用户名: 密码: 验证码:
以高碳铬铁合金粉为原料制备三氧化二铬
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三氧化二铬广泛应用于国防、电工合金、硬质合金、真空电镀、颜料、耗材、高纯合金等方面。目前三氧化二铬通常采用重铬酸钠与硫酸铵热分解法和铬酸酐热分解法制备,生产过程中均需采用剧毒的六价铬化合物为原料。本论文研究了可以用于生产三氧化二铬的绿色无污染新工艺。以高碳铬铁合金粉为原料,成功制备了三氧化二铬。获得的主要结论如下:
     研究表明120ml浓硫酸浸出100g高碳铬铁合金粉,酸欠量浸出,其实验终点pH值为1.0左右,浸出率达到75%左右;而滤渣中的未反应的铬铁合金粉可与下批铬铁合金粉混合浸出,这样既可以充分利用硫酸,同时也可以节约后面调节pH值时碳酸钠的用量。本文研究了两种浸出液除铁方法:针铁矿法和酸法。针铁矿法考察了溶液中铬离子浓度、温度、pH值对除铁率及铬损失率的影响。结果表明,针铁矿法除铁的最佳条件为反应温度94℃,溶液pH=2.5,溶液中铬质量浓度为7.0g/L,搅拌强度200r/min,在此条件下,铁的去除率高达99%,铬的损失率为15%;酸除铁的最佳实验条件为:pH值2.5,酸为理论值的150%,反应温度30℃,在此条件下,铁的去除率可达99%,且Cr~(3+)损失微量。通过实验进行对比研究针铁矿法与酸除铁法,针铁矿法成本较低,但是在除铁过程中会有15%的铬损失并进入除铁渣中;而酸除铁法,成本虽高,但是铬铁分离效果良好,不会造成铬的损失,且生成酸亚铁是制备磷酸铁锂正极材料的主要原材料。针铁矿法考察了溶液中铬离子浓度、温度、pH值对除铁率及铬损失率的影响。酸除铁后溶液中还会含有其它金属杂质离子,通过研究加入二硫代氨基甲酸钠可将其除去。最佳除杂实验条件为:二硫代氨基甲酸钠加入量为杂质离子和的理论值,pH控制在2.5左右,搅拌强度为200r/min。以实验中得到的酸亚铁为原料制备LiFePO_4/C正极材料,LiFePO_4/C材料充放电平台较好,1C放电容量为140mAh·g~(-1),粒度分布均匀,可以作为制备磷酸铁锂正极材料的原材料。
     针对氢氧化铬难以过滤、洗涤,不利于工业化生产的问题。本文研究了溶液中Cr~(3+)浓度、温度、pH值以及添加剂聚丙烯酰胺(PAM)对Cr~(3+)的沉淀回收率及Cr(OH)_3沉淀过滤性的影响。实验结果表明,溶液中铬离子回收的最佳实验条件为反应温度≥85℃,溶液中Cr~(3+)浓度≤10g/L,溶液pH值7.0,搅拌强度200r/min,在此条件下,铬的回收率可达99%,并且Cr(OH)_3沉淀具有较好的过滤性,有利于工业化生产。
     最后采用热重-差热法研究了Cr(OH)_3的分解过程,并成功地制备了三氧化二铬。研究发现Cr(OH)_3的分解分为三步:首先在50~150℃温度范围内脱掉水分子;其次在200~500℃度范围Cr(OH)_3进一步分解,在400~500℃完成最终脱水形成Cr_2O_3,在此温度范围内样品失重率为26.63%,与Cr(OH)_3分解时的理论失重26.21%几乎相同。因此本实验采取了500℃的保温温度并制备了三氧化二铬样品,此样品满足冶金级三氧化二铬产品标准。
Cr_2O_3 is widely used in national defence, electrical alloys, hard alloys, vacuum galvanization, attrited materials, paint, et al. At present, chromium oxide is commonly produced by thermolysis of sodium bichromate, ammonium sulfate and chromic anhydride, and there is serious pollution of Cr~(6+) in the production. In this paper, pollution-free technology method of the preparation chromium oxide was studied. Chromium oxide was successfully produced from high-carbon ferrochrome alloy powder. The main results were as follows.
