嗜酸硫氧化细菌元素硫活化氧化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微生物冶金过程中,浸矿微生物的主要作用是通过对亚铁和/或还原型无机硫化物的氧化为浸出体系提供/再生Fe3+(和H+),消解浸出过程中的元素硫层,降低含硫化合物的生成,保证硫化矿溶出过程的持续进行。目前,对于微生物的亚铁氧化模型已经研究得比较清楚,而元素硫的生物氧化过程十分复杂,代谢机制仍然不清楚。本文综合运用微生物学、生物化学、分子生物学研究方法和基于同步辐射的X射线荧光原位分析技术,对嗜酸硫氧化细菌Acidithiobacillus ferrooxidans的元素硫活化氧化作用机制和影响因素进行了初步探讨,加深了对硫生物氧化过程的认识。主要工作包括以下几个方面:
     1.建立了以表面活性剂Tween-80为稳定剂的硫酸钡比浊法,并证明了该方法在浸矿液样品的硫酸根离子浓度测定中的实用性和可靠性。采用热水浴法结合Triton X-114相分离法,连续分步分离提取了未经机械破碎的A. ferrooxidans ATCC23270细胞胞外、外膜和周质空间蛋白质,建立和优化了适用于A. ferrooxidans特化空间蛋白质的双向电泳实验体系。
     2.筛选鉴定了3种17株嗜酸硫氧化细菌,丰富了硫生物氧化菌种资源。对其中代表性菌株的超微结构观察结果表明,元素硫能在这三种菌体内以聚集的颗粒存在,可能为体内能源的储存方式。筛选到的Acidithiobacillus albertensis BY-05硫氧化活性较高,为国内首次报道,该菌与A. ferrooxidans协同作用可提高黄铜矿和闪锌矿的浸出率。
     3.运用XRD、基于同步辐射的硫的K边XANES等分析手段比较研究了三种不同硫氧化特点的浸矿细菌在单独/混合浸出黄铜矿过程中矿物组成和含硫中间产物的形态变化,结果表明黄铜矿溶出过程中,初期低电位下有辉铜矿生成,而元素硫和黄钾铁矾的累积是引起钝化现象的主要因素。混合菌浸矿体系可以提供更多的Fe3+氧化剂和更低的pH值,有效的促进矿物分解、消解矿物表面积累的元素硫层、抑制黄钾铁矾生成,从而提高铜离子浸出率。浸出初期电位低于400mV (vs SCE)时,黄铜矿的浸出速率较快,电位迅速升高至540mV (vs SCE)后,浸出速率明显变慢。
     4.采用2D-PAGE结合MALDI-TOF MS/MS鉴定,筛选到A.ferrooxidans ATCC23270不同特化空间与硫氧化密切相关的蛋白质39个(其中胞外13个,外膜9个,周质空间17个),并用RT-qPCR方法从转录水平对结果进行了验证。生物信息学分析结果表明,筛选到的蛋白质近一半为功能未知蛋白,其余的与能量代谢、转运结合和转录翻译等细胞功能有关,约70%含有半胱氨酸残基,其中8个半胱氨酸残基丰度较高的蛋白质还含有1-2个可能与硫代谢密切相关的-CXXC-结构域,是巯基在元素硫活化、氧化过程中扮演重要角色的证据。采用基于同步辐射的Micro-XRF mapping原位检测了用金属Ca2+选择性标记的A. ferrooxidans细胞表面的巯基含量,发现以单质硫作为能源生长的A. ferrooxidans表面蛋白质巯基的含量约为以亚铁为能源生长时的5倍。
     5.研究了表面活性剂Tween-80对A. ferrooxidans硫氧化及其分子机制的影响,结果表明Tween-80的加入使细菌对硫吸附和代谢发生了变化,影响了细菌细胞EPS组成和细菌胞外蛋白质表达。10-2g/L的Tween-80能改善细菌对硫的吸附-活化过程,促进A. ferrooxidans在不溶性能源底物(So和CuFeS2)中的生长和代谢,24天可提高黄铜矿浸出率约16%。
     6.比较研究了A. ferrooxidans对不同形态的硫(环状a-S与线状μ-S)的利用差异及相关的分子机制,发现无定形的μ-S比晶形的a-S更容易被A. ferrooxidans吸附和氧化利用。XRD检测到a-S从特定部位开始被破坏,a-S在被细菌氧化过程中可能部分转化成了μ-S。DRIFTS分析结果表明以不同形态的硫为能源生长的细菌细胞表面EPS的组成差异较大。RT-qPCR结果显示,当A. ferrooxidans以μ-S为能源生长时,与吸附和活化有关的胞外蛋白质的表达水平明显下调,转运疏水性物质进入细胞周质空间的蛋白质和能量代谢相关的酶表达水平则上调。
The sulfur/ferrous iron-oxidizing microorganisms contribute to the transformation of sulfur and other intermediary sulfur compounds to sulfuric acid, regenerating protons and Fe3+for the bioleaching process. The microbial ferrous oxidation model has been described clearly, but the sulfur oxidation mechanism remains unclear because of the complexity of the sulfur bio-oxidation process. To clarify the molecular mechanism of microbial sulfur activation and oxidation in the acidophilic sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans, techniques of microbiology, biochemistry and molecular biology, and the in situ synchrotron radiation X-Ray fluorescence analysis were used. The main contents and results are as follows.
     1. Establishment of the experimental methods was mentioned. By choosing surfactant Tween-80as the stabilizing agent, the barium sulfate turbidimetry for determining sulfate concentration in the complex bioleaching samples was improved. Compared with the national standard method GB/T5750.5-2006, it is faster and easier for operation, indicating its wide applicability. Extracellular, outer membrane and periplasimic proteins of A. ferrooxidans were separated by an innovative continuous treatment using hot water bathe followed by a one-step Triton X-114phase-partitioning. The two dimensional polyacrylamide gel electrophoresis for the extracted compartment-specific proteins was also optimized.
     2. Isolation and identification of three species of acidophilic sulfur-oxidizing bacteria were described and their sulfur oxidation related physiological characteristics were compared. Ultrastructure of the three strains Acidithiobacillus albertensis BY-05, A. ferrooxidans DXS and Acidithiobacillus thiooxidans BY-02showed that inside the cells there were highly refractile sulfur granules, which may play the role of energy storage. The new strain A. albertensis BY-05had high sulfur oxidation capacity, and could enhance the leaching capacity of chalcopyrite and sphalerite when mixed with A. ferrooxidans.
