在在220K达到峰值。而随着外磁场的增加,这个峰明显减弱并逐渐向高温方向移动。而剩余极化强度Pr随着温度的升高而增加,且在外磁场下变化不明显。通过对不同磁场下BFO/LCMO系统以及单层LCMO和BFO的阻抗的模分析发现:这种明显的变化主要来源于LCMO单层和BFO/LCMO界面处分压的变化。在磁场下LCMO的金属相和绝缘相的体积分数会发生变化,因而LCMO和界面的导电能力也会发生变化,进而改变界面处的电压降,从而影响BFO/LCMO的表观矫顽力Ec。由于BFO与衬底的晶格失配随着温度的降低而减小,面内压应变减少,c轴缩短,因而Pr随着温度的降低而减少。
     第四章我们用10nm厚的反铁磁—铁电材料BiFeO3作为势垒层构建了La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3(LSMO/BFO/LSMO)多铁隧道结,由于BFO铁电极化对隧穿磁阻效应的调控和BFO/LSMO界面的磁交换作用,我们实现了四阻态和交换偏置效应的共存。通过对隧道结的铁电性、隧穿电致电阻结电阻的电输运测量,我们在LSMO/BFO/LSMO多铁隧道结中发现了四阻态行为以及界面磁电耦合作用即BFO铁电极化对磁致隧穿电阻的调控作用。而且在隧道结中通过这种电测量获得交换偏置场与未刻蚀的样品通过磁测量的交换偏置场的大小以及其随温度的变化趋势都一致。此外,采用脉冲激光沉积技术制备了高质量的LSMO/BFO/LSMO//SrTiO3铁电隧道结,发现其在5K下具有大约8×104%的TER效应,且高低组态之间的转换具有很好的稳定性。
     第五章中,我们研究了x[0.92Pb(Mg1/3Nb2/3)O3-0.04Pb(Zn1/3Nb2/3)O3-0.04PbTiO3]-(1-x)Ni0.2Cu0.2Zn0.6Fe2O4(PMZNT-NiCuZn)复合材料的磁电耦合系数随温度、频率以及组分的变化关系。在准静态频率下(1kHz),样品的磁电耦合系数αE随着磁场的增加先增加到一最大值αmax后,然后随着磁场的继续增加而减小;随着温度的降低,峰值向高磁场方向移动,而且αmax也随着温度的降低而增加。而αmax随着组分x并不是单调的变化,而是对于所有温度几乎都是在x=0.6有一最小值。随着频率的增加,磁电耦合系数都是随着频率的增加而增加。
As for the trends toward device miniaturization and multi-functionalization, the conventional electronic element size is approaching quantum limits. One way to continue the current trends in computer power and storage increase, is to use multifunctional materials that would bring out novel physical phenomena and enable new device capabilities. Multiferroic materials, as a result of a coupling between the magnetic and electric orders, enable controlling the ferroelectric polarization by a magnetic field, and conversely manipulating the magnetization by an electric field, which exhibit great potential applications in multi-level memories and magnetic-field sensors. Due to very weak magnetoelectric coupling in single-phase multiferroics, much more attention has been paid on the composite multiferroics, especially the artificial ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructures. Even though much remarkable progress has been made in FM/FE multiferroic heterostructures, several key issues remain to be further investigated, such as giant magnetocapacitance (MC) effect with high temperature and low magnetic field, the effect of magnetic field on the ferroelectric properties, and the possibility for multi state storage devices in multiferroic tunnel junction (MFTJ).
     In this dissertation, the magnetocapacitance and effect of magnetic field on the ferroelectric properties in multiferroic heterostructures are studied. The possible factors influencing the magnetocapacitance and magnetoelectric coupling are also systematically investigated, which provides a route to achieve a giant room-temperature magnetoelectric coupling with low magnetic field. Furthermore, the design of prototype device with the coexistence of four resistance states and exchange bias in MFTJ was explored.
     In chapter1, we make a brief introduction to the recent advances in magnetocapacitance and manetoelectric coupling effects of FM/FE multiferroic heterostructure, and the magnetoelectric coupling in MFTJs, putting emphasis on the interfacial effects at the heterostructure and tunnel jucntion and routes to crease and control the properties of these materials.
     In chapter2, the colossal magnetocapacitance about1100%enhancement around 220K was obtained in BiFeO3/La5/8Ca3/8MnO3(BFO/LCMO) multiferroic heterostructure, which is attributed to the contribution of magnetoimpedance effect and Maxwell-Wagner effect. By systematically studying the temperature, frequency and magnetic field dependencies of dielectric properties of BFO/LCMO, it was found that the magnetocapacitance increases with increasing magnetic fields and reaches a maximum up to1100%enhancement near the ferromagnetic transition temperature (Tc) of LCMO at H=10T and f=500kHz. From the analysis of the dielectric relaxation, one can see that above Tc, the relaxation time τ decreases with increasing temperature, and follows the Arrhenius law. The obtained activation energy Ea is about93meV at H=0T, and reduces rapidly with increasing magnetic fields. While for temperatures below Tc, τ decreases approximately two orders of magnitude with decreasing temperature.
     In chapter3, we found that the reduction of apparent coercive electric field Ec for Au/BFO/LCMO heterostructure is closely related to the voltage drops across the LCMO layer and the magnetoelectric coupled interface between BFO and LCMO, which can be influenced by magnetic fields due to the phase separation in LCMO. Through systematically investigating the temperature and magnetic field dependencies of ferroelectric properties of Au/BFO/LCMO heterostdructure, it was found that Ec decreases obviously with increasing magnetic fields around Tc~220K. The remanent polarization Pr increases with increasing temperatures, but changes little with magnetic fields at f=2kHz. From the magetnic field dependence of impedance of BFO, LCMO, and BFO/LCMO, we found the variations of ferroelectricity are mainly related to the voltage drops across the LCMO layer and BFO/LCMO interface. The decrease of Pr with decreasing temperature is probably due to the temperature dependencies of the lattice mismatch between the substrate and BFO films.
     In chapter4, with10nm thick ferroelectric-antiferromagnetic BFO as a barrier in La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3(LSMO/BFO/LSMO) MFTJ, both exchange bias and four resistance states have been realized in one memory cell, due to the tunnel magnetoresistance manipulated by ferroelectric polarizations and the magnetic interaction between antiferromagnetic BFO and ferromagnetic LSMO layers. As the negative and positive pulse voltages applied, the tunnel magnetoresistance manipulated by ferroelectric polarizations, i.e., four non-volatile resistance states, is observed in this tunnel junction. The most important finding is that the exchange bias is achieved in this MFTJ. This exchange bias field obtained from electric measurement follows the similar variation trend as observed from the magnetization measurements in the unpatterned sample. In addition, we found giant tunnel electroresistance effect (8×104%) in LSMO/BFO/LSMO MFTJs with3nm thick BFO as tunnel barrier fabricated by pulse laser deposition.
     In chapter5, we systematically investigate the temperature, frequency and magnetic field dependence of magnetoelectric coupling effect in x[0.92Pb(Mg1/3Nb2/3)03-0.04Pb(Zn1/3Nb2/3)03-0.04PbTi03]-(1-x)Ni0.2Cuo.2Zno.6Fe204(xP MZNT-(1-x)NiCuZn)(x=0.4,0.6,0.8) by Super ME measurement system. At quasi-static frequency (f=1kHz), the magnetoelectric voltage coefficient a first increases, reaches a maximum value αmax and then decreases with increasing magnetic field for all samples. With decreasing temperature, αmax increases, and the corresponding magetnic field increases as well. It is found that the variation trend of the αmax as the function of PMZNT volume fraction x is not monotonous, which almost reaches minimum at x=0.6.
引文
[1]F. Pulizzi, Spintronics, Nat Mater 11,367 (2012).
    [2]M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77 (2005).
    [3]W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442,759 (2006).
    [4]S. W. Cheong and M. Mostovoy, Multiferroics- a magnetic twist for ferroelectricity, Nat. Mater.6, 13 (2007).
    [5]L. W. Martin and R. Ramesh, Multiferroic and magnetoelectric heterostructures, Acta Mater.60, 2449(2012).
    [6]D. I. Khomskii, Multiferroics:Different ways to combine magnetism and ferroelectricity, J. Magn. Magn. Mater.306,1 (2006).
    [7]Y. Tokura, Multiferroics—toward strong coupling between magnetization and polarization in a solid, J. Magn. Magn. Mater.310,1145 (2007).
    [8]K. F. Wang, J. M. Liu, and Z. F. Ren, Multiferroicity:the coupling between magnetic and polarization orders, Adv. Phys.58,321 (2009).
    [9]C. A. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater.22,2900 (2010).
    [10]Rahul C. Kambale, Dae-Yong Jeong, and Jungho Ryu, Current Status of Magnetoelectric Composite Thin/Thick Films, Advances in Condensed Matter Physics 2012,1 (2012).
    [11]G. Rado and V. Folen, Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains, Phys. Rev. Lett.7,310 (1961).
    [12]Nicola A.Spaldin and Manfred Fiebig, the renaissance of magnetoelectric multiferroics, Science 309,391 (2005).
    [13]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299,1719 (2003).
    [14]H. Zheng, J. Wang, S. E. Lofl, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Multiferroic BaTiO3-CoFe2O4 Nanostructures, Science 303,661 (2005).
    [15]Y. Tokura and S. Seki, Multiferroics with spiral spin orders, Adv Mater 22,1554 (2010).
    [16]M. Liu and N. X. Sun, Voltage control of magnetism in multiferroic heterostructures, Philos Trans A Math Phys Eng Sci 372,20120439 (2014).
    [17]H. X. Yang, H. F. Tian, Y. J. Song, Y. B. Qin, Y. G. Zhao, C. Ma, and J. Q. Li, Polar Nanodomains and Giant Converse Magnetoelectric Effect in Charge-Ordered Fe2OBO3, Phys. Rev. Lett.106, 016406(2011).
    [18]U. Adem, L. Wang, D. Fausti, W. Schottenhamel, P. H. M. van Loosdrecht, A. Vasiliev, L. N. Bezmaternykh, B. Buchner, C. Hess, and R. Klingeler, Magnetodielectric and magnetoelastic coupling in TbFe3(BO3)4, Phys. Rev. B 82,064406 (2010).
    [19]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B 67 (2003).
    [20]A. Chen, H. Zhou, Z. Bi, Y. Zhu, Z. Luo, A. Bayraktaroglu, J. Phillips, E. M. Choi, J. L. Macmanus-Driscoll, S. J. Pennycook, J. Narayan, Q. Jia, X. Zhang, and H. Wang, A new class of room-temperature multiferroic thin films with bismuth-based supercell structure, Adv Mater 25,1028 (2013).
    [21]H. Wadati, J. Okamoto, M. Garganourakis, V. Scagnoli, U. Staub, Y. Yamasaki, H. Nakao, Y. Murakami, M. Mochizuki, M. Nakamura, M. Kawasaki, and Y. Tokura, Origin of the Large Polarization in Multiferroic YMnO3 Thin Films Revealed by Soft-and Hard-X-Ray Diffraction, Phys. Rev. Lett.108,047203 (2012).
    [22]M. G. Han, Y. Zhu, L. Wu, T. Aoki, V. Volkov, X. Wang, S. C. Chae, Y. S. Oh, and S. W. Cheong, Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite, Adv Mater 25,2415 (2013).
    [23]Chul Lee, JooYoun Kim, S. W. Cheong, and E. J. Choi, Infrared optical response of LuFe2O4 under dc electric field, Phys. Rev. B 85,014303 (2012).
    [24]M. Hervieu, A. Guesdon, J. Bourgeois, E. Elkaim, M. Poienar, F. Damay, J. Rouquette, A. Maignan, and C. Martin, Oxygen storage capacity and structural flexibility, Nat. Mater.13,74 (2013).
    [25]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426,55 (2003).
    [26]T. Kimura, G Lawes, T. Goto, Y. Tokura, and A. Ramirez, Magnetoelectric phase diagrams of orthorhombic RMnO3 (R=Gd, Tb, and Dy), Phys. Rev. B 71,224425 (2005).
    [27]J. Ma, J. Hu, Z. Li, and C. W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater.23,1062 (2011).
    [28]Shashank Priya, Rashed Islam, Shuxiang Dong, and D. Viehland, Recent advancements in magnetoelectric particulate and laminate composites, J. Electroceram.19,149 (2007).
    [29]Li Yan, Yaodong Yang, Zhiguang Wang, Zengping Xing, Jiefang Li, and D. Viehland, Review of magnetoelectric perovskite-spinel self-assembled nano-composite thin films, Journal of Materials Science 44,5080 (2009).
    [30]Pu Yu, Ying-Hao Chu, and Ramamoorthy Ramesh, Oxide interfaces:pathways to novel phenomena, Materials Today 15,320 (2012).
    [31]H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater.11,103 (2012).
    [32]R. Ramesh, Electric field control of ferromagnetism using multi-ferroics:the bismuth ferrite story, Philos Trans A Math Phys Eng Sci 372,20120437 (2014).
    [33]Y. J. Wang, J. Q. Gao, M. H. Li, Y. Shen, D. Hasanyan, J. F. Li, and D. Viehland, A review on equivalent magnetic noise of magnetoelectric laminate sensors, Philos Trans A Math Phys Eng Sci 372, 20120455 (2014).
