铁电陶瓷的电致失效力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电陶瓷作为新一代功能陶瓷的代表,其可靠性问题日益受到人们的关注。
     铁电陶瓷在电场或力电耦合载荷作用下的典型失效模式为电致断裂和电致疲
     劳。本文尝试采用断裂力学、畴变细观力学和介电物理学相结合的方法,从实验
     和理论角度对铁电陶瓷的电致失效力学问题进行了研究。论文从电场驱动的裂尖
     微结构演化导致电致失效这一基本思路出发,获得了裂尖集中电场诱发90°铁电
     畴变的实验图像,提出了电致畴变断裂的理论模型,阐明了铁电陶瓷电致断裂,
     疲劳裂纹扩展和裂纹偏折的失效机理。在铁电陶瓷电致失效研究这一新领域所完
     成的主要工作有:
     一、首次报道了裂尖集中电场诱发的90°铁电畴变的实验现象。利用不同取向铁
     电畴的腐蚀速率不同的原理,获得了裂尖前方晶粒内电场诱发的90°a-c畴
     结构的SEM照片。这一观测结果为电场驱动裂尖微结构演化的模型提供了
     清晰的物理过程图像,并为进一步的理论分析提供了直接的实验依据。
     二、提出了基于细观物理机制的小范围畴变模型。区别于传统的介电失效,揭示
     了由裂尖集中电场引起畴变,畴变导致非协调应力,由应力驱动断裂的电致
     失效机理。在此基础上,进行了电致断裂、断裂韧性的各向异性和断裂韧性
     关于电场的非对称变化的理论分析。解决了基于线性压电本构的电致断裂分
     析与实验观测不一致的矛盾。
     三、观测了循环电场低于矫顽电场加载时,电致疲劳裂纹扩展的规律:首次阐明
     了电致疲劳裂纹扩展的机理。不同于Cao和Evans的实验报道(矫顽电场以
     下,裂纹不发生扩展),通过长焦距显微镜实时观测了循环电场的幅值低于
     矫顽电场时,铁电陶瓷中疲劳裂纹扩展的规律。在实验基础上,理论分析了
     铁电畴在交变电场作用下循环翻转而产生循环应力,以及由循环应力驱动裂
     纹以起裂、扩展、止裂、再起裂的模式循环向前扩展的过程。定量给出了电
     致疲劳裂纹扩展量与电场翻转次数的理论预测值,并与实验观测结果吻合较
     好。
     四、求解了铁电陶瓷中偏折裂纹的问题,讨论了电场对裂纹偏折的影响。基于线
    
    
    
     性压电本构,将偏折裂纹等效为连续分布的位错和电偶极子,采用推广的
     Stroh方法,建立了以位错密度和电偶极子密度为未知量的奇异积分方程
     组。数值计算结果表明,1.在垂直拉应力和垂直正电场作用下,裂纹不发
     生偏折,沿直线扩展;2.在混合型机械载荷作用下,垂直正电场将增加裂
     纹偏折角度,3.沿水平侧向施加的正电场和水平拉应力促进裂纹偏折,而
     沿水平侧向施加的负电场和水平压应力抑制裂纹偏折。
Reliability concerns of ferroelectric ceramics, as one of the most important
     functional ceramics, call for a better understanding of their failure mechanisms. Under
     an electric field or a combined electric and mechanical loading, the ferroelectric
     ceramics are susceptible to electric fracture and electric fatigue. By the methods of
     fracture mechanics, mesoscopic mechanics and dielectric physics, the problem of
     electric field induced failure in ferroelectric ceramics is experimentally and
     theoretically studied in this dissertation. We approach the problem based on the
     perception that electric field induced microstructure evolution at the crack tip will
     lead to fracture and fatigue. It follows that a micrograph of intensified electric field
     induced 90° domain switching at the crack tip is obtained, a theoretical model of
     domain switching induced fracture is proposed, and the failure mechanisms of electric
     fracture, electric fatigue and crack kinking are revealed. The major works include:
    
     1. Experimental observation on the electric field induced 9O° domain switching at
     the crack tip is first reported. The difference in etch rates of domains with distinct
     orientations gives rise to topographical contrast which can be used to identify the
     domain configuration. A SEM micrograph of 90° a-c domain configuration in
     the grain ahead of a crack tip is obtained. The result reveals a clear physical
     picture of electric field induced microstructure evolution, and lends a direct
     experimental support to the theoretical analysis.
    