     3. The relevant sulfur speciation on the surface of chalcopyrite leached by three typical mesophilic bacteria A. ferrooxidans, Leptospirillum ferriphilum and A. thiooxidans and their mixture was investigated using X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES). The results showed that the mixed culture had a higher sulfur/iron oxidation activity than the pure cultures of the bacteria. The fitting results of XANES spectra indicated that the mixed culture restrained the sulfur and jarosite passivation layer obviously. Additionally, the dissolution rate of chalcopyrite was higher when the redox potential was less than400mV (vs SCE), and above540mV (vs SCE) the rate decreased apparently.
     4. Comparative proteomics strategy was used to screen the sulfur activation and oxidation relative proteins from specific cellular compartments of A. ferrooxidans ATCC23270,39expression upregulated proteins (including13extracellular proteins,9outer membrane proteins and17periplasmic proteins) selected in the2-DE profiles were identified by MALDI-TOF MS/MS and verified at transcriptional level by RT-qPCR. About half of the selected proteins were function-unknown, others were annotated to categories of energy metabolism, transport and binding, cell structure, cellular processes, etc.. Bioinformatics prediction showed that70%of them contain cysteine residues in sequence. Eight proteins which contain abundant of the cysteine residues even have one or two functional motifs such as-CXXC-The thiol groups on the A. ferrooxidans cell surface were selectively marked by Ca2+and observed by in situ micro synchrotron radiation X-Ray Fluorescence (Micro-SR-XRF) mapping analysis, the result revealed that the number of the thiols on the surface of the cells grown on elemental sulfur was about five times as that grown on ferrous substrate. It indicates that the thiol-rich proteins played important roles in sulfur activation and oxidation process.
     5. Effects of the surfactant Tween-80on the growth, sulfur oxidation, and expression of selected typical sulfur metabolism relevant genes of A. ferrooxidans ATCC23270were investigated. The results showed that in the presence of10-2g/L Tween-80the growth of A. ferrooxidans and its metabolism on the insoluble substrate S0and CuFeS2was promoted. After24days of bioleaching, the copper extraction yield of chalcopyrite at10-2g/L of Tween-80increased by16%compared to the bioleaching experiment without Tween-80. FT-IR spectra analysis revealed that this was probably caused by the extracellular polymeric substances whose composition could be changed by the surfactant addition. RT-qPCR was used to analyze the differential expressions of17selected sulfur metabolism relevant genes in response to the addition of Tween-80. Down-regulation of the extracellular protein genes indicated the influence of Tween-80on bacteria-sulfur adsorption. Variation of the expression level of the enzymes provided a supplement to sulfur metabolism investigation.
     6. The differential utilization of α-and μ-sulfur by A. ferrooxidans was also investigated in this thesis. The growth and sulfur oxidation of A. ferrooxidans on μ-S showed shorter lag phase. The initial adsorption capacity of the cells was higher on μ-S than that on α-S. The results of SEM, DRIFTS and XRD analyses indicate that the surface of sulfur was modified by cells and the orthorhombic α-S was destroyed by A. ferrooxidans from special region of the crystal. Differential expression of11selected sulfur adsorption-activation and metabolism relevant genes was detected by RT-qPCR. The results show that the expression of the hydrophobic substrate transport proteins and the sulfur metabolism related proteins was up-regulated, and the adsorption and activation related proteins were down-regulated when the cells were grown on μ-S.
引文
[1]李元峰,林莹,杨维涨.生物冶金资源化发展现状及前景[J].冶金丛刊,2009,186(6):48-50.
    [2]Olson GJ, Brierley JA, Brierley CL. Bioleaching review part B[J]. Applied Microbiology and Biotechnology,2003,63(3):249-257.
    [3]Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Applied Microbiology and Biotechnology,2003,63(3):239-248.
    [4]Dopson M, Johnson DB. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms[J]. Environmental Microbiology,2012,14(10):2620-2631.
    [5]何环,夏金兰,彭安安,等.嗜酸硫氧化细菌作用下元素硫化学形态的研究进展[J].中国有色金属学报,2008,18(6):1143-1151.
    [6]Laishely EJ, Bryant RD, Korryn BW, et al. Microcrystalline structure and surface area of elemental sulphur as factor influencing its oxidation by Thiobacillus albertis[J]. Canadian Journal of Microbiology,1986,32(3): 237-242.
    [7]Franz B, Lichtenberg H, Dahl C, et al. Utilization of 'elemental' sulfur by different phototrophic sulfur bacteria (Chromatiaceae, Ectothiorhodospiraceae): A sulfur K-edge XANES spectroscopy study[J]. Journal of Physics: Conference Series,2009,190:012200.
    [8]He H, Xia JL, Huang GH, et al. Analysis of the elemental sulfur bio-oxidation by Acidithiobacillus ferrooxidans with sulfur K-edge XANES[J]. World Journal of Microbiology and Biotechnology,2010,27(8):1927-1931.
    [9]Blight KR, Candy RM, Ralph DE. The preferential oxidation of orthorhombic sulfur during batch culture[J]. Hydrometallurgy,2009,99(1-2):100-104.
    [10]Munoz PB, Miller JD, Wadsworth ME. Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite[J]. Metallurgical Transactions B,1979,10(2): 149-158.
    [11]Dutrizac JE. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite[J]. Canadian Metallurgical Quarterly,1989,28(4):337-344.
    [12]Harmer SL, Thomas JE, Fornasiero D, et al. The evolution of surface layers formed during chalcopyrite leaching[J]. Geochimica et Cosmochimica Acta, 2006,70(17):4392-4402.
    [13]Schippers A, Jozsa P, Sand W. Sulfur chemistry in bacterial leaching of pyrite[J]. Applied and Environmental Microbiology,1996,62(9):3424-3431.
    [14]Fowler TA, Crundwell FK. Leaching of zinc sulfide by Thiobacillus ferrooxidans:bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions[J]. Applied and Environmental Microbiology,1999,65(12):5285-5292.
    [15]Kleinjan WE, Keizer A, Janssen AJH. Biologically produced sulfur[J]. Topics in Current Chemistry,2003,230:167-188.
    [16]Janssen AJH, Lettinga G, de Keizer A. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to leemental sulphur Colloidal and interfacial aspects of biologically produced sulphur particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999, 151:389-398.
    [17]Klauber C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution[J]. International Journal of Mineral Processing,2008,86(1-4):1-17.
    [18]Seidel H, Wennrich R, Hoffmann P, et al. Effect of different types of elemental sulfur on bio leaching of heavy metals from contaminated sediments[J]. Chemosphere,2006,62(9):1444-1453.