    [34]J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4, Nature 434,364 (2005).
    [35]Pekka M. T. Ikonen, Konstantin N. Rozanov, Al exey V. Osipov, Pekka Alitalo, and Sergei A. Tretyakov, Magnetodielectric Substrates in Antenna Miniaturization:Potential and Limitations, IEEE Trans. Antennas Propag.54,3391 (2006).
    [36]S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, and J. Kreisel, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics, Phys. Rev. B 75 (2007).
    [37]R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, A strain-driven morphotropic phase boundary in BiFeO3, Science 326,977 (2009).
    [38]J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-like BiFeO3, Phys. Rev. Lett.107,147602(2011).
    [39]B. Xiang J. X. Zhang, Q.He,J.Seidel,P.Yu,S.Y.Yang, Large field-induced strains in a lead-free piezoelectric material, nature nanotech 6,98 (2011).
    [40]T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science 324,63 (2009).
    [41]J. Zhang, X. Ke, G. Gou, J. Seidel, B. Xiang, P. Yu, W. I. Liang, A. M. Minor, Y. H. Chu, G. Van Tendeloo, X. Ren, and R. Ramesh, A nanoscale shape memory oxide, Nat Commun 4,2768 (2013).
    [42]J. M. Caicedo, J. A. Zapata, M. E. Gomez, and P. Prieto, Magnetoelectric coefficient in BiFeO3 compounds, J. Appl. Phys.103,07E306 (2008).
    [43]A. K. Zvezdin, A. M. Kadomtseva, S. S. Krotov, A. P. Pyatakov, Yu F. Popov, and G. P. Vorob'ev, Magnetoelectric interaction and magnetic field control of electric polarization in multiferroics, J. Magn. Magn. Mater.300,224 (2006).
    [44]V. Palkar, Darshan Kundaliya, S. Malik, and S. Bhattacharya, Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system, Phys. Rev. B 69,212102 (2004).
    [45]G. Le Bras, D. Colson, A. Forget, N. Genand-Riondet, R. Tourbot, and P. Bonville, Magnetization and magnetoelectric effect in Bil-xLaxFeO3 (0≤x≤0.15), Phys. Rev. B 80 (2009).
    [46]F. Z. Qian, J. S. Jiang, S. Z. Guo, D. M. Jiang, and W. G. Zhang, Multiferroic properties of Bil-xDyxFeO3 nanoparticles, J. Appl. Phys.106,084312 (2009).
    [47]R. Seshadri and Nicola A. Hill, Visualizing the Role of Bi 6s "Lone Pairs" in the Off-Center Distortion in Ferromagnetic BiMnO3, Chem. Mater.13,2892 (2001).
    [48]ChongGui Zhong, JingHuai Fang, and Qing Jiang, Magnetodielectric effects in the ferroelectric ferromagnet BiMnO3, J. Phys.:Condens. Matter 16,9059 (2004).
    [49]Naoki Imamura, Maarit Karppinen, Teruki Motohashi, Desheng Fu, Mitsuru Itoh, and Hisao Yamauchi, Positive and Negative Magnetodielectric Effects in A-Site Ordered (BiMn3)Mn4O12 Perovskite, JACS 130,14948 (2008).
    [50]Xiangyu Mao, Hui Sun, Wei Wang, Xiaobing Chen, and Yalin Lu, Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics, Appl. Phys. Lett.102,072904(2013).
    [51]X. W. Dong, K. F. Wang, J. G. Wan, J. S. Zhu, and J. M. Liu, Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel method, J. Appl. Phys.103,094101 (2008).
    [52]T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites, Phys. Rev. Lett.92,257201 (2004).
    [53]C. Lu, S. Dong, Z. Xia, H. Luo, Z. Yan, H. Wang, Z. Tian, S. Yuan, T. Wu, and J. Liu, Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO(3) thin films, Scientific reports 3,3374 (2013).
    [54]F. Kagawa, M. Mochizuki, Y. Onose, H. Murakawa, Y. Kaneko, N. Furukawa, and Y. Tokura, Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3 Phys. Rev. Lett.102, 057604 (2009).
    [55]N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Colossal Magnetodielectric Effects in DyMn2O5, Phys. Rev. Lett.93,107207 (2004).
    [56]D. Higashiyama and S. Miyasaka, Magnetic-field-induced polarization and depolarization in HoMn205 and ErMn2O5, Phys. Rev. B 72,064421 (2005).
    [57]L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli, and S. W. Cheong, Structural Anomalies and Multiferroic Behavior in Magnetically Frustrated TbMn2O5, Phys. Rev. Lett. 93,177402(2004).
    [58]S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Colossal Magnetocapacitance and Colossal Magnetoresistance in HgCr2S4, Phys. Rev. Lett.96,157202 (2006).
    [59]Taylor D. Sparks, Moureen C. Kemei, Phillip T. Barton, Ram Seshadri, Eun-Deok Mun, and Vivien S. Zapf, Magnetocapacitance as a sensitive probe of magnetostructural changes in NiCr2O4, Phys. Rev. B 89,024405 (2014).
    [60]M. A Subramanian, T. He, J. Chen, N. S Rogado, T. G Calvarese, and A. W Sleight, Giant Room-Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe2O4, Adv. Mater. 18,1737 (2006).
    [61]Yutaro Kitagawa, Yuji Hiraoka, Takashi Honda, Taishi Ishikura, Hiroyuki Nakamura, and Tsuyoshi Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater.9,797 (2010).
    [62]S. N. Dong, Y. P. Yao, J. Q. Li, Y. J. Song, Y. K. Liu, and X. G. Li, Room temperature multiferroicity in Bi4.2K0.8Fe2O9, Scientific reports 3,1245 (2013).
    [63]Ji Yong Park, Jung Hwan Park, Young Kyu Jeong, and Hyun M. Jang, Dynamic magnetoelectric coupling in "electronic ferroelectric" LuFe2O4, Appl. Phys. Lett.91,152903 (2007).
    [64]H. Xiang and M. H. Whangbo, Charge Order and the Origin of Giant Magnetocapacitance in LuFe2O4, Phys. Rev. Lett.98,246403 (2007).
    [65]Sara Lafuerza, Joaquin Garcia, Gloria Subias, Javier Blasco, Kazimierz Conder, and Ekaterina Pomjakushina, Intrinsic electrical properties of LuFe2O4, Phys. Rev. B 88,085130 (2013).
    [66]P. Ren, Z. Yang, W. G. Zhu, C. H. A. Huan, and L. Wang, Origin of the colossal dielectric permittivity and magnetocapacitance in LuFe2O4, J. Appl. Phys.109,074109 (2011).
    [67]Ayan Roy Chaudhuri, S. B. Krupanidhi, P. Mandal, and A. Sundaresan, Investigation of biferroic properties in La0.6Sr0.4MnO[sub 3]/0.7PbMg1/3Nb2/3)O3-0.3PbTiO3]epitaxial bilayered heterostructures, J. Appl. Phys.106,054103 (2009).
    [68]Yiping Guo, Yun Liu, Jianli Wang, Ray L. Withers, Hua Chen, Lu Jin, and Paul Smith, Giant Magnetodielectric Effect in 0-3 Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) Nanocomposite Films, J. Phys. Chem. C 114,13861 (2010).
    [69]A. N. Tarale, D. J. Salunkhe, P. B. Joshi, S. B. Kulkarni, and V. R. Reddy, Magnetodielectric properties of nano-crystalline BaZr0.15Ti0.85O3/La0.67Sr0.33MnO3 thin film heterostructures, Journal of Materials Science:Materials in Electronics 24,4457 (2013).
    [70]Arjun Tarale, Y. D. Kolekar, V. L. Mathe, S. B. Kulkarni, V. R. Reddy, and Pradeep Joshi, Magnetodielectric properties of La0.67Sr0.33MnO3 and Ba0.7Sr0.3TiO3 thin film heterostructures, Electron. Mater. Lett.8,381 (2012).
    [71]Shumin He, Guolei Liu, Jing Xu, Jianye Yang, Yanxue Chen, Shishou Kang, Shishen Yan, and Liangmo Mei, Magnetodielectric effect in lead-free multiferroic CoFe2O4/K0.5Na0.5NbO3 bilayers, Materials Letters 89,159 (2012).
    [72]P. Padhan, P. Leclair, A. Gupta, M. A. Subramanian, and G. Srinivasan, Magnetodielectric effect in Bi2NiMnO6-La2NiMnO6 superlattices, Journal of physics. Condensed matter:an Institute of Physics journal 21,306004 (2009).
    [73]P. Padhan, H. Z. Guo, P. LeClair, and A. Gupta, Dielectric relaxation and magnetodielectric response in epitaxial thin films of La2NiMnO6, Appl. Phys. Lett.92,022909 (2008).
    [74]P. Padhan, P. LeClair, A. Gupta, and G. Srinivasan, Magnetodielectric response in epitaxial thin films of multiferroic Bi2NiMnO6, J. Phys.:Condens. Matter 20,355003 (2008).
    [75]N. A. Pertsev, S. Prokhorenko, and B. Dkhil, Giant magnetocapacitance of strained ferroelectric-ferromagnetic hybrids, Phys. Rev. B 85,134111 (2012).
    [76]G. Catalan, Magnetocapacitance without magnetoelectric coupling, Appl. Phys. Lett.88,102902 (2006).
    [77]Shuai Zhang, Xianlin Dong, Feng Gao, Ying Chen, Fei Cao, Junyu Zhu, Xiaodong Tang, and Genshui Wang, Magnetodielectric response in 0.36BiScO3-0.64PbTiO3/La0.7Sr0.3MnO3 thin films and the corresponding model modifications, J. Appl. Phys.110,046103 (2011).
    [78]R. Freitas, J. Mitchell, and P. Schiffer, Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3, Phys. Rev. B 72,144429 (2005).
    [79]Ryan P. Rairigh, Guneeta Singh-Bhalla, Sefaatin Tongay, Tara Dhakal, Amlan Biswas, and Arthur F. Hebard, Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites, Nat. Phys.3,551 (2007).
    [80]M. P. Singh, K. D. Truong, and P. Fournier, Magnetodielectric effect in double perovskite La 2CoMn06 thin films, Appl. Phys. Lett.91,042504 (2007).
    [81]D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U. V. Waghmare, R. Knut, O. Karis, P. Nordblad, and D. D. Sarma, Near-Room-Temperature Colossal Magnetodielectricity and Multiglass Properties in Partially Disordered La2NiMnO6, Phys. Rev. Lett.108,127201 (2012).
    [82]H. Zang, L. Yan, M. Li, L. He, Z. Gai, I. Ivanov, M. Wang, L. Chiang, A. Urbas, and B. Hu, Magneto-dielectric effects induced by optically-generated intermolecular charge-transfer states in organic semiconducting materials, Scientific reports 3,2812 (2013).
    [83]S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix, Phys. Rev. B 82,104107(2010).
    [84]Sandra Dussan, Ashok Kumar, J. F. Scott, and Ram S. Katiyar, Magnetic effects on dielectric and polarization behavior of multiferroic heterostructures, Appl. Phys. Lett.96,072904 (2010).
    [85]Ying Chen, Genshui Wang, Shuai Zhang, Xiuyun Lei, Junyu Zhu, Xiaodong Tang, Yongling Wang, and Xianlin Dong, Magnetocapacitance effects of Pb0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film on Si substrate, Appl. Phys. Lett.98,052910 (2011).
    [86]Y. T. Zhang, C. C. Wang, M. He, and H. B. Lu, Interfacial contribution to magnetocapacitance in La0.05Tb0.95MnO3/La0.67Sr0.33MnO3/SrTiO3heterojunctions, J. Phys. D:Appl. Phys.42,055309 (2009).
    [87]Shengwei Yang, Sining Dong, Yukuai Liu, Yiping Yao, Yuewei Yin, and Xiaoguang Li, Tunable dielectric and ferroelectric properties in heteroepitaxial PbZr0.52Ti0.48O3/La0.625Ca0.375MnO3 thin films, J. Appl. Phys.114,034102 (2013).
    [88]H. Boschker, J. Verbeeck, R. Egoavil, S. Bals, G. van Tendeloo, M. Huijben, E. P. Houwman, G. Koster, D. H. A. Blank, and G. Rijnders, Preventing the Reconstruction of the Polar Discontinuity at Oxide Heterointerfaces, Adv. Funct. Mater.22,2235 (2012).
    [89]P. Y u, W. Luo, D. Yi, J. X. Zhang, M. D. Rossell, C. H. Yang, L. You, G. Singh-Bhalla, S. Y. Yang, Q. He, Q. M. Ramasse, R. Ern i, L. W. Martin, Y. H. Chu, S. T. Pantelides, S. J. Pennycook, and R. Ramesh, Interface control of bulk ferroelectric polarization, PNAS 109,9710 (2012).
    [90]P. Yu, J. S. Lee, S. Okamoto, M. Rossell, M. Huijben, C. H. Yang, Q. He, J. Zhang, S. Yang, M. Lee, Q. Ramasse, R. Erni, Y. H. Chu, D. Arena, C. C. Kao, L. Martin, and R. Ramesh, Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructures, Phys. Rev. Lett.105,027201 (2010).