     2. A mechanism based small scale domain switching model is proposed in the
     dissertation. In contrast to the conventional perception of dielectric failure, the
     failure mechanism is revealed as follows: the intensified electric field in the
     vicinity of a crack tip drives domains to switch, the switched domains induce
     incompatible stress under the constraint of unswitched materials, and
     consequently the induced stress leads to fracture. The model is capable of
     explaining the experimental phenomena, such as electric fracture, fracture
     toughness anisotropy, asymmetric variation of fracture toughness of poled
     ferroelectrics under positive and negative electric fields. The inconsistency
     between the experimental observation and the electric fracture analysis based on
    
    
    
     the liner piezoelectric constitutive equations is resolved.
    
     3. Electric field induced fatigue crack growth in ferroelectric ceramics is observed
     and the mechanism of fatigue crack growth is revealed. In contrast to the
     experimental report by Cao and Evans, we found that the crack would extend
     under a cyclic electric field below the coercive field by the in-situ observation
     through a long focal length optical microscope. The mechanism of fatigue crack
     growth is understood as follows: under an alternating electric field, the field
     concentrated around the crack causes the ferroelectrics to undergo cyclic local
     domain switching, which generates a cyclic driving stress field near the crack tip.
     Driven by the switching induced stress field, the crack extends in a repeated
     process of initiation, growth, arrest and re-initiation. The prediction on the crack
     growth versus electric field reversals agrees well with experimental
     measurements.
    
     4. Crack kinking in ferroelectric ceramics is explored within the framework of the
     linear piezoelectric constitutive relation, with an emphasis on the effect of electric
     field. The kink of a crack is mode
引文
1.杨卫.电致失效力学,力学进展.1996,26(3):338~352
    2.Suo Z. Mechanics concepts for failure in ferroelectric ceramics. Smart Structures and Material. (ed. A. V. Srinivasan)ASME, New York, 1991, 1~6
    3.杨卫.固体破坏理论的若干问题.走向21世纪的中国力学--中国科协第九次青年科学家论坛报告文集.北京:清华大学出版社,1996,1~10
    4.王晓明,沈亚鹏,尹林.机敏材料和机敏结构的力学分析.力学进展.1995,25(2):209~222
    5.杨卫,朱廷,赵智军,黄克智.电子材料与装置的破坏力学.现代力学与科技进步,庆祝中国力学学会成立40周年文集,北京,1998,98~103
    6. Cross L E. Ferroelectric ceramics: tailoring properites for specific applications.In Setter N and Colla E L, eds. Ferroelectric Ceramics. Beirkhauser, Basel, 1993, 1~85
    7. Scott J F, Araujo C A. Ferroeletric memories. Science. 1989, 246, 1400~1405
    8. Suo Z. Stress and strain in ferroelectrics. Current Opinion in Solid State & Materials Science. 1998, 3:486~489
    9. Winzer S R, Shankar N, Ritter A P. Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 1989, 72:2246~2257
    10. Furuta A, Uchino K. Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 1993, 76(6): 1615~1617
    11. Chung H T, Shin B C, Kim H G. Grain-size dependence of electrically induced microcracking in ferroelectric ceramics. J. Am. Ceram. Soc. 1989, 72(2): 327~329
    12. Pisarenko G G, Chushko V M, Kovalev S P. Anisotropy of fracture toughness of piezoelectric ceramics. J. Am. Ceram. Soc. 1985, 68(5): 259~265
    13. Mehta K, Virkar A V. Fracture mechanisms in ferroelectric-ferroelastic Lead Zirconate Titanate (Zr:Ti=0.54:0.46) ceramics. J. Am. Ceram. Soc. 1990, 73(3): 567~574
    14. Calderon-Moreno J M, Guiu F, Meredith M, et al. Fracture toughness anisotropy of PZT. Mater. Sci Eng. 1997, A234:1062~1066
    