    [19]Tichy R, Janssen A, Grotenhuis JTC, et al. Possibilities for using biologically-produced sulphur for cultivation of Thiobacilli with respect to bioleaching processes[J]. Bioresource Technology,1994,48(3):221-227.
    [20]Rohwerder T, Sand W. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes[J]. Engineering in Life Sciences,2007,7(4):301-309.
    [21]Bonnefoy V:Bio informatics and genomics of iron-and sulfur-oxidizing acidophiles geomicrobiology:molecular and environmental perspective[M]. //Barton LL, Mandl M, Loy A, Geomicrobiology:Molecular and Environmental Perspective. Springer Netherlands,2010:169-192.
    [22]Rawlings DE. Heavy metal mining using microbes[J]. Annual Review of Microbiology,2002,56(1):65-91.
    [23]Rawlings DE, Johnson DB. The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia[J]. Microbiology,2007, 153(2):315-324.
    [24]Schippers A:Microorganisms involved in bio leaching and nucleic acid-based molecular methods for their identification and quantification[M].//Donati ER, Sand W. Microbial Processing of Metal Sulfides. Springer Netherlands,2007: 3-33.
    [25]Waksman SA, Joffe JS. Microorganisms concerned in the oxidation of sulfur in the soil Ⅱ. Thiobacillus thiooxidans, a new sulfur-oxidazing organism isolated from the soil[J]. Journal of bacteriology,1922,7(2):239-256.
    [26]Harrison AP, Jr. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat[J]. Annual Review of Microbiology,1984,38:265-292.
    [27]Hallberg KB, Thomson HEC, Boeslt I, et al.:Aerobic and anaerobic sulfur metabolism by acidophilic bacteria[M].//Ciminelli, VST, Garcia Jr,O. Biohydrometallurgy:Fundamentals, Technology and Sustainable Development. Amsterdam:Elsevier,2001:423-431.
    [28]周德庆:微生物学教程(第三版).北京:高等教育出版社,2011:106-124.
    [29]Johnson DB, Stallwood B, Kimura S, et al. Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.:a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium[J]. Archives of Microbiology,2006,185(3):212-221.
    [30]Hiraishi A, Nagashima KVP, Matsuura K, et al. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria:its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov[J]. International Journal of Systematic Bacteriology,1998,48(4):1389-1398.
    [31]Harrison AP. Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments[J]. International Journal of Systematic Bacteriology,1981,31(3):327-332.
    [32]Wichlacz PL, Unz RF, Langworthy TA. Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.:acidophilic heterotrophic bacteria isolated from acidic coal mine drainage[J]. International Journal of Systematic Bacteriology,1986,36(2):197-201.
    [33]Xia JL, Peng AA, He H, et al. A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores[J]. Transactions of Nonferrous Metals Society of China,2007,17(1):168-175.
    [34]Mangold S, Valdes J, Holmes DS, et al. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus[J]. Frontiers in Microbiology,2011,2: 1-18.
    [35]Hallberg KB, Dopson M, Lindstrom EB. Reduced sulfur compound oxidation by Thiobacillus caldus[J]. Journal of Bacteriology,1996,178(1):6-11.
    [36]Karavaiko GI, Bogdanova Tyl, Tourova TyP, et al. Reclassification of 'Sulfobacillus thermosulfidooxidans subsp. thermotolerans'strain Kl as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al.1996 as Alicyclobacillus disulfidooxidans comb, nov., and emended description of the genus Alicyclobacillus[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(2):941-947.
    [37]P. Tourova T, Poltoraus AB, Lebedeva IA, et al.16S ribosomal RNA (rDNA) sequence analysis and phylogenetic position of Sulfobacillus thermosulfidooxidans[J]. Systematic and Applied Microbiology,1995,17(4): 509-512.
    [38]Bogdanova TI, Tsaplina I A, Kondrat'eva TF, et al. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium[J]. International Journal of Systematic and Evolutionary Microbiology,2006, 56(5):1039-1042.
    [39]Norris PR, Clark DA, Owen JP, et al. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria[J]. Microbiology,1996,142(4):775-783.
    [40]Segerer A, Neuner A, Kristjansson JK, et al. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb, nov.:facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria[J]. International Journal of Systematic Bacteriology,1986,36(4):559-564.
    [41]Zillig W, Yeats S, Holz I, et al. Desulfumlobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur [J]. Systematic and Applied Microbiology,1986,8(3):197-203.
    [42]Fuchs T, Huber H, Burggraf S, et al.16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov[J]. Systematic and Applied Microbiology, 1996,19(1):56-60.
    [43]Yoshida N, Nakasato M, Ohmura N, et al. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+[J]. Current Microbiology,2006,53(5):406-411.
    [44]Plumb JJ, Haddad CM, Gibson JA, et al. Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description[J]. International Journal of Systematic and Evolutionary Microbiology,2007, 57(Pt 7):1418-1423.
    [45]He ZG, Zhong H, Li Y. Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring[J]. Current Microbiology,2004,48(2):159-163.
    [46]Itoh Y, Kurosawa N, Uda I, et al. Metallosphaera sedula TA-2, a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon[J]. Extremophiles,2001,5(4):241-245.
    [47]Fuchs T, Huber H, Teiner K, et al. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany[J]. Systematic and Applied Microbiology,1995,18(4):560-566.
    [48]Kurosawa N, Itoh YH, Itoh T. Reclassification of Sulfolobus hakonensis Takayanagi et al.1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content [J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(5):1607-1608.
    [49]Dopson M, Sundkvist J-E, Borje Lindstrom E. Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching[J]. Hydrometallurgy,2006,81(3-4):205-213.
    [50]Jan RL, Wu J, Chaw SM, et al. A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology,1999,49(4):1809-1816.
    [51]Grogan D, Palm P, Zillig W. Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov[J]. Archives of Microbiology,1990,154(6):594-599.
    [52]She Q, Singh RK, Confalonieri F, et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2[J]. Proceedings of the National Academy of Sciences,2001,98(14):7835-7840.
    [53]Suzuki T, Iwasaki T, Uzawa T, et al. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan[J], Extremophiles,2002,6(1):39-44.
    [54]Kurosawa N, Itoh YH, Iwai T, et al. Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales[J]. International Journal of Systematic Bacteriology,1998,48(2):451-456.