    [91]Aymeric Sadoc, Bernard Mercey, Charles Simon, Dominique Grebille, Wilfrid Prellier, and Marie-Bernadette Lepetit, Large Increase of the Curie Temperature by Orbital Ordering Control, Phys. Rev. Lett.104,046804 (2010).
    [92]H. Jang, S. Baek, D. Ortiz, C. Folkman, R. Das, Y. Chu, P. Shafer, J. Zhang, S. Choudhury, V. Vaithyanathan, Y. Chen, D. Felker, M. Biegalski, M. Rzchowski, X. Pan, D. Schlom, L. Chen, R. Ramesh, and C. Eom, Strain-Induced Polarization Rotation in Epitaxial (001) BiFeO3 Thin Films, Phys. Rev. Lett.101 (2008).
    [93]H. Christen, J. Nam, H. Kim, A. Hatt, and N. Spaldin, Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films, Phys. Rev. B 83 (2011).
    [94]R. K. Vasudevan, Y. Liu, J. Li, W. I. Liang, A. Kumar, S. Jesse, Y. C. Chen, Y. H. Chu, V. Nagarajan, and S. V. Kalinin, Nanoscale control of phase variants in strain-engineered BiFeO(3), Nano letters 11,3346 (2011).
    [95]S. Choudhury, Y. L. Li, L. Q. Chen, and Q. X. Jia, Strain effect on coercive field of epitaxial barium titanate thin films, Appl. Phys. Lett.92,142907 (2008).
    [96]Dae Ho Kim, Ho Nyung Lee, Michael D. Biegalski, and Hans M. Christen, Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO[sub 3] films, Appl. Phys. Lett.92,012911 (2008).
    [97]I. C. Infante, S. Lisenkov, B. Dupe, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit, A. Courtial, J. Juraszek, L. Bellaiche, A. Barthelemy, and B. Dkhil, Bridging Multiferroic Phase Transitions by Epitaxial Strain in BiFeO3, Phys. Rev. Lett.105,057601 (2010).
    [98]M. D. Biegalski, D. H. Kim, S. Choudhury, L. Q. Chen, H. M. Christen, and K. Dorr, Strong strain dependence of ferroelectric coercivity in a BiFeO3 film, Appl. Phys. Lett.98,142902 (2011).
    [99]E. J. Guo, K. Dorr, and A. Herklotz, Strain controlled ferroelectric switching time of BiFeO3 capacitors, Appl. Phys. Lett.101,242908 (2012).
    [100]W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures, Nat. Mater.6,348 (2007).
    [101]Chaoyong Deng, Yi Zhang, Jing Ma, Yuanhua Lin, and Ce-Wen Nan, Magnetic-electric properties of epitaxial multiferroic NiFe2O4-BaTiO3 heterostructure, J. Appl. Phys.102,074114 (2007).
    [102]H. F. Tian, T. L. Qu, L. B. Luo, J. J. Yang, S. M. Guo, H. Y. Zhang, Y. G Zhao, and J. Q. Li, Strain induced magnetoelectric coupling between magnetite and BaTiO3, Appl. Phys. Lett.92,063507 (2008).
    [103]C. A. F. Vaz, J. Hoffman, A. B. Posadas, and C. H. Ahn, Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3(100) epitaxial structures, Appl. Phys. Lett.94,022504 (2009).
    [104]F. D. Czeschka, S. Geprags, M. Opel, S. T. B. Goennenwein, and R. Gross, Giant magnetic anisotropy changes in Sr[sub 2]CrReO[sub 6] thin films on BaTiO3, Appl. Phys. Lett.95,062508 (2009).
    [105]S. Geprags, A. Brandlmaier, M. Opel, R. Gross, and S. T. B. Goennenwein, Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures, Appl. Phys. Lett.96, 142509 (2010).
    [106]A. Alberca, N. M. Nemes, F. J. Mompean, T. Feher, F. Simon, J. Tornos, C. Leon, C. Munuera, B. J. Kirby, M. R. Fitzsimmons, A. Hernando, J. Santamaria, and M. Garcia-Hernandez, Magnetoelastic coupling in La0.7Ca0.3MnO3/BaTiO3 ultrathin films, Phys. Rev. B 88,134410 (2013).
    [107]Kevin J. A. Franke, Diego Lopez Gonzalez, Sampo J. Hamalainen, and Sebastiaan van Dijken, Size Dependence of Domain Pattern Transfer in Multiferroic Heterostructures, Phys. Rev. Lett.112, 017201 (2014).
    [108]Tomoyasu Taniyama, Kyohei Akasaka, Desheng Fu, and Mitsuru Itoh, Artificially controlled magnetic domain structures in ferromagnetic dots/ferroelectric heterostructures, J. Appl. Phys.105, 07D901 (2009).
    [109]Sarbeswar Sahoo, Srinivas Polisetty, Chun-Gang Duan, Sitaram Jaswal, Evgeny Tsymbal, and Christian Binek, Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling, Phys. Rev. B 76,092108 (2007).
    [110]H. F. Kay and F. Vousden, XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties, Philos. Mag.40,1019(1949).
    [111]T. H. Lahtinen, K. J. Franke, and S. van Dijken, Electric-field control of magnetic domain wall motion and local magnetization reversal, Scientific reports 2,258 (2012).
    [112]Lu You, Baomin Wang, Xi Zou, Zhi Shiuh Lim, Yang Zhou, Hui Ding, Lang Chen, and Junling Wang, Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 on stripe-domain BiFeO3, Phys. Rev. B 88,184426(2013).
    [113]L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, and J. Wang, Uniaxial magnetic anisotropy in Lao.7Sr0.3Mn03 thin films induced by multiferroic BiFeO3 with striped ferroelectric domains, Adv Mater 22,4964 (2010).
    [114]M. Ghidini, R. Pellicelli, J. L. Prieto, X. Moya, J. Soussi, J. Briscoe, S. Dunn, and N. D. Mathur, Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field, Nat Commun4,1453 (2013).
    [115]G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy, Nanoscale 4,3218 (2012).
    [116]R. O. Cherifi, V. Ivanovskaya, L. C. Phillips, A. Zobelli, I. C. Infante, E. Jacquet, V. Garcia, S. Fusil, P. R. Briddon, N. Guiblin, A. Mougin, A. A. Unal, F. Kronast, S. Valencia, B. Dkhil, A. Barthelemy, and M. Bibes, Electric-field control of magnetic order above room temperature, Nat Mater (2014).
    [117]A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, Magnetic and magnetoelastic properties of a metamagnetic iron-rhodium alloy, Sov. Phys. JETP 19,1348 (1964).
    [118]C. Thiele, K. Dorr, O. Bilani, J. Rodel, and L. Schultz, Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca), Phys. Rev. B 75,054408 (2007).
    [119]B. Noheda, D. Cox, G. Shirane, J. Gao, and Z. G. Ye, Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3, Phys. Rev. B 66,054104 (2002).
    [120]R. K. Zheng, Y. Jiang, Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3 thin films grown on ferroelectric single-crystal substrates, Phys. Rev. B 79,174420 (2009).
    [121]R. K. Zheng, H. U. Habermeier, H. L. W. Chan, C. L. Choy, and H. S. Luo, Effect of ferroelectric-poling-induced strain on the phase separation and magnetotransport properties of La0.7Ca0.15Sr0.15MnO3 thin films grown on ferroelectric single-crystal substrates, Phys. Rev. B 80, 104433 (2009).
    [122]J. Wang, F. X. Hu, R. W. Li, J. R. Sun, and B. G. Shen, Strong tensile strain induced charge/orbital ordering in (001)-La7/8S1/8MnO3 thin film on 0.7Pb(Mgl/3Nb2/3)O3-0.3PbTiO3, Appl. Phys. Lett.96,052501 (2010).
    [123]T. Zhang, Q. Wei, R. K. Zheng, X. P. Wang, and Q. F. Fang, In situ control of electronic phase separation in Lal/8 Pr4/8Ca3/8MnO3/PNM-PT thin films using ferroelectric-poling-induced strain, J. Appl. Phys.113,013705 (2013).
    [124]M. Dekker, A. Rata, K. Boldyreva, S. Oswald, L. Schultz, and K. Dorr, Colossal elastoresistance and strain-dependent magnetization of phase-separated (Prl-yLay)0.7Ca0.3MnO3 thin films, Phys. Rev. B 80 (2009).
    [125]R. K. Zheng, Y. Wang, J. Wang, K. S. Wong, H. L. W. Chan, C. L. Choy, and H. S. Luo, Tuning the electrical properties of La0.75Ca0.25MnO3 thin films by ferroelectric polarization, ferroelectric-field effect, and converse piezoelectric effect, Phys. Rev. B 74,094427 (2006).
    [126]J. J. Yang, Y. G. Zhao, H. F. Tian, L. B. Luo, H. Y. Zhang, Y. J. He, and H. S. Luo, Electric field manipulation of magnetization at room temperature in multiferroic CoFe2O4/Pb(Mgl/3Nb2/])0.7Ti0.3O3 heterostructures, Appl. Phys. Lett.94,212504 (2009).
    [127]Z. Wang, Y. Wang, W. Ge, J. Li, and D. Viehland, Volatile and nonvolatile magnetic easy-axis rotation in epitaxial ferromagnetic thin films on ferroelectric single crystal substrates, Appl. Phys. Lett. 103,132909 (2013).
    [128]Zhiguang Wang, Yaodong Yang, Ravindranath Viswan, Jiefang Li, and D. Viehland, Giant electric field controlled magnetic anisotropy in epitaxial BiFe03-CoFe2O4 thin film heterostructures on single crystal Pb(Mgl/3Nb2/3)0.7Ti0.3O3 substrate, Appl. Phys. Lett.99,043110 (2011).
    [129]Yajie Chen, Trifon Fitchorov, Carmine Vittoria, and V. G. Harris, Electrically controlled magnetization switching in a multiferroic heterostructure, Appl. Phys. Lett.97,052502 (2010).
    [130]Jung Hwan Park, Young Kyu Jeong, Sangwoo Ryu, Jong Yeog Son, and Hyun Myung Jang, Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mgl/3Nb2/3)O3-PbTiO3, Appl. Phys. Lett.96,192504 (2010).
    [131]Ju-Hyun Kim, Kwang-Su Ryu, Jae-Woo Jeong, and Sung-Chul Shin, Large converse magnetoelectric coupling effect at room temperature in CoPd/PMN-PT (001) heterostructure, Appl. Phys. Lett.97,252508 (2010).
    [132]Yajie Chen, Jingmin Wang, Ming Liu, Jing Lou, Nian X. Sun, Carmine Vittoria, and Vincent G Harris, Giant magnetoelectric coupling and E-fleld tunability in a laminated Ni2MnGa/lead-magnesium-niobate-lead titanate multiferroic heterostructure, Appl. Phys. Lett.93, 112502(2008).
    [133]Yue-Lei Zhao, Qian-Ping Chen, Yong-Gang Zhao, Liqing Pan, and Young Sun, Time-dependent magnetoelectric effect in Fe/Pb(Mgl/3Nb2/3)0.7Ti0.3O3 heterostructure:A ferromagnetic resonance study, Appl. Phys. Lett.103,082905 (2013).
    [134]Yajie Chen, Anton L. Geiler, Trifon Fitchorov, Carmine Vittoria, and V. G. Harris, Time domain analyses of the converse magnetoelectric effect in a multiferroic metallic glass-relaxor ferroelectric heterostructure, Appl. Phys. Lett.95,182501 (2009).
    [135]S. Y. Chen, Y. X. Zheng, Q. Y. Ye, H. C. Xuan, Q. Q. Cao, Y. Deng, D. H. Wang, Y. W. Du, and Z. G. Huang, Electric field-modulated Hall resistivity and magnetization in magnetoelectric Ni-Mn-Co-Sn/PMN-PT laminate, Journal of Alloys and Compounds 509,8885 (2011).
    [136]Y. T. Yang, Q. M. Zhang, D. H. Wang, Y. Q. Song, L. Y. Wang, L. Y. Lv, Q. Q. Cao, and Y. W. Du, Electric field control of magnetic properties in CoPt/Pb(Mgl/3Nb2/3)O3-PbTiO3 heterostructure at room temperature, Appl. Phys. Lett.103,082404 (2013).
    [137]S. Zhang, Y. Zhao, P. Li, J. Yang, S. Rizwan, J. Zhang, J. Seidel, T. Qu, Y. Yang, Z. Luo, Q. He, T. Zou, Q. Chen, J. Wang, L. Yang, Y. Sun, Y. Wu, X. Xiao, X. Jin, J. Huang, C. Gao, X. Han, and R. Ramesh, Electric-Field Control of Nonvolatile Magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 Structure at Room Temperature, Phys. Rev. Lett.108,137203 (2012).
    [138]Tao Wu, Ping Zhao, Mingqiang Bao, Alexandre Bur, Joshua L. Hockel, Kin Wong, Kotekar P. Mohanchandra, Christopher S. Lynch, and Gregory P. Carman, Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) single crystals, J. Appl. Phys.109,124101 (2011).
    [139]Tao Wu, Alexandre Bur, Ping Zhao, Kotekar P. Mohanchandra, Kin Wong, Kang L. Wang, Christopher S. Lynch, and Gregory P. Carman, Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mgl/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure, Appl. Phys. Lett.98,012504 (2011).