    
    15. Park E T, Routbort J L, Li Z, et al. Anisotropic microhardness in single-crystal and polycrystalline BaTiO3. J. Mater. Sci. 1998,33: 669-673
    16. Park S, Sun C T. Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 1995, 78(6) : 1475-1480
    17. Singh R N, Wang H. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings: An experimental study. Proc. of AMD-vol. 2067 MD-vol. 58, Adaptive Materials Systems, ed. Carman G P, Lynch C and Sottos N R, ASME, 1995: 85-95
    18. Wang H, Singh R N. Crack propagation in piezoelectric ceramics: effects of applied electric field. J Appl. Phys. 1997, 81(11) : 7471-7479
    19. Fu R, Zhang T Y. Fracture of piezoelectric ceramics. In: Goncalves P B, Jasiuk I, Pamplona D, et al. eds. Appl. Mech. in Americas. Brazil, 1999: 647-660
    20. McQuarrie M. Time effects in the hysteresis loop of polycrystalline barium titanate. J. Appl. Phys. 1953,24: 1334-1335
    21. Merz W J, Anderson J R. Ferroelectric storage device. Bell Lab. Rec. 1955, 33: 335-342
    22. Taylor G W. Electric properties of niobium-doped ferroelectric Pb(Zn,Sn,Ti)O3 ceramics. J. Appl. Phy. 1967, 38:4697-4706
    23. Jiang Q, Subbarao E C, Cross L E. Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics. J Appl. Phys. 1994, 75(11) : 7433-7443
    24. Jiang Q, Subbarao E C, Cross L E. Grain size dependence of electric fatigue behavior of hot pressed PLZT ferroelectric ceramics. Acta metall. mater. 1994, 42(11) : 3687-3694
    25. Jiang Q, Cao W, Cross L E. Electric fatigue in lead zirconate titanate ceramics. J. Amer. Ceram. Soc. 1994,77(1) : 211-215
    26. Cao H C, Evans A G. Electric-field-induced fatigue crack growth in piezoelectrics. J. Am. Ceram. Soc. 1994, 77(7) : 1783-1786
    27. Hill M D, White G S, Hwang C S, et al. Cyclic damage in Lead Zirconate Titanate. J. Am. Ceram. Soc. 1996, 79(7) : 1915-1920
    
    
    28. Kim S H, Tai W P. Relationship between cyclic loading and degradation of piezoelectric properties in Pb(Zr,Ti)O3 ceramics. Mater Sci. Eng. 1996, B38, 182-185
    29. Lynch C S, Yang W, Collier L et al. Electric field induced cracking in ferroelectric ceramics. Ferroelectrics. 1995,166: 11-30
    30. Parton V Z. Fracture behaviour of piezoelectric materials. Acta Astronaut. 1976, 3: 671-683
    31. Deeg W F. The analysis of dislocation, crack, and inclusion problems in piezoelectric soldids: Ph.D Dissertation. Stanford University, U.S.A. 1980
    32. Pak Y E. Crack extension force in a piezoelectric material. J. Appl. Mech. 1990, 57: 647-653
    33. Sosa H. Plane problems in piezoelectric media with defects, Int. J. Solids Struc. 1991,28:491-505
    34. Sosa H. On the fracture mechanics of piezoelectric media with defects. Int. J. Solids Struc. 1992,29: 2613-2622
    35. Kumar S, Singh R N. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings. Acta Mater. 1996,44(1) : 173-20
    36. Kumar S, Singh R N. Energy release rate and crack propagation in piezoelectric materials. Part II: combined mechanical and electrical loads. Acta Mater. 1997, 45(2) : 859-868
    37. Kumar S, Singh R N. Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials. Mater. Sci. Eng. 1997, A231: 1-9
    38. Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids. 1992,40(4) : 739-765
    39. Yu S W, Qin Q H. Damage analysis of materials with thermopiezoelectric properties, part I: crack tip singularities. J. Theor. Appl. Fract. Mech. 1996, 25: 263-277
    40. Yu S W, Qin Q H. Damage analysis of materials with thermopiezoelectric properties, partⅡ: effective crack model. J. Theor. Appl. Fract. Mech. 1996, 25: 279-288
    41. Zhang T Y , Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material. Int. J. Solids Struc. 1996, 33(3) : 343-359
    