    [55]Karavaiko GI, Golyshina OV, Troitskii AV, et al. Sulfurococcus yellowstonii sp. nov/--a new species of iron-and sulfur-oxidizing thermoacidophilic Archaeobacterium[J]. Mikrobiologiia,1994,63(4):668-682.
    [56]Janssen AJH, Lens PNL, Stams AJM, et al. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification[J]. Science of The Total Environment,2009,407(4):1333-1343.
    [57]Rawlings DE. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories,2005,4:1-15.
    [58]Gourdon R, Funtowicz N. Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors[J]. Bioprocess Engineering, 1998,18(4):241-249.
    [59]Konishi Y, Asai S, Yoshida N. Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur [J]. Applied and Environmental Microbiology, 1995,61(10):3617-3622.
    [60]Friedrich CG, Bardischewsky F, Rother D, et al. Prokaryotic sulfur oxidation[J]. Current Opinion in Microbiology,2005,8(3):253-259.
    [61]Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans[J], BMC Genomics,2009,10(1):394.
    [62]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology,2003,149(7):1699-1710.
    [63]Valdes J, Pedroso I, Quatrini R, et al. Acidithiobacillus ferrooxidans metabolism:from genome sequence to industrial applications[J]. BMC Genomics,2008,9(1):597.
    [64]Miiller FH, Bandeiras TM, Urich T, et al. Coupling of the pathway of sulphur oxidation to dioxygen reduction:characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase[J]. Molecular Microbiology,2004,53(4): 1147-1160.
    [65]傅建华,邱冠周,胡岳华.浸矿细菌表面性质研究[J].金属矿山,2004(9):19-24.
    [66]Sand W, Gehrke T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(Ⅲ) ions and acidophilic bacteria[J]. Research in Microbiology,2006,157(1):49-56.
    [67]Harneit K, Goksel A, Kock D, et al. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillumferrooxidans[J]. Hydrometallurgy,2006,83(1-4):245-254.
    [68]Gehrke T, Hallmann R, Kinzler K, et al. The EPS of Acidithiobacillus ferrooxidans--a model for structure-function relationships of attached bacteria and their physiology [J]. Water Science and Technology,2001,43(6):159-167.
    [69]Gehrke T, Telegdi J, Thierry D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Applied and Environmental Microbiology,1998,64(7):2743-2747.
    [70]Govender Y, Gericke M. Extracellular polymeric substances (EPS) from bio leaching systems and its application in bioflotation[J]. Minerals Engineering,2011,24(11):1122-1127.
    [71]Sharma PK, Das A, Hanumantha Rao K, et al. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions[J]. Hydrometallurgy,2003,71(1-2):285-292.
    [72]Ohmura N, Tsugita K, Koizumi JI, et al. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans[J]. Journal of Bacteriology,1996,178(19): 5776-5780.
    [73]Rohwerder T, Sand W. Properties of thiols required for sulfur dioxygenase activity at acidic pH[J]. Journal of Sulfur Chemistry,2008,29(3-4):293-302.
    [74]Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews,2009,33(6):999-1043.
    [75]Suzuki I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1965,104(2):359-371.
    [76]Kletzin A. Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens[J], Journal of Bacteriology,1992,174(18): 5854-5859.
    [77]Barrie Johnson D, Hallberg KB. Carbon, iron and sulfur metabolism in acidophilic micro-organisms[J]. Advances in Microbial Physiology,2009,54: 201-255.
    [78]Sugio T, Ochi K, Muraoka T, et al. Isolation and some properties of sulfur dioxygenase from Acidithiobacillus thiooxidans NB1-3[C]//Harrison S, Rawlings D, Petersen J. Proceedings of the 16th International Biohydrometallgy Symposium. Cape Town, South Africa,2005.
    [79]Jerez CA, Albar JP, Paradela A, et al. Growth of Acidithiobacillus ferrooxidans ATCC 23270 in thiosulfate under oxygen-limiting conditions generates extracellular sulfur globules by means of a secreted tetrathionate hydrolase[J]. Frontiers in Microbiology,2011,2:1-10.
    [80]Dopson M, Lindstrom B, Hallberg K. ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation[J]. Extremophiles,2002, 6(2):123-129.
    [81]Nakamura K, Yoshikawa H, Okubo S, et al. Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM7814[J]. Bioscience, Biotechnology, and Biochemistry,1995,59(1): 11-15.
    [82]De Jong GAH, Tang JA, Bos P, et al. Purification and characterization of a sulfite:cytochrome c oxidoreductase from Thiobacillus acidophilus[J]. Journal of Molecular Catalysis B:Enzymatic,2000,8(1-3):61-67.
    [83]Bruscella P, Appia-Ayme C, Levican G, et al. Differential expression of two bcl complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation[J]. Microbiology,2007,153(Pt 1):102-110.
    [84]Chi A, Valenzuela L, Beard S, et al. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans[J], Molecular & Cellular Proteomics,2007, 6(12):2239-2251.
    [85]Amouric A, Appia-Ayme C, Yarzabal A, et al. Regulation of the iron and sulfur oxidation pathways in the acidophilic Acidithiobacillus ferrooxidans[J]. Advanced Materials Research,2009,71-73:163-166.
    [86]Chen L, Brugger K, Skovgaard M, et al. The genome of Sulfolobus acidocaldarius, a model organism of the crenarchaeota[J]. Journal of Bacteriology,2005,187(14):4992-4999.
    [87]Bathe S, Norris PR. Ferrous iron-and sulfur-induced genes in Sulfolobus metallicus[J]. Applied and Environmental Microbiology,2007,73(8): 2491-2497.
    [88][88] Kappler U, Sly LI, McEwan AG. Respiratory gene clusters of Metallosphaera.sedula-differential expression and transcriptional organization[J]. Microbiology,2005,151(1):35-43.
    [89]Auernik KS, Kelly RM. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes[J]. Applied and Environmental Microbiology,2008,74(24):7723-7732.
    [90]Laska S, Lottspeich F, Kletzin A. Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens[J]. Microbiology,2003,149(9):2357-2371.
    [91]Valdes J, Pedroso I, Quatrini R, et al. Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus:Insights into their metabolism and ecophysiology[J]. Hydrometallurgy,2008,94(1-4): 180-184.
    [92]Castro M, Ruiz LM, Barriga A, et al. C-di-GMP pathway in biomining bacteria[J]. Advanced Materials Research,2009,71-73:223-226.
    [93]屈伸,刘志国:分子生物学实验技术.北京:化学工业出版社,2007.