    [140]Tao Wu, Alexandre Bur, Kin Wong, Joshua Leon Hockel, Chin-Jui Hsu, Hyungsuk K. D. Kim, Kang L. Wang, and Gregory P. Carman, Electric-poling-induced magnetic anisotropy and electric-field-induced magnetization reorientation in magnetoelectric Ni/(011) [Pb(Mgl/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure, J. Appl. Phys.109,07D732 (2011).
    [141]Tao Wu, Alexandre Bur, Kin Wong, Ping Zhao, Christopher S. Lynch, Pedram Khalili Amiri, Kang L. Wang, and Gregory P. Carman, Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices, Appl. Phys. Lett.98,262504 (2011).
    [142]Ming Liu, Ogheneyunume Obi, Jing Lou, Yajie Chen, Zhuhua Cai, Stephen Stoute, Mary Espanol, Magnum Lew, Xiaodan Situ, Kate S. Ziemer, Vince G. Harris, and Nian X. Sun, Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures, Adv. Funct. Mater.19,1826(2009).
    [143]M. Liu, J. Hoffman, J. Wang, J. Zhang, B. Nelson-Cheeseman, and A. Bhattacharya, Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011), Scientific reports 3,1876 (2013).
    [144]Ming Liu, Shandong Li, Ogheneyunume Obi, Jing Lou, Scott Rand, and Nian X. Sun, Electric field modulation of magnetoresistance in multiferroic heterostructures for ultralow power electronics, Appl. Phys. Lett.98,222509 (2011).
    [145]Y. J. Yang, Z. L. Luo, M. M. Yang, H. L. Huang, H. B. Wang, J. Bao, G. Q. Pan, C. Gao, Q. Hao, S. T. Wang, Michael Jokubaitis, W. Z. Zhang, G. Xiao, Y. P. Yao, Y. K. Liu, and X. G. Li, Piezo-strain induced non-volatile resistance states in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3epitaxial heterostructures, Appl. Phys. Lett.102,033501 (2013).
    [146]Yuanjun Yang, Meng Meng Yang, Z. L. Luo, Haoliang Huang, Haibo Wang, J. Bao, Chuansheng Hu, Guoqiang Pan, Yiping Yao, Yukuai Liu, X. G. Li, Sen Zhang, Y. G. Zhao, and C. Gao, Large anisotropic remnant magnetization tunability in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 multiferroic epitaxial heterostructures, Appl. Phys. Lett.100,043506 (2012).
    [147]J. Lou, D. Reed, C. Pettiford, M. Liu, P. Han, S. Dong, and N. X. Sun, Giant microwave tunability in FeGaB/lead magnesium niobate-lead titanate multiferroic composites, Appl. Phys. Lett.92, 262502 (2008).
    [148]Jing Lou, Ming Liu, David Reed, Yuhang Ren, and Nian X. Sun, Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc NiobateLead Titanate (PZN-PT) Heterostructures, Adv. Mater.21,4771 (2009).
    [149]Y. Chen, J. Gao, J. Lou, M. Liu, S. D. Yoon, A. L. Geiler, M. Nedoroscik, D. Heiman, N. X. Sun, C. Vittoria, and V. G. Harris, Microwave tunability in a GaAs-based multiferroic heterostructure: Co2MnAl/GaAs/PMN-PT, J. Appl. Phys.105,07A510 (2009).
    [150]Ming Liu, Shandong Li, Ziyao Zhou, Shawn Beguhn, Jing Lou, Feng Xu, Tian Jian Lu, and Nian X. Sun, Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures, J. Appl. Phys.112,063917 (2012).
    [151]Deepak Rajaram Patil, Yisheng Chai, Rahul C. Kambale, Byung-Gu Jeon, Kyongjun Yoo, Jungho Ryu, Woon-Ha Yoon, Dong-Soo Park, Dae-Yong Jeong, Sang-Goo Lee, Jeongho Lee, Joong-Hee Nam, Jeong-Ho Cho, Byung-Ik Kim, and Kee Hoon Kim, Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties, Appl. Phys. Lett.102,062909 (2013).
    [152]S. Zhang, Y. Zhao, X. Xiao, Y. Wu, S. Rizwan, L. Yang, P. Li, J. Wang, M. Zhu, H. Zhang, X. Jin, and X. Han, Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mgl/3Nb2/3)0.7Ti0.3O3(011) heterostructure, Scientific reports 4,3727 (2014).
    [153]M. Buzzi, R. V. Chopdekar, J. L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G. P. Carman, L. J. Heyderman, and F. Nolting, Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures, Phys. Rev. Lett. 111,027204 (2013).
    [154]Ming Liu, Jing Lou, Shandong Li, and Nian X. Sun, E-Field Control of Exchange Bias and Deterministic Magnetization Switching in AFM/FM/FE Multiferroic Heterostructures, Adv. Funct. Mater.21,2593 (2011).
    [155]T. Wu, M. Zurbuchen, S. Saha, R. V. Wang, S. Streiffer, and J. Mitchell, Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures, Phys. Rev. B 73 (2006).
    [156]Li Shu, Zheng Li, Jing Ma, Ya Gao, Lin Gu, Yang Shen, Yuanhua Lin, and C. W. Nan, Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures, Appl. Phys. Lett. 100,022405 (2012).
    [157]T. Nan, Z. Zhou, M. Liu, X. Yang, Y. Gao, B. A. Assaf, H. Lin, S. Velu, X. Wang, H. Luo, J. Chen, S. Akhtar, E. Hu, R. Rajiv, K. Krishnan, S. Sreedhar, D. Heiman, B. M. Howe, G. J. Brown, and N. X. Sun, Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface, Scientific reports 4,3688 (2014).
    [158]Tao Jiang, Shengwei Yang, Yukuai Liu, Yuewei Yin, Sining Dong, Wenbo Zhao, and Xiaoguang Li, Coaction and distinguishment of converse piezoelectric and field effects in La0.7Ca0.3MnO3/SrTiO3/0.68Pb(Mgl/3Nb2/3)O3-0.32PbTiO3 heterostructures, Appl. Phys. Lett.103, 053504 (2013).
    [159]S. Mathews, Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures, Science 276,238 (1997).
    [160]Teruo Kanki, Hidekazu Tanaka, and Tomoji Kawai, Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor, Appl. Phys. Lett. 89,242506 (2006).
    [161]C. A. F. Vaz, Y. Segal, J. Hoffman, R. D. Grober, F. J. Walker, and C. H. Ahn, Temperature dependence of the magnetoelectric effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures, Appl. Phys. Lett.97,042506 (2010).
    [162]Hajo J. A. Molegraaf, Jason Hoffman, Carlos A. F. Vaz, Stefano Gariglio, Dirk van der Marel, Charles H. Ahn, and Jean-Marc Triscone, Magnetoelectric Effects in Complex Oxides with Competing Ground States, Adv. Mater.21,3470 (2009).
    [163]C. A. F. Vaz, J. Hoffman, Y. Segal, J. W. Reiner, R. D. Grober, Z. Zhang, C. H. Ahn, and F. J. Walker, Origin of the Magnetoelectric Coupling Effect in Pb(Zr0.2Tio.8)03/Lao.8Sr0.2Mn03 Multiferroic Heterostructures, Phys. Rev. Lett.104,127202 (2010).
    [164]Di Yi, Jian Liu, Satoshi Okamoto, Suresha Jagannatha, Yi-Chun Chen, Pu Yu, Ying-Hao Chu, Elke Arenholz, and R. Ramesh, Tuning the Competition between Ferromagnetism and Antiferromagnetism in a Half-Doped Manganite through Magnetoelectric Coupling, Phys. Rev. Lett. 111,127601 (2013).
    [165]H. Yamada, M. Marinova, P. Altuntas, A. Crassous, L. Begon-Lours, S. Fusil, E. Jacquet, V. Garcia, K. Bouzehouane, A. Gloter, J. E. Villegas, A. Barthelemy, and M. Bibes, Ferroelectric control of a Mott insulator, Scientific reports 3,2834 (2013).
    [166]L. Jiang, W. S. Choi, H. Jeen, S. Dong, Y. Kim, M. G. Han, Y. Zhu, S. V. Kalinin, E. Dagotto, T. Egami, and H. N. Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano letters 13,5837 (2013).
    [167]Philipp Leufke, Robert Kruk, Richard Brand, and Horst Hahn, In situ magnetometry studies of magnetoelectric LSMO/PZT heterostructures, Phys. Rev. B 87,094416 (2013).
    [168]Shuai Dong, Xiaotian Zhang, Rong Yu, J. M. Liu, and Elbio Dagotto, Microscopic model for the ferroelectric field effect in oxide heterostructures, Phys. Rev. B 84,155117 (2011).
    [169]J. M. Rondinelli, M. Stengel, and N. A. Spaldin, Carrier-mediated magnetoelectricity in complex oxide heterostructures, Nat Nanotechnol 3,46 (2008).
    [170]Lu Jiang, Woo Seok Choi, Hyoungjeen Jeen, Takeshi Egami, and Ho Nyung Lee, Strongly coupled phase transition in ferroelectric/correlated electron oxide heterostructures, Appl. Phys. Lett. 101,042902(2012).
    [171]Yu-Kuai Liu, Yue-Wei Yin, and Xiao-Guang Li, Colossal magnetoresistance in manganites and related prototype devices, Chin. Phys. B.22,087502 (2013).
    [172]Arnaud Crassous, Rozenn Bernard, Stephane Fusil, Karim Bouzehouane, David Le Bourdais, Shaima Enouz-Vedrenne, Javier Briatico, Manuel Bibes, Agnes Barthelemy, and Javier E. Villegas, Nanoscale Electrostatic Manipulation of Magnetic Flux Quanta in Ferroelectric/Superconductor BiFeO3/YBa2Cu3O7-δ Heterostructures, Phys. Rev. Lett.107,247002 (2011).
    [173]C. H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, and J. M. Triscone, Electrostatic Modulation of Superconductivity in Ultrathin GdBa2Cu3O7-x Films, Science 284,1152 (1999).
    [174]K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, and J. M. Triscone, Local switching of two-dimensional superconductivity using the ferroelectric field effect, Nature 441, 195 (2006).
    [175]A. Crassous, R. Bernard, S. Fusil, K. Bouzehouane, J. Briatico, M. Bibes, A. Barthelemy, and Javier E. Villegas, BiFeO3/YBa2Cu3O7-δ heterostructures for strong ferroelectric modulation of superconductivity, J. Appl. Phys.113,024910 (2013).
    [176]A. Mardana, S. Ducharme, and S. Adenwalla, Ferroelectric control of magnetic anisotropy, Nano letters 11,3862 (2011).
    [177]Pavel V. Lukashev, Tula R. Paudel, Juan M. Lo, Shireen Adenwalla, Evgeny Y. Tsymbal, and Julian P. Velev, Ferroelectric Control of Magnetocrystalline Anisotropy at Cobalt/Poly(vinylidenefluoride) Interfaces, ACS nano 6,9745 (2012).
    [178]Pavel Borisov, Andreas Hochstrat, Xi Chen, Wolfgang Kleemann, and Christian Binek, Magnetoelectric Switching of Exchange Bias, Phys. Rev. Lett.94 (2005).
    [179]M. Fiebig, Th. Lottermoser, D. Fro "hlich, A. V. Goltsev, and R. V. Pisarev, Observation of coupled magnetic and electric domains, Nature 419,818 (2002).
    [180]V. Skumryev, V. Laukhin, I. Fina, X. Marti, F. Sanchez, M. Gospodinov, and J. Fontcuberta, Magnetization Reversal by Electric-Field Decoupling of Magnetic and Ferroelectric Domain Walls in Multiferroic-Based Heterostructures, Phys. Rev. Lett.106 (2011).
    [181]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat Mater 5,823 (2006).
    [182]L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, Multiferroics and magnetoelectrics:thin films and nanostructures, J. Phys.: Condens. Matter 20,434220 (2008).
    [183]V. Laukhin, V. Skumryev, X. Marti, D. Hrabovsky, F. Sanchez, M. Garcia-Cuenca, C. Ferrater, M. Varela, U. Luders, J. Bobo, and J. Fontcuberta, Electric-Field Control of Exchange Bias in Multiferroic Epitaxial Heterostructures, Phys. Rev. Lett.97,227201 (2006).
    [184]S. M. Wu, Shane A. Cybart, D. Yi, James M. Parker, R. Ramesh, and R. C. Dynes, Full Electric Control of Exchange Bias, Phys. Rev. Lett.110,067202 (2013).
    [185]Seoungsu Lee, W. Ratcliff, S. W. Cheong, and V. Kiryukhin, Electric field control of the magnetic state in BiFeO3 single crystals, Appl. Phys. Lett.92,192906 (2008).
    [186]P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M. A. Measson, D. Colson, A. Forget, M. Bibes, A. Barthelemy, and M. Cazayous, Electric-field control of spin waves at room temperature in multiferroic BiFeO3, Nat. Mater.9,975 (2010).
    [187]S. M.Wu, Shane A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater.9,756 (2010).