    
    42. McMeeking R M. Electrostrictive stresses near crack-like flaws. J. appl. Math. Phys. 1989,40(9) : 615-627
    43. Dunn M L. The effects of crack face boundary conditions on the fractue mechanics of piezoelectric solids. Engng Fract. Mech. 1994,48(1) : 25-39
    44. Zhang T Y, Qian C F, Tong P. Linear electro-elastic analysis of a cavity of a crack in a piezoelectric material. Int. J. Solids Struct. 1998, 35: 2121-2149
    45. Sosa H, Khutoryansky N. New developments concerning piezoelectric materials with defects. Int. J. Solids Struc. 1996, 33(23) : 3399-3414
    46. Sosa H A, Pak Y E. Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids Struc. 1990,26:1-15
    47. Wang B. Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids Struct. 1992,29:293-308
    48. Shindo Y, Ozawa E, Nowacki J P. Singular stress and electric fields of a cracked piezoelectric strip. Appl. Electromagn. Mater. 1990,1: 77-87
    49. Li S F, Mataga P A. Dynamic crack-propagation in piezoelectric materials 1. electrode solution. J Mech Phy Solids, 1996,44(11) : 1799-1830
    50. Li S F, Mataga P A. Dynamic crack-propagation in piezoelectric materials 2. vacuum solution. J Mech Phy Solids, 1996,44(11) : 1831-1866
    51. Chen Z T, Yu S W. Antiplane Yoffe crack problem in piezoelectric materials. Int J Fract, 1997, 84(3) :L41-145
    52. Chen Z T, Yu S W. A semi-infinite crack under anti-plane mechanical impact in piezoelectric materials. Int J Fract, 1998, 88(3) :L53-156
    53. Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 1995,43(5) : 2073-2084
    54. Lynch C S. The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Mater. 1996,44(10) : 4137-4148
    55. Cao H, Evans A G. Nonlinear deformation of ferroelectric ceramics. J. Amer. Ceram. Soc. 1993, 76: 890-896
    56. Yang W, Suo Z. Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids. 1994,42(4) : 649-663
    57. Hao T H, Gong X, Suo Z. Fracture mechanics for the design of ceramic multilayer actuators. J. Mech. Phys. Solids. 1996,44(1) : 23-48
    
    
    58. Gong X, Suo Z. Reliability of ceramic multilayer actuators: a nonlinear finite element simulation. J. Mech. Phys. Solids. 1996,44(5) : 751-769
    59. Horn C L, Shankar N. A fully coupled constitutive model for electrostrictive ceramic materials. J. Intelligent Mater. Systems Struct. 1994, 5: 795-801
    60. Gao H J, Zhang T Y, Tong P. Local and global energy release rates for an electrically yielded crack in piezoelectric ceramics. J. Mech. Phys. Solids. 1997, 45(4) : 491-510
    61. Fulton CC, Gao H. Electrical nonlinearity in fracture of piezoelectric ceramics. Appl. Mech. Rev. 1997, 50: S56-S63
    62. Fulton C C, Gao H. Nonlinear fracture mechanics of piezoelectric ceramics, in Smart Mater. Struct., SPIE (eds. V. V. Varadan and J. Chandra), 1998, 3323: 119-127
    63. Ru C Q. Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramic. Int. J. Solids Struct. 1999, 36(6) : 869-883
    64. He M Y, Suo Z, McMeeking R M, et al. The mechanics of some degradation mechanisms in ferroelectric ceramic actuators, Smart Mater. Struct., SPIE (eds. V. V. Varadan and J. Chandra), 1994,2189: 344-356
    65. Kim S J, Jiang Q. Microcracking and electric fatigue of polycrystalline ferroelectric ceramics, Smart Mater. Struct. 1996, 5: 321-326
    66. Zhang Y, Jiang Q. Twinning-induced stress and electric field concentrations in ferroelectric ceramics. J. Am. Ceram. Soc. 1995, 78(12) : 3290-3296
    67. Zhu T, Yang W. Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 1997,45(11) : 4695-4702
    68. Yang W, Zhu T. Switch-toughening of ferroelectrics subjected to electric field. J. Mech. Phys. Solids. 1998, 46(2) : 291-311
    69. Zhu T, Yang W. Crack kinking in a piezoelectric solid. Int. J. Solids Struct. 1999
    70. Yang W, Zhu, T. Fracture and fatigue of ferroelectrics under electric and mechanical loading. Fract. Fatig. Eng. Mater. Struct. 1998
    71. Zhu T, Yang W. Fracture, Fatigue and domain-switch of ferroelectrics under electric and mechanical loading. Key Eng. Mater. 1998,145,989-998
    72. Zhu T, Yang W, Fang F. Fatigue crack growth in ferroelectric ceramics below the coercive field. J. Mater. Sci. Lett. 1999, accepted.
    