    [94]He ZG, Hu YH, Zhong H, et al. Preliminary proteomic analysis of Thiobacillus ferrooxidans growing on elemental sulphur and Fe2+ separately [J]. Journal of Biochemistry and Molecular Biology,2005,38(3):307-313.
    [95]He Z, Zhong H, Hu Y, et al. Analysis of differential protein expression in Acidithiobacillus ferrooxidans grown under different energy resources respectively using SELDI-ProteinChip techno logies[J]. Journal of Microbiological Methods,2006,65(1):10-20.
    [96]Ramirez P, Guiliani N, Valenzuela L, et al. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Applied and Environmental Microbiology,2004, 70(8):4491-4498.
    [97]Buonfiglio V, Polidoro M, Flora L, et al. Identification of two outer membrane proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans[J]. FEMS Microbiology Reviews,1993,11(1-3):43-50.
    [98]Buonfiglio V, Polidoro M, Soyer F, et al. A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans[J]. Journal of Biotechnology,1999,72(1-2):85-93.
    [99]Zhang CG, Zhang RY, Xia JL, et al. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China,2008,18(6):1398-1402.
    [100]Xia JL, Zhang RY, Zhang Q, et al. Differential expression of genes encoding sulfur metabolism-related periplasmic proteins of Acidithiobacillus ferrooxidans ATCC 23270[J]. Transactions of Nonferrous Metals Society of China,2010,20(12):2366-2370.
    [101]Bertolacini RJ, Barney JE. Colorimetric determination of sulfate with barium chloranilate[J]. Analytical Chemistry,1957,29(2):281-283.
    [102]陈洪,王学华.浅谈硫酸根的重量法和容量法测定[J].中国井矿盐,2005,36(4):41-42.
    [103]李怡,刘晓松,周帆,等.离子色谱法快速分析饮用水中的四种阴离子[J].理化检验-化学分册,2006,42(10):21-23.
    [104]Kolmert A, Wikstrom P, Hallberg KB. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures[J]. Journal of Microbiological Methods,2000,41(3):179-184.
    [105]席改卿,庞秀言.硫酸钡比浊法分散体系的稳定性研究[J].河北师范大学学报,2007,31(4):503-505.
    [106]GB/T 5750.5-2006,生活饮用水标准检验方法无机非金属指标[S].北京:中国标准出版社,2006.
    [107]丁根娣,吴杰,许志遂.硫酸钡吸光比浊法测定机理的探讨[J].理化检验-化学分册,2001,37(3):111-112.
    [108]傅娇艳,丁振华,吴彦憨,等.硫酸钡分光光度比浊法测定高硫环境样品[J].厦门大学学报(自然科学版),2007,46:880-883.
    [109]邱琬钧.对改良硫酸钡比浊法测定水中硫酸根方法的改进[J].环境监测管理与技术,1997,9(2):44-45.
    [110]刘长风,刘学贵,宁志高,等.硫酸钡比浊法测定镍基高温合金热腐蚀产物中硫酸根[J].冶金分析,2006,26(1):77-78.
    [111]Noudeh GD, Khazaeli P, Rahmani P. Study of the effects of polyethylene glycol sortitan esters surfactants group on biological membranes[J]. International Journal of Pharmacology,2008,4(1):27-33.
    [112]Zhang CG, Xia JL, Zhang RY, et al. Comparative study on effects of Tween-80 and sodium isobutyl-xanthate on growth and sulfur-oxidizing activities of Acidithiobacillus albertensis BY-05[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):1003-1007.
    [113]李忠,刘思远,黄海涛,等.烟制品中硫含量测定的研究[J].光谱实验室,2000,17(5):534-535.
    [114]Thomsen V, Schatzlein D, Mercuro D. Limits of detection in spectroscopy[J]. Spectroscopy,2003,18(12):112-114.
    [115]Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins:barrels in a nutshell[J]. Molecular Microbiology,2000, 37(2):239-253.
    [116]Thein M, Sauer G, Paramasivam N, et al. Efficient subfractionation of gram-negative bacteria for proteomics studies [J]. Journal of Proteome Research,2010,9(12):6135-6147.
    [117]Bordier C. Phase-separation of integral membrane-proteins in Triton X-114 solution[J]. Journal of Biological Chemistry,1981,256(4):1604-1607.
    [118]Dolores G, Ana P, Sanchez-Ferrer A. Meat pigment determination by phase partitioning in Triton X-114 and oxidation with sodium nitrite[J]. Journal of the Science of Food and Agriculture,1994,64:327-329.
    [119]Arnold T, Linke D. Phase separation in the isolation and purification of membrane proteins[J]. Biotechniques,2007,43(4):427-440.
    [120]Pryde JG. Triton X-114:a detergent that has come in from the cold[J]. Trends in Biochemical Sciences,1986,11(4):160-163.
    [121]Xia JL, Ou-yang XD, Zhang CG, et al. Rapid and efficient extraction of outer membrane proteins from Escherichia coli and establishment of the two-dimensional electrophoresis maps[J]. Progress in Modern Biomedicine, 2009,9(2):201-204,215.
    [122]Brown MJ, Lester JN. Metal removal in activated sludge:the role of bacterial extracellular polymers[J]. Water Research,1979,13(9):817-837.
    [123]Lee RP, Doughty SW, Ashman K, et al. Purification of hydrophobic integral membrane proteins from Mycoplasma hyopneumoniae by reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A, 1996,737(2):273-279.
    [124]Nossal NG, Heppel LA:The release of enzymes by osmotic shock from Escherichia coli in exponential phase. The Journal of Biological Chemistry, 1966,241:3055-3062.
    [125]Xia JL, Wang J, Zhang Q, et al. Selective extraction and differential electrophoregrams analysis of periplasmic proteins of Acidithiobacillus ferrooxidans ATCC 23270[J]. Journal of Central South University (Science and Technology),2009,40(4):845-850.
    [126]Stoscheck C. Quantitation of Protein[J], Methods in Enzymology,1990,182: 50-69.
    [127]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680-685.
    [128][128]欧阳叙东.嗜酸氧化亚铁硫杆菌外膜蛋白的快速有效分离及双向电泳图谱的建立[D].长沙:中南大学,2008.
    [129]Cunningham TM, Walker EM, Miller JN, et al. Selective release of the treponema-pallidum outer-membrane and associated polypeptides with Triton X-114[J]. Journal of Bacteriology,1988,170(12):5789-5796.
    [130]Haake DA, Walker EM, Blanco DR, et al. Changes in the surface of Leptospira interrogans serovar grippotyphosa during invitro cultivation[J]. Infection and Immunity,1991,59(3):1131-1140.