    [188]M. Huijben, P. Yu, L. W. Martin, H. J. Molegraaf, Y. H. Chu, M. B. Holcomb, N. Balke, G. Rijnders, and R. Ramesh, Ultrathin limit of exchange bias coupling at oxide multiferroic/ferromagnetic interfaces, Adv Mater 25,4739 (2013).
    [189]H. B6a, S. Fusil, K. Bouzehouane, M. Bibes, M. Sirena, G Herranz, E. Jacquet, J. P. Contour, and A. Barthelemy, Ferroelectricity Down to at Least 2 nm in Multiferroic BiFeO3 Epitaxial Thin Films, Japanese Journal of Applied Physics 45, L187 (2006).
    [190]Lane W. Martin, Y. H. Chu, Mikel B. Holcomb, M. Huijben, P. Yu, S. J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nanoscale Control of Exchange Bias with BiFeO3 Thin Films, Nano Lett.8,2050 (2008).
    [191]Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater.7,478 (2008).
    [192]J. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Yang, D. Nikonov, Y. H. Chu, S. Salahuddin, and R. Ramesh, Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure, Phys. Rev. Lett.107 (2011).
    [193]Hiroshi Naganuma, Mikihiko Oogane, and Yasuo Ando, Exchange biases of Co, Py, Co40Fe40B20, Co75Fe25, and Co50Fe50 on epitaxial BiFeO3 films prepared by chemical solution deposition, J. Appl. Phys.109,07D736 (2011).
    [194]H. Bea, M. Bibes, F. Ott, B. Dupe, X. H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthelemy, Mechanisms of Exchange Bias with Multiferroic BiFeO3 Epitaxial Thin Films, Phys. Rev. Lett.100 (2008).
    [195]Joonghoe Dho and M. G. Blamire, Controlling the exchange bias in multiferroic BiFeO3 and NiFe bilayers, J. Appl. Phys.106,073914 (2009).
    [196]T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, and L. F. Yang, Exchange bias effects in epitaxial Fe3O4/BiFeO3 heterostructures, Appl. Phys. Lett.100,242410 (2012).
    [197]J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthelemy, Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3, Nano letters 12,1141 (2012).
    [198]YiWang Xi He, NingWu, Anthony N. Caruso, Elio Vescovo, Kirill D. Belashchenko, Robust isothermal electric control of exchange bias at room temperature, Nat. Mater.9,579 (2010).
    [199]W. Echtenkamp and Ch Binek, Electric Control of Exchange Bias Training, Phys. Rev. Lett. 111, 187204(2013).
    [200]C. H. Ahn, K. M. Rabe, and J. M. Triscone, Ferroelectricity at the nanoscale:local polarization in oxide thin films and heterostructures, Science 303,488 (2004).
    [201]D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Ferroelectricity in ultrathin perovskite films, Science 304,1650 (2004).
    [202]Celine Lichtensteiger, Jean-Marc Triscone, Javier Junquera, and Philippe Ghosez, Ferroelectricity and Tetragonality in Ultrathin PbTiO3 Films, Phys. Rev. Lett.94 (2005).
    [203]G. Gerra, A. Tagantsev, N. Setter, and K. Parlinski, Ionic Polarizability of Conductive Metal Oxides and Critical Thickness for Ferroelectricity in BaTiO3, Phys. Rev. Lett.96 (2006).
    [204]L. Esaki, R. B. Laibowitz, and P. J. Stiles, IBM Tech. Discl. Bull.13,2161 (1971).
    [205]Evgeny Y. Tsymbal and Hermann Kohlstedt, Tunneling Across a Ferroelectric, Science 313,181 (2006).
    [206]M. Zhuravlev, R. Sabirianov, S. Jaswal, and E. Tsymbal, Giant Electroresistance in Ferroelectric Tunnel Junctions, Phys. Rev. Lett.94,246802 (2005).
    [207]D. Fong, C. Cionca, Y. Yacoby, G. Stephenson, J. Eastman, P. Fuoss, S. Streiffer, Carol Thompson, R. Clarke, R. Pindak, and E. Stern, Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron x-ray scattering measurements, Phys. Rev. B 71 (2005).
    [208]A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Ye. Zhuravlev, D. Felker, M. Rzchowski, C. B. Eom, and E. Y. Tsymbal, Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale, Nano letters 9,3539 (2009).
    [209]V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature 460,81 (2009).
    [210]A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, A. H. G. Vlooswijk, G. Rispens, B. Noheda, M. Bibes, and A. Barthelemy, Giant tunnel electroresistance with PbTiO3 ferroelectric tunnel barriers, Appl. Phys. Lett.96,042901 (2010).
    [211]A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Solid-state memories based on ferroelectric tunnel junctions, Nat Nanotechnol 7,101 (2012).
    [212]D. J. Kim, H. Lu, S. Ryu, C. W. Bark, C. B. Eom, E. Y. Tsymbal, and A. Gruverman, Ferroelectric tunnel memristor, Nano letters 12,5697 (2012).
    [213]D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)03 films, ACS nano 5,6032 (2011).
    [214]Daniel Pantel, Haidong Lu, Silvana Goetze, Peter Werner, Dong Jik Kim, Alexei Gruverman, Dietrich Hesse, and Marin Alexe, Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers, Appl. Phys. Lett.100,232902 (2012).
    [215]Zheng Wen, Chen Li, Di Wu, Aidong Li, and Naiben Ming, Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions, Nature Materials (published online) 12,617 (2013).
    [216]Hiroyuki Yamada, Vincent Garcia, Stephane Fusil, Soren Boyn, Maya Marinova, Alexandre Gloter, Ste phane Xavier, Julie Grollier, Eric Jacquet, Cecile Carrtero, Cyrile Deranlot, Manuel Bibes, and Agnes Barthelemy, Giant Electroresistance of Super-tetragonal BiFeO3-Based Ferroelectric Tunnel Junctions, ACS nano 7,5385 (2013).
    [217]S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier, C. Deranlot, H. Yamada, C. Carretero, E. Jacquet, M. Bibes, A. Barthelemy, and J. Grollier, High-performance ferroelectric memory based on fully patterned tunnel junctions, Appl. Phys. Lett.104,052909 (2014).
    [218]Guo-Xing Miao, Markus Munzenberg, and Jagadeesh S. Moodera, Tunneling path toward spintronics, Rep. Prog. Phys.74,036501 (2011).
    [219]M. Julliere, Tunneling between ferromagnetic films, Phys. Lett. A 54,225 (1975).
    [220]J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys. Rev. Lett.74,3273 (1995).
    [221]X. W. Li, Yu Lu, G Q. Gong, Gang Xiao, A. Gupta, P. Lecoeur, J. Z. Sun, Y. Y. Wang, and V. P. Dravid, Epitaxial La0.67Sr0.33MnO3 magnetic tunnel junctions, J. Appl. Phys.81,5509 (1997).
    [222]S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature, Appl. Phys. Lett.93, 082508 (2008).
    [223]W. G. Wang, M. Li, S. Hageman, and C. L. Chien, Electric-field-assisted switching in magnetic tunnel junctions, Nat Mater 11,64 (2012).
    [224]Hitoshi Kubota, Akio Fukushima, Kay Yakushiji, Taro Nagahama, Shinji Yuasa, Koji Ando, Hiroki Maehara, Yoshinori Nagamine, Koji Tsunekawa, David D. Djayaprawira, Naoki Watanabe, and Yoshishige Suzuki, Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions, Nat. Phys.4,37 (2007).
    [225]A. Iovan, S. Andersson, Yu. G. Naidyuk, A. Vedyaev, B. Dieny, and V. Korenivski, Spin Diode Based on Fe-MgO Double, Nano letters 8,805 (2008).
    [226]W. J. Gallagher and S. S. P. Parkin, Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip, IBM Journal of Research and Development 50,5 (2006).
    [227]Yiming Huai, Spin-Transfer Torque MRAM (STT-MRAM), AAPPS Bulletin 18,33 (2008).
    [228]Manuel Bibes and Agnes Barthelemy, Multiferroics:Towards a magnetoelectric memory, Nat. Mater.7,425 (2008).
    [229]Nikolay A. Pertsev and Hermann Kohlstedt, Magnetoresistive Memory with Ultralow Critical Current for Magnetization Switching, Adv. Funct. Mater.22,4696 (2012).
    [230]J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, High-density magnetoresistive random access memory operating at ultralow voltage at room temperature, Nat Commun 2,553 (2011).
    [231]N. A. Pertsev and H. Kohlstedt, Magnetic tunnel junction on a ferroelectric substrate, Appl. Phys. Lett.95,163503 (2009).
    [232]N. Lei, T. Devolder, G. Agnus, P. Aubert, L. Daniel, J. V. Kim, W. Zhao, T. Trypiniotis, R. P. Cowburn, C. Chappert, D. Ravelosona, and P. Lecoeur, Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures, Nat Commun 4,1378 (2013).
    [233]E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthelemy, Ferroelectric and multiferroic tunnel junctions, MRS Bulletin 37,138 (2012).
    [234]Julian P. Velev, Chun-Gang Duan, J. D. Burton, Alexander Smogunov, Manish K. Niranjan, Erio Tosatti, S. S. Jaswal, and Evgeny Y. Tsymbal, Magnetic Tunnel Junctions with Ferroelectric Barriers: Prediction of Four Resistance States from First Principles, Nano Lett.9,427 (2009).
    [235]F. Yang, M. H. Tang, Z. Ye, Y. C. Zhou, X. J. Zheng, J. X. Tang, J. J. Zhang, and J. He, Eight logic states of tunneling magnetoelectroresistance in multiferroic tunnel junctions, J. Appl. Phys.102, 044504 (2007).
    [236]Jagadeesh S. Moodera, Tiffany S. Santos, and Taro Nagahama, The phenomena of spin-filter tunnelling, J. Phys.:Condens. Matter 19,165202 (2007).
    [237]M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert, Tunnel junctions with multiferroic barriers, Nat. Mater.6,296 (2007).
    [238]Michael Hambe, Adrian Petraru, Nikolay A. Pertsev, Paul Munroe, Valanoor Nagarajan, and Hermann Kohlstedt, Crossing an Interface:Ferroelectric Control of Tunnel Currents in Magnetic Complex Oxide Heterostructures, Adv. Funct. Mater.20,2436 (2010).
    [239]V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane, and A. Barthelemy, Ferroelectric control of spin polarization, Science 327,1106 (2010).
    [240]S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthelemy, and M. Bibes, Interface-induced room-temperature multiferroicity in BaTiO3, Nat. Mater. 10,753(2011).
    [241]L. Bocher, A. Gloter, A. Crassous, V. Garcia, K. March, A. Zobelli, S. Valencia, S. Enouz-Vedrenne, X. Moya, N. D. Mathur, C. Deranlot, S. Fusil, K. Bouzehouane, M. Bibes, A. Barthelemy, C. Colliex, and O. Stephan, Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions, Nano letters 12,376 (2012).
    [242]Y. W. Yin, J. D. Burton, Y. M. Kim, A. Y Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, A. Gruverman, X. G. Li, E. Y. Tsymbal, and Q. Li, Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface, Nat. Mater.12,397 (2013).
    [243]J. Burton and E. Tsymbal, Giant Tunneling Electroresistance Effect Driven by an Electrically Controlled Spin Valve at a Complex Oxide Interface, Phys. Rev. Lett.106,157203 (2011).
    [244]J. Burton and E. Tsymbal, Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface, Phys. Rev. B 80,174406 (2009).
    [245]D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Reversible electrical switching of spin polarization in multiferroic tunnel junctions, Nat. Mater.11,289 (2012).
    [246]M. Fechner, S. Ostanin, and I. Mertig, Effect of oxidation of the ultrathin Fe electrode material on the strength of magnetoelectric coupling in composite multiferroics, Phys. Rev. B 80,094405 (2009).
    [247]M. Ye Zhuravlev, S. Maekawa, and E. Y. Tsymbal, Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions, Phys. Rev. B 81 (2010).
    [1]Manfred Fiebig, Revival of the magnetoelectric effect, J. Phys. D:Appl. Phys.38, R123 (2005).
    [2]W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442, 759 (2006).
    [3]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B 67 (2003).
    [4]N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Colossal Magnetodielectric Effects in DyMn2O5, Phys. Rev. Lett.93 (2004).
    [5]D. Higashiyama, S. Miyasaka, N. Kida, T. Arima, and Y. Tokura, Control of the ferroelectric properties of DyMn2O5 by magnetic fields, Phys. Rev. B 70,174405 (2004).
    [6]D. Higashiyama and S. Miyasaka, Magnetic-field-induced polarization and depolarization in HoMn2O5 and ErMn2O5, Phys. Rev. B 72,064421 (2005).
    [7]T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. Ramirez, Magnetoelectric phase diagrams of orthorhombic RMnO3 (R=Gd, Tb, and Dy), Phys. Rev. B 71,224425 (2005).
    [8]L. H. Yin, B. Yuan, J. Chen, D. M. Zhang, Q. L. Zhang, J. Yang, J. M. Dai, W. H. Song, and Y. P. Sun, Dielectric relaxations and magnetodielectric response in BiMn2O5 single crystal, Appl. Phys. Lett. 103,152908 (2013).
    [9]S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Colossal Magnetocapacitance and Colossal Magnetoresistance in HgCr2S4, Phys. Rev. Lett.96,157202 (2006).