    
    73. Fang F, Yang W, Zhu T. Crack tip 90 domain switching in tetragonal lanthanummodified lead zirconate titanate under an electric field. J. Mater. Research. 1999, accepted.
    74.朱廷,方菲,杨卫.铁电陶瓷电致疲劳的实验观测.第九届全国疲劳与断裂学术会议论文集,昆明,1998,68~71
    75.方菲,杨卫,朱廷.极化铁电陶瓷裂纹附近由电场诱发铁电畴变的实验观察.第九届全国疲劳与断裂学术会议论文集,昆明,1998,72~75
    76.杨卫,方菲,朱廷.铁电陶瓷的电致断裂与电致疲劳.第九届全国疲劳与断裂学术会议论文集,昆明,1998,50~53
    77.许煜寰.铁电与压电材料.北京:科学出版社.1996
    78.钟维烈.铁电物理学.北京:科学出版社.1996
    79. McMeeking R M, Hwang S C. On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching. Ferroelectrics, 1997, 200: 151~173
    80. Hwang S C, McMeeking R M. The prediction of switching in polycrystalline ferroelectric ceracmics. Ferroelectrics, 1998, 207:465~495
    81. Hwang S C, McMeeking R M. A finite element model of ferroelectric polycrystals. Ferroelectrics, 1998, 211:177~194
    82. Hwang S C, Huber J E, McMeeking R M, et al. The simulation of switching in polycrystalline ferroelectric ceramics. J Appl. Phy. 1998, 84:1530~1540
    83. Hwang S C, McMeeking R M. A finite element model of ferroelastic polycrystals. Int. J. Solids Struct. 1999, 36(10): 1541~1556
    84. Chen X, Fang D N, Hwang K C. Micromechanics constitutive researches for ferroelectric single crystal with domain switching. In Wang T C, Chou T W, eds. Progress in Advanced Materials and Mechanics. Proc. of Int. Conference on Advanced Materials and Mechanics, Beijing. 1996, 465~470
    85. Chen X, Fang D N, Hwang K C. Micromechanics simulation of ferroelectric polarization switching. Acta. Mater. 1998, 45(3): 3181~3189
    86. Lu W, Fang D N, Hwang K C. Numerical analysis of ferroelectric/ferroelastic domain switching in ferroelectric ceramics. Comp. Mater. Sci. 1997, 8, 291~308
    87.吕炜.铁电材料与形状记忆合金的宏细观本构研究:[博士学位论文].北京:清华大学工程力学系,1998
    