    [131]Zuerner RL, Knudtson W, Bolin CA, et al. Characterization of outer membrane and secreted proteins of Leptospira interrogans serovar pomona[J]. Microbial Pathogenesis,1991,10(4):311-322.
    [132]Tabita R, Silver M, Lundgren DG. Rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus-ferrooxidans)[J]. Canadian Journal of Biochemistry, 1969,47(12):1141-1145.
    [133]Ramirez P, Toledo H, Guiliani N, et al. An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds[J]. Applied and Environmental Microbiology, 2002,68(4):1837-1845.
    [134]Cox J, Boxer D. The role of rusticyanin, a blue copper protein, in the electron transport chain of Thiobacillus ferrooxidans grown on iron or thiosulfate[J]. Biotechnology and Applied Biochemistry,1986,8:269-275.
    [135]Cox JC, Boxer DH. The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans[J]. Biochemical Journal,1978,174(2):497-502.
    [136]Yarzabal A, Duquesne K, Bonnefoy V. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur-and in ferrous iron media[J]. Hydrometallurgy,2003,71(1-2):107-114.
    [137]王晶.嗜酸氧化亚铁硫杆菌周质蛋白的选择性分离及双向电泳差异谱的建立[D].长沙:中南大学,2008.
    [138]张倩.嗜酸氧化亚铁硫杆菌ATCC 23270硫氧化相关周质空间蛋白的研究[D].长沙:中南大学,2009.
    [139]张成桂.嗜酸氧化亚铁硫杆菌适应与活化元素硫的分子机制研究[D].长沙:中南大学,2008.
    [140]Arrieta JM, Weinbauer MG, Herndl GJ. Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria[J]. Applied and Environmental Microbiology,2000,66(4): 1468-1473.
    [141]金松谟,颜望明,王祖农.氧化硫硫杆菌结合转移系统的建立[J].生物工程学报,1993,9(1):87-89.
    [142]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:349-398.
    [143]Mesbah NM, Whitman WB, Mesbah M. Determination of the G+C Content of Prokaryotes[J]. Methods in Microbiology,2011,38:299-324.
    [144]Bryant R, McGroarty K, Costerton J, et al. Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis)[J]. Canadian Journal of Microbiology,1983,29:1159-1170.
    [145]刘新星,谢建平,刘文斌,等.磁泳分离细菌新方法的研究[J].中国生物工程杂志,2006,26(4):70-74.
    [146]Robertson LA, Kunenen JG:The genus Thiobacilus[M].//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes,3 ed. New York:Springer Science Business Media, LLC,2006:812-827.
    [147]Pickering IJ, George GN, Yu EY, et al. Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy[J]. Biochemistry,2001, 40(27):8138-8145.
    [148]Prange A, Chauvistre R, Modrow H, et al. Quantitative speciation of sulfur in bacterial sulfur globules:X-ray absorption spectroscopy reveals at least three different species of sulfur[J]. Microbiology,2002,148(Pt 1):267-276.
    [149]Rojas J, Giersig M, Tributsch H. Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation[J]. Archives of microbiology,1995,163(5):352-356.
    [150]Knickerbocker C, Nordstrom DK, Southam G. The role of blebbing in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans[J]. Chemical Geology,2000,169(3-4):425-433.
    [151]Kelly DP, Wood AP. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov. Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. [J]. International Journal of Systematic and Evolutionary Microbiology,2000,50:511-516.
    [152]Hallberg KB, Lindstrom EB. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile[J]. Microbiology,1994,140 (Pt 12): 3451-3456.
    [153]Kelly DP, Harrison AP. Genus Thiobacillus. Bergey's Manual of Systematic Bacteriology, Vol.3[M]. Baltimore:Williams and Wilkins,1989.
    [154]Dopson M, Lindstrom EB, Hallberg KB. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus[J]. Extremophiles,2001,5(4):247-255.
    [155]Hallberg KB, Gonzalez-Toril E, Johnson DB. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments[J]. Extremophiles,2009,14(1):9-19.
    [156]Bevilaqua D, Leite ALLC, Garcia O, Jr., et al. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochemistry,2002,38(4):587-592.
    [157]石绍渊,方兆珩.铁闪锌矿浮选精矿生物浸出[J].化工学报,2004,55(7):1145-1149.
    [158]张在海.铜硫化矿生物浸出高效菌种选育及浸出机理[D].长沙:中南大学,2002.
    [159]Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Applied and Environmental Microbiology,1999,65(1):319-321.
    [160]Lazaro I, Nicol MJ. A rotating ring disk study of the initial stages of the anodic dissolution of chalcopyrite in acidic solutions[J]. Journal of Applied Electrochemistry,2006,36(4):425-431.
    [161]Gautier V, Escobar B, Vargas T. Cooperative action of attached and planktonic cells during bio leaching of chalcopyrite with Sulfolobus metallicus at 70 ℃[J]. Hydrometallurgy,2008,94(1-4):121-126.
    [162]Cordoba EM, Munoz JA, Blazquez ML, et al. Leaching of chalcopyrite with ferric ion. Part Ⅳ:The role of redox potential in the presence of mesophilic and thermophilic bacteria[J]. Hydrometallurgy,2008,93(3-4):106-115.
    [163]Zhang YS, Qin WQ, Wang J, et al. Bioleaching of chalcopyrite by pure and mixed culture[J]. Transactions of Nonferrous Metals Society of China,2008, 18(6):1491-1496.
    [164]Zeng W, Qiu G, Zhou H, et al. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48℃[J]. Hydrometallurgy,2011,105(3-4):259-263.
    [165]Zhu W, Xia J1, Yang Y, et al. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite[J]. Bioresource Technology,2011,102(4):3877-3882.
    [166]Rodriguez Y, Ballester A, Blazquez ML, et al. New information on the chalcopyrite bioleaching mechanism at low and high temperature [J]. Hydrometallurgy,2003,71(1-2):47-56.
    [167]Johansson C, Shrader VJ, Suissa J, et al. Use of the GEOCOATM process for the recovery of copper from chalcopyrite[C]//Proceedings of the International Biohydrometallurgy Symposium IBS' 99, Amsterdam, 993:569-576.
    [168]Parker A, Paul R, Power G. Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions[J]. Australian Journal of Chemistry,1981,34(1):13-34.
    [169]Mikhlin YL, Tomashevich YV, Asanov IP, et al. Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions[J]. Applied Surface Science,2004,225(1-4): 395-409.