    [10]Bo Chen, Jun-Yong Wang, Ming-Xiu Zhou, Jian-Guo Wan, Jun-Ming Liu, and J. Ihlefeld, Enhanced Magnetodielectric Effect in Graded CoFe2O4/Pb(Zr0.52Ti0.48)O3Particulate Composite Films, J. Am. Ceram. Soc., n/a (2013).
    [11]Shumin He, Guolei Liu, Jing Xu, Jianye Yang, Yanxue Chen, Shishou Kang, Shishen Yan, and Liangmo Mei, Magnetodielectric effect in lead-free multiferroic CoFe2O4/K0.5Na0.5NbO3 bilayers, Materials Letters 89,159 (2012).
    [12]Debabrata Bhadra, Md G. Masud, S. K. De, and B. K. Chaudhuri, Observation of large magnetodielectric and direct magnetoelectric behavior in LCMO/PVDF 0-3 nanocomposites, Appl. Phys. Lett.102,072902 (2013).
    [13]G Catalan, Magnetocapacitance without magnetoelectric coupling, Appl. Phys. Lett.88,102902 (2006).
    [14]Ryan P. Rairigh, Guneeta Singh-Bhalla, Sefaatin Tongay, Tara Dhakal, Amlan Biswas, and Arthur F. Hebard, Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites, Nat. Phys.3,551 (2007).
    [15]C. Israel, V. M. Petrov, G Srinivasan, and N. D. Mathur, Magnetically tuned mechanical resonances in magnetoelectric multilayer capacitors, Appl. Phys. Lett.95,072505 (2009).
    [16]Y. P. Yao, Y. Hou, S. N. Dong, and X. G. Li, Giant magnetodielectric effect in Terfenol-D/PZT magnetoelectric laminate composite, J. Appl. Phys.110,014508 (2011).
    [17]C. C. Wang, M. He, F. Yang, J. Wen, G. Z. Liu, and H. B. Lu, Enhanced tunability due to interfacial polarization in La0.7Sr0.3MnO3/BaTiO3 multilayers, Appl. Phys. Lett.90,192904 (2007).
    [18]P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh, Interface Ferromagnetism and Orbital Reconstruction in BiFe03/Lao0.7ySr0.3MnO3 Heterostructures, Phys. Rev. Lett.105 (2010).
    [19]Shuai Zhang, Xianlin Dong, Feng Gao, Ying Chen, Fei Cao, Junyu Zhu, Xiaodong Tang, and Genshui Wang, Magnetodielectric response in 0.36BiScO3-0.64PbTiO3/La0.7Sr0.3MnO3 thin films and the corresponding model modifications, J. Appl. Phys.110,046103 (2011).
    [20]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299,1719 (2003).
    [21]Zhiguang Wang, Yaodong Yang, Ravindranath Viswan, Jiefang Li, and D. Viehland, Giant electric field controlled magnetic anisotropy in epitaxial BiFe03-CoFe204 thin film heterostructures on single crystal Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrate, Appl. Phys. Lett.99,043110 (2011).
    [22]R. Comes, H. Liu, M. Khokhlov, R. Kasica, J. Lu, and S. A. Wolf, Directed self-assembly of epitaxial CoFe2O4-BiFeO3 multiferroic nanocomposites, Nano letters 12,2367 (2012).
    [23]S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, and J. Kreisel, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics, Phys. Rev. B 75 (2007).
    [24]G. Le Bras, D. Colson, A. Forget, N. Genand-Riondet, R. Tourbot, and P. Bonville, Magnetization and magnetoelectric effect in Bi1-xLaxFeO3 (0≤x≤0.15), Phys. Rev. B 80 (2009).
    [25]F. Z. Qian, J. S. Jiang, S. Z. Guo, D. M. Jiang, and W. G. Zhang, Multiferroic properties of Bi1-xDyxFeO3 nanoparticles, J. Appl. Phys.106,084312 (2009).
    [26]Sining Dong, Ying Hou, Yiping Yao, Yuewei Yin, Dong Ding, Qingxuan Yu, and Xiaoguang Li, Magnetodielectric Effect and Tunable Dielectric Properties of LaMn1-xFexO3, J. Am. Ceram. Soc.93, 3814(2010).
    [27]L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, and J. Wang, Uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 thin films induced by multiferroic BiFeO3 with striped ferroelectric domains, Adv Mater 22,4964 (2010).
    [28]S. M.Wu, Shane A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater.9,756 (2010).
    [29]S. M. Wu, Shane A. Cybart, D. Yi, James M. Parker, R. Ramesh, and R. C. Dynes, Full Electric Control of Exchange Bias, Phys. Rev. Lett.110,067202 (2013).
    [30]Y. K. Liu, Y. P. Yao, S. N. Dong, T. Jiang, S. W. Yang, and X. G. Li, Colossal magnetocapacitance effect in BiFeO3/La5/8Ca3/8MnO3 epitaxial films, Thin Solid Films 520,5775 (2012).
    [31]Zhenxiang Cheng and Xiaolin Wang, Room temperature magnetic-field manipulation of electrical polarization in multiferroic thin film composite BiFeO3/La2/3Ca1/3MnO3, Phys. Rev. B 75 (2007).
    [32]Shengwei Yang, Sining Dong, Yukuai Liu, Yiping Yao, Yuewei Yin, and Xiaoguang Li, Tunable dielectric and ferroelectric properties in heteroepitaxial PbZr0.52Ti0.48O3/La0.625Ca0.375MnO3 thin films, J. Appl. Phys.114,034102 (2013).
    [33]J. Cohn, M. Peterca, and J. Neumeier, Low-temperature permittivity of insulating perovskite manganites, Phys. Rev. B 70 (2004).
    [34]Kenji Yoshii, Naoshi Ikeda, Yoji Matsuo, Yoichi Horibe, and Shigeo Mori, Magnetic and dielectric properties of RFe2O4, RFeMO4, and RGaCuO4 (R=Yb and Lu, M=Co and Cu), Phys. Rev. B 76 (2007).
    [35]Ying Chen, Genshui Wang, Shuai Zhang, Xiuyun Lei, Junyu Zhu, Xiaodong Tang, Yongling Wang, and Xianlin Dong, Magnetocapacitance effects of Pb0.7Sr0.3TiO3/Lao.7Sr0.3MnO3 thin film on Si substrate, Appl. Phys. Lett.98,052910 (2011).
    [36]Yu-Kuai Liu, Yue-Wei Yin, and Xiao-Guang Li, Colossal magnetoresistance in manganites and related prototype devices, Chin. Phys. B.22,087502 (2013).
    [1]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B 67 (2003).
    [2]N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Colossal Magnetodielectric Effects in DyMn2O5, Phys. Rev. Lett.93,107207 (2004).
    [3]Manfred Fiebig, Revival of the magnetoelectric effect, J. Phys. D:Appl. Phys.38, R123 (2005).
    [4]W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442, 759 (2006).
    [5]H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater.11,103 (2012).
    [6]W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures, Nat. Mater.6,348 (2007).
    [7]S. Polisetty, W. Echtenkamp, K. Jones, X. He, S. Sahoo, and Ch Binek, Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure, Phys. Rev. B 82,134419 (2010).
    [8]Y. J. Yang, Z. L. Luo, M. M. Yang, H. L. Huang, H. B. Wang, J. Bao, G Q. Pan, C. Gao, Q. Hao, S. T. Wang, Michael Jokubaitis, W. Z. Zhang, G. Xiao, Y. P. Yao, Y. K. Liu, and X. G Li, Piezo-strain induced non-volatile resistance states in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 epitaxial heterostructures, Appl. Phys. Lett.102,033501 (2013).
    [9]Hajo J. A. Molegraaf, Jason Hoffman, Carlos A. F. Vaz, Stefano Gariglio, Dirk van der Marel, Charles H. Ahn, and Jean-Marc Triscone, Magnetoelectric Effects in Complex Oxides with Competing Ground States, Adv. Mater.21,3470 (2009).
    [10]C. A. F. Vaz, J. Hoffman, Y. Segal, J. W. Reiner, R. D. Grober, Z. Zhang, C. H. Ahn, and F. J. Walker, Origin of the Magnetoelectric Coupling Effect in Pb(Zr0.2Ti0.8)03/La0.8Sr0.2MnO3 Multiferroic Heterostructures, Phys. Rev. Lett.104,127202 (2010).
    [11]V. Laukhin, V. Skumryev, X. Marti, D. Hrabovsky, F. Sanchez, M. Garcia-Cuenca, C. Ferrater, M. Varela, U. Luders, J. Bobo, and J. Fontcuberta, Electric-Field Control of Exchange Bias in Multiferroic Epitaxial Heterostructures, Phys. Rev. Lett.97,227201 (2006).
    [12]H. Bea, M. Bibes, F. Ott, B. Dupe, X. H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barth6lemy, Mechanisms of Exchange Bias with Multiferroic BiFeO3 Epitaxial Thin Films, Phys. Rev. Lett.100,017204 (2008).
    [13]YiWang Xi He, NingWu, Anthony N. Caruso, Elio Vescovo, Kirill D. Belashchenko, Robust isothermal electric control of exchange bias at room temperature, Nat. Mater.9,579 (2010).
    [14]Aymeric Sadoc, Bernard Mercey, Charles Simon, Dominique Grebille, Wilfrid Prellier, and Marie-Bernadette Lepetit, Large Increase of the Curie Temperature by Orbital Ordering Control, Phys. Rev. Lett.104,046804 (2010).
    [15]Yu-Kuai Liu, Yue-Wei Yin, and Xiao-Guang Li, Colossal magnetoresistance in manganites and related prototype devices, Chin. Phys. B.22,087502 (2013).
    [16]J. Burton and E. Tsymbal, Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface, Phys. Rev. B 80,174406 (2009).
    [17]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3multiferroic thin film heterostructures, Science 299,1719 (2003).
    [18]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater.5,823 (2006).
    [19]P. Yu, J. S. Lee, S. Okamoto, M. Rossell, M. Huijben, C. H. Yang, Q. He, J. Zhang, S. Yang, M. Lee, Q. Ramasse, R. Erni, Y. H. Chu, D. Arena, C. C. Kao, L. Martin, and R. Ramesh, Interface Ferromagnetism and Orbital Reconstruction in BiFeO3/La0.7Sr0.3MnO3 Heterostructures, Phys. Rev. Lett.105,027201 (2010).
    [20]S. M.Wu, Shane A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater.9,756 (2010).
    [21]S. M. Wu, Shane A. Cybart, D. Yi, James M. Parker, R. Ramesh, and R. C. Dynes, Full Electric Control of Exchange Bias, Phys. Rev. Lett.110,067202 (2013).
    [22]L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, and J. Wang, Uniaxial magnetic anisotropy in Lao.7Sr0.3Mn03 thin films induced by multiferroic BiFeO3 with striped ferroelectric domains, Adv Mater 22,4964 (2010).
    [23]Lu You, Baomin Wang, Xi Zou, Zhi Shiuh Lim, Yang Zhou, Hui Ding, Lang Chen, and Junling Wang, Origin of the uniaxial magnetic anisotropy in Lao.7Sr0.3MnO3 on stripe-domain BiFeO3, Phys. Rev. B 88,184426(2013).
    [24]Di Yi, Jian Liu, Satoshi Okamoto, Suresha Jagannatha, Yi-Chun Chen, Pu Yu, Ying-Hao Chu, Elke Arenholz, and R. Ramesh, Tuning the Competition between Ferromagnetism and Antiferromagnetism in a Half-Doped Manganite through Magnetoelectric Coupling, Phys. Rev. Lett. 111,127601 (2013).
    [25]Zhenxiang Cheng and Xiaolin Wang, Room temperature magnetic-field manipulation of electrical polarization in multiferroic thin film composite BiFeO3/La2/3Cal/3MnO3, Phys. Rev. B 75, 172406 (2007).
    [26]Y. K. Liu, Y. P. Yao, S. N. Dong, S. W. Yang, and X. G. Li, Effect of magnetic field on ferroelectric properties of BiFeO3/La5/8Ca3/8MnO3 epitaxial heterostructures, Phys. Rev. B 86,075113 (2012).
    [27]Mamoru Fukunaga and Yukio Noda, New Technique for Measuring Ferroelectric and Antiferroelectric Hysteresis Loops, J. Phys. Soc. Jpn.77,064706 (2008).
    [28]Nobuhiro Kin, Kazuaki Takai, and Koichiro Honda, High Speed Pulse Measurement of Micro Ferroelectric Capacitors Using a Multi-Probe Atomic Force Microscope, Japanese Journal of Applied Physics 47,4638 (2008).
    [29]Hiroshi Naganuma, Yosuke Inoue, and Soichiro Okamura, Evaluation of Electrical Properties of Leaky BiFeO3Films in High Electric Field Region by High-Speed Positive-Up-Negative-Down Measurement, Applied Physics Express 1,061601 (2008).
    [30]F. Xu, S. Trolier-McKinstry, W. Ren, Baomin Xu, Z. L. Xie, and K. J. Hemker, Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films, J. Appl. Phys.89,1336(2001).
    [31]B. Kundys and H. Szymczak, Magnetostriction in thin films of manganites and cobaltites, physica status solidi (a) 201,3247 (2004).