    
    88. Jiang B, Fang D N, Hwang K C. A unified model for the multiphase piezocomposites with ellipsoidal inclusion. Int. J. Solids Struct. 1999, 36: 2707~2733
    89.江冰,方岱宁.铁电本构关系及其相关问题的研究进展.力学进展,1998,28(3):312~322
    90.江冰.铁电复合材料的本构关系:[博士学位论文].北京:清华大学工程力学系,1998
    91. Huo Y, Jiang Q. Modeling of domain switching in ferroelectric ceramics: an example. Int. J. Solids Struct. 1998, 35(13): 1339~1353
    92. Jiang Q. On modeling of phase transformations in ferroelectric materials. Acta Mech. 1994, 102, 149~165
    93. Hatano J, Lebihan F, Aikawa F, et al. Real-time observation of ferroelectric domains in NaNO_2 by nematic liquid crystal method. Ferroelectrics. 1990, 106: 33~38
    94. Hu Y H, Chart H M, Zhang X W, et al. Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO_3. J. Amer. Ceram. Soc. 1986, 69(8): 594~602
    95. Mulvihill M L, Uchino K, Li Z, et al. In-situ observation of the domain configuration during the phase transitions in barium titanate. Phil. Mag. B. 1996, 74(1): 25~36
    96. Park S B, Park S S, Carman G P, et al. Measuring strain distribution during mesoscopic domain reorientation in a ferroelectric material. J. Eng. Mater. Tech. ASME, 1998, 120(1): 1~6
    97. McMeeking R M, Evans A G. Mechanics of transformation-toughening in brittle materials. J. Amer. Ceram. Soc. 1982, 65(5): 242~246
    98. 杨卫.宏微观断裂力学.北京:国防工业出版社.1995
    99. Bueckner H F. A novel principle for the computation of stress intesity factors. J. Appl. Math. Phys. 1970, 50:529~533
    100. Rice J R. Some remarks on elastic crack-tip stress fields. Int. J. Solids Struct. 1972, 8(2):751~753
    101. Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook. Del research, St. Louis, Mo. 1973
    
    
    102. Lambropoulos J C. Shear, shape and orientation effects in transformation toughening. Int. J. Solids Struct. 1986,22(10) : 1083-1106
    103. 李长青.铁电材料的本构关系和电致疲劳的实验研究:[硕士学位论文].北 京:清华大学工程力学系,1998
    104. Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: Ⅰ. Direct crack measurements. J. Am. Ceram. Soc. 1981, 64(9) : 533-538
    105. Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: Ⅱ. Strength method. J. Am. Ceram. Soc. 1981,64(9) : 539-543
    106. Zhang Z, Raj R. Influence of grain size on ferroelastic toughening and piezoelectric behavior of Lead Zirconate Titanate. J. Am. Ceram. Soc. 1995, 78(12) : 3363-3368
    107. McHenry K D, Koepke B G. Electric field effects on subcritical crack growth in PZT. Frac Mech. Ceram. 1983, 5: 337-352
    108. Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators. Phys. Status Solidi (b) 1975, 67: 105-111
    109. Lo K K. Analysis of branched cracks. J. Appl. Mech., 1978, 45: 797-802
    110. Obata M, Nemat-Nasser S, Goto Y. Branched cracks in anisotropic elastic solids. J. Appl. Mech. 1989, 56: 858-864
    111. Azhdari A, Nemat-Nasser S. Hoop stress intensity factor and crack kinking in anisotropic brittle solids. Int. J. Solids Struct. 1996, 33: 2023-2037
    112. Azhdari A, Nemat-Nasser S. Energy-release rate and crack kinking in anisotropic brittle solids. J. Mech. Phys. Solids 1996,44: 929-951
    113. Miller G R, Stock W L. Analysis of branched interface cracks between two dissimilar anisotropic media. J. Appl. Mech. 1989, 56: 844-849
    114. Wang T C, Shih C F, Suo Z. Crack extension and kinking in laminates and bicrystals. Int. J. Solids Struct. 1992, 29: 327-344
    115. Wang T C. Kinking of an interface crack between two dissimilar anisotropic elastic solids. Int. J. Solids Struct. 1994, 31: 629-641
    116. Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 1992, 54: 79-100
    
    
    117. Zhang T Y, Li J C M. Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall. Mater. 1991,39: 2379-2744
    118. Park S B, Sun C T. Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 1995,70: 203-216
    119. Bogy D B. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. 1971, 38: 377-386
    120. Erdogan F. Mixed boundary-value problem in mechanics. Mechanics Today ed. Nemat-Nasser S. Pergamon Press. 1978,4: 1-86
    121. Hayashi K, Nemat-Nasser S. On branched, interface cracks. J. Appl. Mech. 1981, 48: 529-533
    122. Cotterell, B. and Rice, J. R. Slightly curved or kinked cracks. Int. J. Fract. 1980, 11:708-712
    123. Gao H, Chiu C. Slightly curved or kinked cracks in anisotropic elastic solids. Int. J. Solids Struct. 1992,29: 947-972

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700