    [170]Acres RG, Harmer SL, Beattie DA. Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite[J]. International Journal of Mineral Processing,2010,94(1-2):43-51.
    [171]Hackl RP, Dreisinger DB, Peters E, et al. Passivation of chalcopyrite during oxidative leaching in sulfate media[J]. Hydrometallurgy,1995,39(1-3):25-48.
    [172]Nava D, Gonzalez I. Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid[J]. Electrochimica Acta,2006,51(25):5295-5303.
    [173]He H, Xia JL, Yang Y, et al. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis[J]. Hydrometallurgy,2009,99(1-2):45-50.
    [174]Sasaki K, Nakamuta Y, Hirajima T, et al. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans[J]. Hydrometallurgy,2009,95(1-2):153-158.
    [175]Ahonen L, Tuovinen OH. Bacterial leaching of complex sulfide ore samples in bench-scale column reactors[J]. Hydrometallurgy,1995,37(1):1-21.
    [176]Cordoba EM, Munoz JA, Blazquez ML, et al. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68℃[J]. Minerals Engineering, 2009,22(3):229-235.
    [177]Stott MB, Watling HR, Franzmann PD, et al. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching[J]. Minerals Engineering,2000,13(10-11):1117-1127.
    [178]Sandstrom A, Shchukarev A, Paul J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential[J]. Minerals Engineering,2005,18(5):505-515.
    [179]Parker A, Klauber C, Kougianos A, et al. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite[J]. Hydrometallurgy,2003,71(1-2):265-276.
    [180]Havlik T, Kammel R. Leaching of chalcopyrite with acidified ferric chloride and carbon tetrachloride addition[J]. Minerals Engineering,1995,8(10): 1125-1134.
    [181]杨益.极端嗜热菌Sulfolobus metallicus介导下硫元素形态与转化研究[D].长沙:中南大学,2010.
    [182]HG/T 3539-2003,工业循环冷却水中铁含量的测定-邻菲啰啉分光光度法[S].中华人民共和国国家发展和改革委员会,2003.
    [183]Marhual NP, Pradhan N, Kar RN, et al. Differential bio leaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample[J]. Bioresource Technology,2008,99(17): 8331-8336.
    [184]Cordoba EM, Munoz JA, Blazquez ML, et al. Leaching of chalcopyrite with ferric ion. Part I:General aspects[J]. Hydrometallurgy,2008,93(3-4):81-87.
    [185]C6rdoba EM, Munoz JA, Blazquez ML, et al. Leaching of chalcopyrite with ferric ion. Part II:Effect of redox potential[J]. Hydrometallurgy,2008,93(3-4): 88-96.
    [186]Johnson DB, Ghauri MA, Said MF Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron[J]. Applied and Environmental Microbiology,1992,58(5):1423-1428.
    [187]Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG. The active-passive behavior of chalcopyrite-Comparative study between electrochemical and leaching responses[J]. Journal of the Electrochemical Society,2007,154(6): 299-311.
    [188]Arce EM, Gonzalez I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution[J]. International Journal of Mineral Processing,2002,67(1-4):17-28.
    [189]Velasquez P, Leinen D, Pascual J, et al. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions[J]. The Journal of Physical Chemistry B,2005,109(11): 4977-4988.
    [190]Hiroyoshi N, Miki H, Hirajima T, et al. A model for ferrous-promoted chalcopyrite leaching[J]. Hydrometallurgy,2000,57(1):31-38.
    [191]Vilcaez J, Inoue C. Mathematical modeling of thermophilic bioleaching of chalcopyrite[J]. Minerals Engineering,2009,22(11):951-960.
    [192]Vilcaez J, Suto K, Inoue C. Bioleaching of chalcopyrite with thermophiles: temperature pH ORP dependence[J]. International Journal of Mineral Processing,2008,88(1-2):37-44.
    [193]Lara RH, Valdez-Perez D, Rodriguez AG, et al. Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions[J].
    [194]Crundwell FK. How do bacteria interact with minerals?[J]. Hydrometallurgy, 2003,71(1-2):75-81.
    [195]Carboni L, Piubelli C, Righetti PG, et al. Proteomic analysis of rat brain tissue: comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents[J]. Electrophoresis,2002,23(24): 4132-4141.
    [196]Hanna SL, Sherman NE, Kinter MT, et al. Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient:an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology,2000,146(Pt10):2495-2508.
    [197]Pak JH, Moon JH, Hwang S-J, et al. Proteomic Analysis of differentially expressed proteins in human cholangiocarcinoma cells treated with clonorchis sinensis excretory-secretory products[J]. Journal of Cellular Biochemistry, 2009,108(6):1376-1388.
    [198]Srisomsap C, Sawangareetrakul P, Subhasitanont P, et al. Proteomic analysis of cholangiocarcinoma cell line[J]. Proteomics,2004,4(4):1135-1144.
    [199][199] Bendtsen JD, Nielsen H, Widdick D, et al. Prediction of twin-arginine signal peptides[J]. BMC Bioinformatics,2005,6(1):167.
    [200]Yu NY, Wagner JR, Laird MR, et al. PSORTb 3.0:improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes[J]. Bioinformatics,2010,26(13): 1608-1615.
    [201]Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations[J]. Biotechnology Letters,2004,26(6):509-515.
    [202]Hermanson GT. Bioconjugate Techniques[M]. San Diego:Academic Press, 1996:3-136.
    [203]Mori H, Ito K. The Sec protein-translocation pathway. Trends in Microbiology, 2001,9(10):494-500.
    [204]Den Blaauwen T, Driessen AJ. Sec-dependent preprotein translocation in bacteria[J]. Archives of microbiology,1996,165(1):1-8.
    [205]Leichert LI, Jakob U. Global methods to monitor the thiol-disulfide state of proteins in vivo[J]. Antioxidants & Redox Signaling,2006,8(5-6):763-772.
    [206]Raina S, Missiakas D. Making and breaking disulfide bonds[J]. Annual Review of Microbiology,1997,51:179-202.
    [207]Kaakoush NO, Kovach Z, Mendz GL. Potential role of thiol:disulfide oxidoreductases in the pathogenesis of Helicobacter pylori[J]. FEMS Immunology & Medical Microbiology,2007,50(2):177-183.
    [208]Zhang CG, Xia JL, Liu YD, et al. The putative thiol-disulphide interchange protein DsbG from Acidithiobacillus ferrooxidans has disulphide isomerase activity[J]. ScienceAsia,2010,36(2):100-104.