    [32]T. Wu, M. Zurbuchen, S. Saha, R. V. Wang, S. Streiffer, and J. Mitchell, Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures, Phys. Rev. B 73 (2006).
    [33]M. Dawber, P. Chandra, P. B. Littlewood, and J. F. Scott, Depolarization corrections to the coercive field in thin-film ferroelectrics, J. Phys.:Condens. Matter 15, L393 (2003).
    [34]R. R. Mehta, Depolarization fields in thin ferroelectric films, J. Appl. Phys.44,3379 (1973).
    [35]M. D. Biegalski, D. H. Kim, S. Choudhury, L. Q. Chen, H. M. Christen, and K. Dorr, Strong strain dependence of ferroelectric coercivity in a BiFeO3 film, Appl. Phys. Lett.98,142902 (2011).
    [36]M. Ibarra, P. Algarabel, C. Marquina, J. Blasco, and J. Garcia, Large Magnetovolume Effect in Yttrium Doped La-Ca-Mn-O Perovskite, Phys. Rev. Lett.75,3541 (1995).
    [37]D. Kim, J. Jo, Y. Kim, Y. Chang, J. Lee, Jong-Gul Yoon, T. Song, and T. Noh, Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO3 Capacitors, Phys. Rev. Lett.95,237602 (2005).
    [38]Dae Ho Kim, Ho Nyung Lee, Michael D. Biegalski, and Hans M. Christen, Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films, Appl. Phys. Lett.92,012911 (2008).
    [39]J. Jo, D. Kim, Y. Kim, S. B. Choe, T. Song, J. G. Yoon, and T. Noh, Polarization Switching Dynamics Governed by the Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films, Phys. Rev. Lett.97,247602 (2006).
    [40]G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics, Rev. Mod. Phys. 84,119(2012).
    [41]S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, and J. Kreisel, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics, Phys. Rev. B 75,024403 (2007).
    [42]G Li, H. D. Zhou, S. J. Feng, X. J. Fan, X. G. Li, and Z. D. Wang, Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites, J. Appl. Phys.92,1406 (2002).
    [43]M. Jaime, P. Lin, S. H. Chun, M. B. Salamon, P. Dorsey, and M. Rubinstein, Coexistence of localized and itinerant carriers near TC in calcium-doped manganites, Phys. Rev. B 60,1028 (1999).
    [44]Y. Jia, Li Lu, K. Khazeni, Vincent Crespi, A. Zettl, and Marvin Cohen, Magnetotransport properties of La0.6Pb0.4MnO3-δ and Nd0.6(Sr0.7Pb0.3)0.4MnO3-δ single crystals, Phys. Rev. B 52, 9147 (1995).
    [45]X. Zou, L. You, W. G Chen, H. Ding, D. Wu, T. Wu, L. Chen, and J. L. Wang, Mechanism of Polarization Fatigue, ACS nano 6,8997 (2012).
    [46]Matthew Dawber and J. F. Scott, A model for fatigue in ferroelectric perovskite thin films, Appl. Phys. Lett.76,1060 (2000).
    [47]S. H. Baek, C. M. Folkman, J. W. Park, S. Lee, C. W. Bark, T. Tybell, and C. B. Eom, The nature of polarization fatigue in BiFeO3, Adv Mater 23,1621 (2011).
    [48]Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics, J. Appl. Phys.75,454 (1993).
    [49]R. Yimnirun, S. Wongsaenmai, R. Wongmaneerung, N. Wongdamnern, A. Ngamjarurojana, S. Ananta, and Y. Laosiritaworn, Stress-and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics, Phys. Scr. T129,184 (2007).
    [50]H. Jang, S. Baek, D. Ortiz, C. Folkman, R. Das, Y. Chu, P. Shafer, J. Zhang, S. Choudhury, V. Vaithyanathan, Y. Chen, D. Felker, M. Biegalski, M. Rzchowski, X. Pan, D. Schlom, L. Chen, R. Ramesh, and C. Eom, Strain-Induced Polarization Rotation in Epitaxial (001) BiFeO3 Thin Films, Phys. Rev. Lett.101 (2008).
    [51]C. W. Huang, Y. H. Chu, Z. H. Chen, Junling Wang, T. Sritharan, Q. He, R. Ramesh, and Lang Chen, Strain-driven phase transitions and associated dielectric/piezoelectric anomalies in BiFeO3 thin films, Appl. Phys. Lett.97,152901 (2010).
    [52]Huajun Liu, Kui Yao, Ping Yang, Yonghua Du, Qing He, Yueliang Gu, Xiaolong Li, Sisheng Wang, Xingtai Zhou, and John Wang, Thickness-dependent twinning evolution and ferroelectric behavior of epitaxial BiFeO3 (001) thin films, Phys. Rev. B 82 (2010).
    [53]Sverre M. Selbach, Thomas Tybell, Mari-Ann Einarsrud, and Tor Grande, The Ferroic Phase Transitions of BiFeO3, Adv. Mater.20,3692 (2008).
    [1]Nicola A.Spaldin and Manfred Fiebig, the renaissance of magnetoelectric multiferroics, Science 309,391 (2005).
    [2]S. W. Cheong and M. Mostovoy, Multiferroics- a magnetic twist for ferroelectricity, Nat. Mater.6, 13 (2007).
    [3]J. Ma, J. Hu, Z. Li, and C. W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater.23,1062 (2011).
    [4]Y. K. Liu, Y. W. Yin, and X. G. Li, Colossal magnetoresistance in manganites and related prototype devices, Chin. Phys. B.22,087502 (2013).
    [5]Julian P. Velev, Chun-Gang Duan, J. D. Burton, Alexander Smogunov, Manish K. Niranjan, Erio Tosatti, S. S. Jaswal, and Evgeny Y. Tsymbal, Magnetic Tunnel Junctions with Ferroelectric Barriers: Prediction of Four Resistance States from First Principles, Nano Lett.9,427 (2009).
    [6]M. Zhuravlev, R. Sabirianov, S. Jaswal, and E. Tsymbal, Giant Electroresistance in Ferroelectric Tunnel Junctions, Phys. Rev. Lett.94,246802 (2005).
    [7]E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthelemy, Ferroelectric and multiferroic tunnel junctions, MRS Bulletin 37,138 (2012).
    [8]Y. W. Yin, M. Raju, W. J. Hu, X. J. Weng, K. Zou, J. Zhu, X. G. Li, Z. D. Zhang, and Q. Li, Multiferroic tunnel junctions, Front. Phys.7,380 (2012).
    [9]Z. Wen, C. Li, D. Wu, A. D. Li, and N. B. Ming, Ferroelectric-field-effect-enhanced electroresistance in metal-ferroelectric-semiconductor tunnel junctions, Nat. Mater.12,617 (2013).
    [10]M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert, Tunnel junctions with multiferroic barriers, Nat. Mater.6,296 (2007).
    II1] V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane, and A. Barthelemy, Ferroelectric control of spin polarization, Science 327,1106 (2010).
    [12]S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthelemy, and M. Bibes, Interface-induced room-temperature multiferroicity in BaTiO3, Nat. Mater. 10,753(2011).
    [13]L. Bocher, A. Gloter, A. Crassous, V. Garcia, K. March, A. Zobelli, S. Valencia, S. Enouz-Vedrenne, X. Moya, N. D. Mathur, C. Deranlot, S. Fusil, K. Bouzehouane, M. Bibes, A. Barthelemy, C. Colliex, and O. Stephan, Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions, Nano letters 12,376 (2012).
    [14]G. Radaelli, D. Petti, E. Plekhanov, I. Fina, P. Torelli, B. R. Salles, M. Cantoni, C. Rinaldi, D. Gutierrez, G. Panaccione, M. Varela, S. Picozzi, J. Fontcuberta, and R. Bertacco, Electric control of magnetism at the Fe/BaTiO3 interface, Nat. Commun.5,3404 (2014).
    [15]D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Reversible electrical switching of spin polarization in multiferroic tunnel junctions, Nat. Mater.11,289 (2012).
    [16]Y. W. Yin, J. D. Burton, Y. M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, A. Gruverman, X. G Li, E. Y. Tsymbal, and Q. Li, Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface, Nat. Mater.12,397 (2013).
    [17]Y. W. Yin, M. Raju, W. J. Hu, X. J. Weng, X. G. Li, and Q. Li, Coexistence of tunneling magnetoresistance and electroresistance at room temperature in La0.7Sr0.3MnO3/(Ba, Sr)TiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions, J. Appl. Phys.109,07D915 (2011).
    [18]Michael Hambe, Adrian Petraru, Nikolay A. Pertsev, Paul Munroe, Valanoor Nagarajan, and Hermann Kohlstedt, Crossing an Interface:Ferroelectric Control of Tunnel Currents in Magnetic Complex Oxide Heterostructures, Adv. Funct. Mater.20,2436 (2010).
    [19]J. Nogues and Ivan K. Schuller, Exchange bias, J. Magn. Magn. Mater.192,203 (1999).
    [20]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater.5,823 (2006).
    [21]Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater.7,478 (2008).
    [22]Lane W. Martin, Y. H. Chu, Mikel B. Holcomb, M. Huijben, P. Yu, S. J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nanoscale Control of Exchange Bias, Nano Lett.8,2050 (2008).
    [23]S. M.Wu, Shane A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater.9,756 (2010).
    [24]J. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Yang, D. Nikonov, Y. H. Chu, S. Salahuddin, and R. Ramesh, Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure, Phys. Rev. Lett.107,217202 (2011).
    [25]S. M. Wu, Shane A. Cybart, D. Yi, James M. Parker, R. Ramesh, and R. C. Dynes, Full Electric Control of Exchange Bias, Phys. Rev. Lett.110,067202 (2013).
    [26]M. Huijben, P. Yu, L. W. Martin, H. J. Molegraaf, Y. H. Chu, M. B. Holcomb, N. Balke, G. Rijnders, and R. Ramesh, Ultrathin limit of exchange bias coupling at oxide multiferroic/ferromagnetic interfaces, Adv. Mater.25,4739 (2013).
    [27]Y. K. Liu, Y. W. Yin, S. N. Dong, S. W. Yang, T. Jiang, and X. G. Li, Coexistence of four resistance states and exchange bias in La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3 multiferroic tunnel junction, Appl. Phys. Lett.104,043507 (2014).
    [28]M. Angeloni, G. Balestrino, N. G. Boggio, P. G. Medaglia, P. Orgiani, and A. Tebano, Suppression of the metal-insulator transition temperature in thin La0.7Sr0.3MnO3 films, J. Appl. Phys.96,6387 (2004).
    [29]H. Bea, M. Bibes, S. Cherifi, F. Nolting, B. Warot-Fonrose, S. Fusil, G. Herranz, C. Deranlot, E. Jacquet, K. Bouzehouane, and A. Barthelemy, Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films, Appl. Phys. Lett.89,242114 (2006).
    [30]Weidong Luo, Stephen Pennycook, and Sokrates Pantelides, Magnetic "Dead" Layer at a Complex Oxide Interface, Phys. Rev. Lett.101,247204 (2008).
    [31]P. Murugavel and W. Prellier, The magnetotransport properties of La0.7Sr0.3MnO3/BaTiO3 superlattices grown by pulsed laser deposition technique, J. Appl. Phys.100,023520 (2006).
    [32]J. Z. Sun, L. Krusin-Elbaum, P. R. Duncombe, A. Gupta, and R. B. Laibowitz, Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions, Appl. Phys. Lett.70,1769(1997).
    [33]M. Viret, L. Ranno, and J. M. D. Coey, Magnetic localization in mixed-valence manganites, Phys. Rev. B 55,8067 (1997).
    [34]M. Murakami, S. Fujino, S. H. Lim, L. G. Salamanca-Riba, M. Wuttig, I. Takeuchi, Bindhu Varughese, H. Sugaya, T. Hasegawa, and S. E. Lofland, Microstructure and phase control in Bi-Fe-O multiferroic nanocomposite thin films, Appl. Phys. Lett.88,112505 (2006).
    [35]M. Bowen, M. Bibes, A. Barthelemy, J. P. Contour, A. Anane, Y. Lemaitre, and A. Fert, Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments, Appl. Phys. Lett.82,233 (2003).
    [36]S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat Mater 3,862 (2004).
    [37]I. Infante, F. Sanchez, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Estrade, F. Peiro, J. Arbiol, V. Laukhin, and J. Espinos, Elastic and orbital effects on thickness-dependent properties of manganite thin films, Phys. Rev. B 76 (2007).
    [38]M.-H. Jo, M. G. Blamire, D. Ozkaya, and A. K. Petford-Long, Spin- and charge-modulated trilayer magnetic junctions La.7Ca0.3MnO3/La0.45Ca0.55MnO3/La0.7Ca0.3MnO3, J. Phys.:Condens. Matter 15,5243 (2003).
    [39]H. Itoh, T. Ohsawa, and J. Inoue, Magnetoresistance of Ferromagnetic Tunnel Junctions in the Double-Exchange Mode, Phys. Rev. Lett.84,2501 (2000).
    [40]Evgeny Y. Tsymbal and Hermann Kohlstedt, Tunneling Across a Ferroelectric, Science 313,181 (2006).
    [41]P. Yu, J. S. Lee, S. Okamoto, M. Rossell, M. Huijben, C. H. Yang, Q. He, J. Zhang, S. Yang, M. Lee, Q. Ramasse, R. Erni, Y. H. Chu, D. Arena, C. C. Kao, L. Martin, and R. Ramesh, Interface Ferromagnetism and Orbital Reconstruction in BiFeO3/La0.7Sr0.3MnO3 Heterostructures, Phys. Rev. Lett.105,027201(2010).
    [42]H. Bea, S. Fusil, K. Bouzehouane, M. Bibes, M. Sirena, G. Herranz, E. Jacquet, J. P. Contour, and A. Barthelemy, Ferroelectricity Down to at Least 2 nm in Multiferroic BiFeO3 Epitaxial Thin Films, Japanese Journal of Applied Physics 45, L187 (2006).
    [43]D. Fong, A. Kolpak, J. Eastman, S. Streiffer, P. Fuoss, G. Stephenson, Carol Thompson, D. Kim, K. Choi, C. Eom, I. Grinberg, and A. Rappe, Stabilization of Monodomain Polarization in Ultrathin PbTiO3 Films, Phys. Rev. Lett.96 (2006).
    [44]Y. H. Chu, T. Zhao, M. P. Cruz, Q. Zhan, P. L. Yang, L. W. Martin, M. Huijben, C. H. Yang, F. Zavaliche, H. Zheng, and R. Ramesh, Ferroelectric size effects in multiferroic BiFeO3 thin films, Appl. Phys. Lett.90,252906 (2007).
    [45]L. Jiang, W. S. Choi, H. Jeen, S. Dong, Y. Kim, M. G. Han, Y. Zhu, S. V. Kalinin, E. Dagotto, T. Egami, and H. N. Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano letters 13,5837 (2013).
    [46]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299,1719 (2003).
    [47]J. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. Rossell, P. Yu, L. You, C. Wang, C. Kuo, J. Heron, Z. Hu, R. Zeches, H. Lin, A. Tanaka, C. Chen, L. Tjeng, Y. H. Chu, and R. Ramesh, Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-like BiFeO3, Phys. Rev. Lett.107 (2011).
    [48]Hiroyuki Yamada, Vincent Garcia, Stephane Fusil, Soren Boyn, Maya Marinova, Alexandre Gloter, Ste phane Xavier, Julie Grollier, Eric Jacquet, Cecile Carrtero, Cyrile Deranlot, Manuel Bibes, and Agnes Barthelemy, Giant Electroresistance of Super-tetragonal BiFeO3-Based Ferroelectric Tunnel Junctions, ACS nano 7,5385 (2013).
    [49]P. R. Willmott and J. R. Huber, Pulsed laser vaporization and deposition, Rev. Mod. Phys.72,315 (2000).
    [50]H. Boschker, M. Huijben, A. Vailionis, J. Verbeeck, S. van Aert, M. Luysberg, S. Bals, G. van Tendeloo, E. P. Houwman, G. Koster, D. H. A. Blank, and G. Rijnders, Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics, J. Phys. D:Appl. Phys.44,205001 (2011).
    [51]D. J. Kim, H. Lu, S. Ryu, C. W. Bark, C. B. Eom, E. Y. Tsymbal, and A. Gruverman, Ferroelectric tunnel memristor, Nano letters 12,5697 (2012).
    [52]V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature 460,81 (2009).
    [1]Li Yan, Yaodong Yang, Zhiguang Wang, Zengping Xing, Jiefang Li, and D. Viehland, Review of magnetoelectric perovskite-spinel self-assembled nano-composite thin films, Journal of Materials Science 44,5080 (2009).
    [2]J. Ma, J. Hu, Z. Li, and C. W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater.23,1062 (2011).
    [3]N. D. Mathur and J. F. Scott, Magnetoelectric phenomena and devices, Philos Trans A Math Phys Eng Sci 372,20120453 (2014).
    [4]Yongke Yan, Yuan Zhou, and Shashank Priya, Giant self-biased magnetoelectric coupling in co-fired textured layered composites, Appl. Phys. Lett.102,052907 (2013).
    [5]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B 67 (2003).
    [6]A. K. Zvezdin, A. M. Kadomtseva, S. S. Krotov, A. P. Pyatakov, Yu F. Popov, and G. P. Vorob'ev, Magnetoelectric interaction and magnetic field control of electric polarization in multiferroics, J. Magn. Magn. Mater.300,224 (2006).
    [7]Nicola A.Spaldin and Manfred Fiebig, the renaissance of magnetoelectric multiferroics, Science 309,391 (2005).
    [81 T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. Ramirez, Magnetoelectric phase diagrams of orthorhombic RMnO3 (R=Gd, Tb, and Dy), Phys. Rev. B 71,224425 (2005).
    [9]R.E. Newnham, D.P. Skinner, and L.E. Cross, Connectivity and piezoelectric-pyroelectric composites, Materials Research Bulletin 13,525 (1978).
    [10]M. Venkata Ramanaa, N. Ramamanohar Reddy, G. Sreenivasulu, K. V. Siva kumar, B. S. Murty, and V. R. K. Murthy, Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4-δ/PbZr0.52Ti0.48O3 composites-dielectric, piezoelectric and magnetic properties, Curr. Appl Phys.9,1134 (2009).
    [11]Dandan Wu, Weihua Gong, Haijin Deng, and Ming Li, Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing, J. Phys. D:Appl. Phys.40,5002 (2007).
    [12]Junwu Nie, Guoyue Xu, Ying Yang, and Chuanwei Cheng, Strong magnetoelectric coupling in CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method, Materials Chemistry and Physics 115,400 (2009).
    [13]B. K. Bammannavar, L. R. Naik, and B. K. Chougule, Studies on dielectric and magnetic properties of (x) Ni0.2Co0.8Fe2O4+(1-x) barium lead zirconate titanate magnetoelectric composites, J. Appl. Phys.104,064123 (2008).
    [14]B. K. Bammannavar, G. N. Chavan, L. R. Naik, and B. K. Chougule, Magnetic properties and magnetoelectric (ME) effect in ferroelectric rich Ni0.2Co0.8 Fe2O4+PbZr0.8Ti0.2O3 ME composites, Materials Chemistry and Physics 117,46 (2009).
    [15]S. Narendra Babu, K. Srinivas, S. V. Suryanarayana, and T. Bhimasankaram, Magnetoelectric properties in NCMF/PZT particulate and bulk laminate composites, J. Phys. D:Appl. Phys.41,165407 (2008).
    [16]S.L. Kadam, K.K. Patankar, V.L. Mathe, M.B. Kothale, R.B. Kale, and B.K. Chougule, Electrical properties and magnetoelectric effect in Ni0.75Co0.25Fe2O4+Ba0.8Pb0.2TiO3 composites, Materials Chemistry and Physics 78,684 (2003).
    [17]Su-Chul Yang, Chee-Sung Park, Kyung-Hoon Cho, and Shashank Priya, Self-biased magnetoelectric response in three-phase laminates, J. Appl. Phys.108,093706 (2010).
    [18]P. A. Jadhav, M. B. Shelar, S. S. Chougule, and B. K. Chougule, Synthesis and magnetoelectric properties of y (Ni0.3Cu0.4Zn0.3Fe2O4)+(1-y) [50%BaTiO3+50%PZT] ME composites, Journal of Alloys and Compounds 490,195 (2010).
    [19]Arif D. Sheikh and V. L. Mathe, Effect of the piezomagnetic NiFe2O4 phase on the piezoelectric Pb(Mg1/3Nb2/3)o.67Tio.3303phase in magnetoelectric composites, Smart Mater. Struct.18,065014 (2009).
    [20]K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, and R.N. Patil, AC conductivity and magnetoelectric effect in MnFel.8Cr0.2O4-BaTiO3 composites, Mater. Sci. Eng., B 87,53 (2001).
    [21]K.K. PATANKAR, V.L. MATHE, A.N. PATIL, S.A. PATIL, S.D. LOTKE, Y.D. KOLEKAR, and P.B. JOSHI, Electrical Conduction and Magnetoelectric Effect in CuFe1.8Cr0.2O4-Ba0.8Pb0.2TiO3 Composites, J. Electroceram.6,115 (2001).
    [22]G. Srinivasan, E. T. Rasmussen, A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, and Y. K. Fetisov, Structural and magnetoelectric properties of MFe2O4-PZT (M=Ni,Co) and Lax(Ca,Sr)1-xMnO3-PZT multilayer composites, Applied Physics A:Materials Science & Processing 78,721 (2004).
    [231 G. Srinivasan, C. P. DeVreugd, C. S. Flattery, V. M. Laletsin, and N. Paddubnaya, Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites, Appl. Phys. Lett. 85,2550 (2004).
    [24]Jianhong Shen, Yang Bai, Ji Zhou, and Longtu Li, Magnetic Properties of a Novel Ceramic Ferroelectric-Ferromagnetic Composite, J. Am. Ceram. Soc.88,3440 (2005).
    [25]R. Yimnirun, S. Ananta, and P. Laoratanakul, Dielectric and ferroelectric properties of lead magnesium niobate-lead zirconate titanate ceramics prepared by mixed-oxide method, J. Eur. Ceram. Soc.25,3235 (2005).
    [26]Xiwei Qi, Ji Zhou, Baorang Li, Yingchun Zhang, Zhenxing Yue, Zhilun Gui, and Longtu Li, Preparation and Spontaneous Polarization-Magnetization of a New Ceramic Ferroelectric-Ferromagnetic Composite, J. Am. Ceram. Soc.87,1848 (2004).
    [27]G. Srinivasan, E. Rasmussen, J. Gallegos, R. Srinivasan, Yu Bokhan, and V. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Phys. Rev. B 64,214408 (2001).
    [28]Ce-Wen Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland, and G. Srinivasan, Multiferroic magnetoelectric composites:Historical perspective, status, and future directions, J. Appl. Phys.103, 031101 (2008).
    [29]Jun Lu, De-An Pan, Bai Yang, and Lijie Qiao, Wideband magnetoelectric measurement system with the application of a virtual multi-channel lock-in amplifier, Meas. Sci. Technol.19,045702 (2008).
    [30]姚一平,多铁复合材料的磁电耦合及电阻转换效应,中国科学技术大学博士学位论文(2012年).
    [31]Giap V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Basques, The lock-in technique for studying magnetoelectric effect, J. Magn. Magn. Mater.316,390 (2007).
    [32]A. McDannald, M. Staruch, G. Sreenivasulu, C. Cantoni, G. Srinivasan, and M. Jain, Magnetoelectric coupling in solution derived 3-0 type PbZr0.52Ti0.48O3:xCoFe2O4 nanocomposite films, Appl. Phys. Lett.102,122905 (2013).
    [33]C. Sudakar, R. Naik, G. Lawes, J. V. Mantese, A. L. Micheli, G. Srinivasan, and S. P. Alpay, Internal magnetostatic potentials of magnetization-graded ferromagnetic materials, Appl. Phys. Lett.90, 062502 (2007).
    [34]U. Laletin, G. Sreenivasulu, V. M. Petrov, T. Garg, A. R. Kulkarni, N. Venkataramani, and G. Srinivasan, Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites, Phys. Rev. B 85,104404 (2012).
    [35]C. A. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater.22,2900 (2010).
    [36]Rashed A. Islam, Hyeoungwoo Kim, Shashank Priya, and Harry Stephanou, Piezoelectric transformer based ultrahigh sensitivity magnetic field sensor, Appl. Phys. Lett.89,152908 (2006).
    [37]Lei Li and Xiang Ming Chen, Magnetoelectric characteristics of a dual-mode magnetostrictive/piezoelectric bilayered composite, Appl. Phys. Lett.92,072903 (2008).
    [38]R P MAHAJAN, K K PATANKAR, M B KOTHALE, and S A PATIL, Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites, Bull. Mater. Sci.23, 273 (2000).
    [39]Sea-Fue Wang, Yuh-Ruey Wang, Thomas C.K.. Yang, Po-Jeng Wang, and Chun-An Lu, Densification and properties of fluxed sintered NiCuZn ferrites, J. Magn. Magn. Mater.217,35 (2000).
    [40]X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhudu, A Ferroelectric Ferromagnetic Composite Material with Significant Permeability and Permittivity, Advanced Functional Materials 14,920 (2004).
    [41]G. Srinivasan, V.M. Laletsin, R. Hayes, N. Puddubnaya, E.T. Rasmussen, and D.J. Fekel, Giant magnetoelectric effects in layered composites of nickel zinc ferrite and lead zirconate titanate, Solid State Commun.124,373 (2002).
    [42]J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Magnetoelectric CoFe2O4-Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process, Appl. Phys. Lett.86,122501 (2005).
    [43]G. Sreenivasulu, V. M. Petrov, L. Y. Fetisov, Y. K. Fetisov, and G. Srinivasan, Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys, Phys. Rev. B 86, 214405 (2012).
    [44]Yiping Yao, Ying Hou, Sining Dong, Xiaohua Huang, Qingxuan Yu, and Xiaoguang Li, Influence of magnetic fields on the mechanical loss of Terfenol-D/PbZr0.52Ti0.48O3/Terfenol-D laminated composites, Journal of Alloys and Compounds 509,6920 (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700