    [209]Baron C, D OC, Lanka E. Bacterial secrets of secretion:EuroConference on the biology of type IV secretion processes[J]. Molecular Microbioliology, 2002,43(5):1359-1365.
    [210]Cao TB, Saier MH, Jr. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria:organismal distribution, structural constraints and evolutionary conclusions[J]. Microbiology,2001,147(12):3201-3214.
    [211]Gibiansky ML, Conrad JC, Jin F, et al. Bacteria use type Ⅳ pili to walk upright and detach from surfaces[J]. Science,2010,330(6001):197.
    [212]Bose N, Payne SM, Taylor RK. Type 4 pilus biogenesis and Type Ⅱ-mediated protein secretion by Vibrio cholerae occur independently of the TonB-facilitated proton motive force[J]. Journal of Bacteriology,2002,184(8): 2305-2309.
    [213]Li YQ, Wan DS, Huang SS, et al. Type IV pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence[J]. Current Microbiology,2010,60(1):17-24.
    [214]Sauvonnet N, Vignon G, Pugsley PA, et al. Pilus formation and protein secretion by the same machinery in E. coli[J]. The EMBO Journal,2000, 19(10):2221-2228.
    [215]Hancock REW, Brinkman FSL. Function of pseudomonasporins inuptake andefflux[J]. Annual Review of Microbiology,2002,56(1):17-38.
    [216]Larsen RA, Letain TE, Postle K. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli[J]. Molecular Microbiology,2003,49(1):211-218.
    [217]Chimento DP, Kadner RJ, Wiener MC. The Escherichia coli outer membrane cobalamin transporter BtuB:structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation[J]. Journal of Molecular Biology,2003,332(5):999-1014.
    [218]Koebnik R. TonB-dependent trans-envelope signalling:the exception or the rule?[J]. Trends in Microbiology,2005,13(8):343-347.
    [219]Basavanna S, Khandavilli S, Yuste J, et al. Screening of Streptococcus pneumoniae ABC transporter mutants demonstrates that LivJHMGF, a branched-chain amino acid ABC transporter, is necessary for disease pathogenesis[J]. Infection and Immunity,2009,77(8):3412-3423.
    [220]Hansen JM, Zhang H, Jones DP. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions[J]. Free Radical Biology and Medicine,2006,40(1):138-145.
    [221]Beinert H, Holm RH, Munck E. Iron-sulfur clusters:nature's modular, multipurpose structures[J]. Science,1997,277(5326):653-659.
    [222]Ossa DMH, Oliveira RR, Murakami MT, et al. Expression, purification and spectroscopic analysis of an HdrC:An iron-sulfur cluster-containing protein from Acidithiobacillus ferrooxidans[J]. Process Biochemistry,2011,46(6): 1335-1341.
    [223]Nouailler M, Bruscella P, Lojou E, et al. Structural analysis of the HiPIP from the acidophilic bacteria:Acidithiobacillus ferrooxidans[J]. Extremophiles, 2006,10(3):191-198.
    [224]Zeng J, Geng M, Liu Y, et al. Expression, purification and molecular modelling of the Iro protein from Acidithiobacillus ferrooxidans Fe-1[J]. Protein Expression and Purification,2007,52(1):146-152.
    [225]Zheng C, Zhang Y, Liu Y, et al. Characterization and reconstitute of a [Fe4S4] adenosine 5'-phosphosulfate reductase from Acidithiobacillus ferrooxidans[J]. Current Microbiology,2009,58(6):586-592.
    [226]Yuan QH, Wang YH, Zhang GJ, et al. Bioleaching mechanism of orpiment with different bacteria strains[J]. The Chinese Journal of Nonferrous Metals, 2010,20(6):1234-1240.
    [227]Duncan DW, Trussell PC, Walden CC. Leaching of chalcopyrite with Thiobacillus ferrooxidans:Effect of surfactants and shaking [J]. Applied Microbiology,1964,12(2):122-126.
    [228]Gu GH, Su LJ, Chen ML, et al. Bio-leaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite[J]. Mining Science and Technology (China),2010,20(2):286-291.
    [229]He H, Yang Y, Xia JL, et al. Growth and surface properties of new thermoacidophilic Archaea strain Acidianus manzaensis YN-25 grown on different substrates[J]. Transactions of Nonferrous Metals Society of China, 2008,18(6):1374-1378.
    [230]Tan SN, Chen M. Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I:An experimental approach[J]. Hydrometallurgy, 2012,119-120:87-94.
    [231]Valdes J, Veloso F, Jedlicki E, et al. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis[J]. BMC Genomics,2003,4(1):51.
    [232]Meyer B. Elemental sulfur[J]. Chemical reviews,1976,76(3):367-388.
    [233]Eckert B, Steudel R. Molecular spectra of sulfur molecules and solid sulfur allotropes[J]. Topics in Current Chemistry,2003,231:31-98.
    [234]Steudel R, Eckert B. Comment on "Probing the sulfur polymerization transition in situ with Raman spectroscopy" [J. Chem. Phys.118,8460 (2003)][J]. The Journal of Chemical Physics,2004,121(13):6573.
    [235]Kalampounias AG, Kastrissios DT, Yannopoulos SN. Structure and vibrational modes of sulfur around the λ-transition and the glass-transition[J]. Journal of Non-Crystalline Solids,2003,326-327:115-119.
    [236]Ho YS. Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics,2004,59(1):171-177.
    [237]Geller S. Pressure-induced phases of sulfur[J]. Science,1966,152(3722): 644-646.
    [238]Cataldo F. A study on the structure and properties of polymeric sulfur[J]. Die Angewandte Makromolekulare Chemie,1997,249(1):137-149.
    [239]Theilig E. A primer on sulfur for the planetary geologist[M]. Washington: National Aeronautics and Space Administration, Scientific and Technical Information Branch,1982.
    [240]De Wolff P. Technisch Physische Dienst, Delft, The Netherlands, ICDD Grant-in-Aid. PDF 8-247.
    [241]Hearn EM, Patel DR, Lepore BW, et al. Transmembrane passage of hydrophobic compounds through a protein channel wall[J]. Nature,2009, 458(7236):367-370.
    [242]Wakai S, Tsujita M, Kikumoto M, et al. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans[J]. Bioscience, Biotechnology and Biochemistry,2007,71(11):2735-2742.
    [243]Kanao T, Kamimura K, Sugio T. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans[J]. Journal of Biotechnology,2007,132(1):16-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700