     The study showed that 100g high-carbon ferrochrome leached by 120ml sulfuric acid which was not enough, The extraction rate of high-carbon ferrochrome reached above 75%, and the final pH value of the leaching was about 1.0. The residue of unreacted high-carbon ferrochrome was reacted with the next high-carbon ferrochrome, which is full utilization of resource and save the quantity of sodium carbonate in the next experiment procedure of pH adjusting. Two removing iron methods was studied in the paper, Iron (III) removed by goethite and iron (II) removed by oxalate. The effects of Cr~(3+) concentration, pH, and temperature on the removal of iron were examined in the goethite process. The results showed that when Cr~(3+) concentration was 7.0g/L, temperature was 94℃and pH=2.5, rate of agitation was 200 r/min, more than 99% of iron is precipitated and 15% of chromium was lost; The optimal experimental condition of iron removed by oxalate was that pH=2.5, oxalate was 150% of theoretical value, reaction temperature was 30℃, more than 99% of iron was precipitated and loss ratio of chromium was little. The experiment studied and compared goethite process to iron removed by oxalate. The cost of goethite process is lower, but 15% chromium entered residue; By contrast, although oxalate method had more cost compared to goethite process has better separation effect. The process not only did not lost chromium but also produced ferrous oxalate which is main material used as the precusor in synthesizing lithium iron phosphate (LiFePO_4). After iron removed by oxalate, other metal ions in the chromium sulfate solution was removed by sodium dithiocarbamate. The results showed that pH=2.5, rate of agitation was 200 r/min, sodium dithiocarbamate was the theoretical value. The results showed that LiFePO_4/C with uniform particle distribution and good charge-discharge curves and displayed 140 mAh·g~(-1) at 1C rate. The ferrous oxalate can be used as the precusor of preparing lithium iron phosphate.
     Cr(OH)_3 is difficult to filter and wash, which is unfavorable for the industrialized production. The effects of Cr~(3+) concentration pH temperature and polyacrylamide(PAM) additives on the filtering property of Cr(OH)_3 and recovery rate of Chromium were studied. The results of experiment showed that under the optimal conditions of Cr~(3+) concentration below 10 g/L, temperature more than 85℃, pH 7.0 and agitation rate 200 r/min, the recovery rate of Chromium reached 99%, and the filtering capability of Chromium hydroxide was also improved, which was beneficial to industrial production.
     Finally, the decomposed process of Cr(OH)_3 compound was studied by TG/DSC method and Cr_2O_3 was successfully obtained. The results showed Cr(OH)_3 compund decomposed with three periods. Decomposition of water is between 50~150℃,and decompose of Cr(OH)_3 is between 200~500℃. The formation process of chromium oxide is between 400~500℃in which Cr(OH)_3 lost the ratio of 26.63%. It is almost the same with the theoretical value which lost the ratio of 26.21%. Cr_2O_3 was prepared at holding temperature of 500℃, and the samples was satisfied standards of metallurgical chromium oxide.
引文
[1]申浮文,车云霞,罗裕基等.无机化学丛书(第八卷):钦分族、钒分族、铬分族[M].北京:科学出版社,1998:391-420.
    [2]成思危,丁翼,杨春荣.铬盐生产工艺[M].北京:化学工业出版社,1998.
    [3]A.H.Sully,E.A.Brandes,Chromium,2nd Ed[M],London:Butterworths,1967.
    [4]天津化工研究院,无机盐工业手册[M],北京:化学工业出版社,1988.
    [5]A.H.Sully.Metallurgy of the rarer metals,chromium[M].London:Butterworths Scientific Publication,1954.
    [6]Marvin J Udy.Chromium,Volume Ⅱ,Metallurgy Of Chromium and Its Alloys[M].New York:Reinhold Publishing Corporation,1956.
    [7]王铁汉.再论我国金属铬生产与采用新工艺[J].铁合金,2000,151(2):40-43.
    [8]任志国,李寿空.磁铁铁精矿配加铬渣,钒渣生产烧结工艺研究[J].钢铁,1997,32(6):10-14.
    [9]贾振海.粉状铬矿的预处理技术[J].铁合金,1989,(3):37-42.
    [10]Abdul J Chaudhary;Nimai C Goswami,Susan M Grimes.Electrolytic removal of hexavalent chromium[J].Journal of Chemical Technology & Biotechnology.2003,(8):877-883.
    [11]L.P.Antalffy,P.N.Chaku,D.A.Canonico,et al..The potential for using high chromium ferritic alloys for hydroprocessing reactors[J].The International Journal of Pressure Vessels and Piping.2002,(79):561-569.
    [12]Brij Bhushan Tewari.Determination of Stability Constants of Iron(Ⅲ) and Chromium(Ⅲ)-Nitrilotriacetate-Methyl Cysteine Mixed Complexes by Electrophoretic Technique[J].Bulletin of the Chemical Society of Ethiopia.2004,18(1):29-36.
    [13]E.G.Vinokurov,V.V.Kuznetsov,V.V.Bondar.Aqueous Solutions of Cr(Ⅲ)Sulfate[J]:Modeling of Equilibrium Composition and Physicochemical Properties.Russian Journal of Coordination Chemistry.2004,30(7):496-504.
    [14]John B.Vincent.Recent Developments in the Biochemistry of Chromium(Ⅲ)[J].Biological Traee Element Research.2004,99(1 ):1-16
    [15]孙闻东,马占芳,双烃表面活性剂的乳状液膜提取铬离子的研究[J].膜科学与技术,1997,17(3):30-35.
    [16]C.Deptula,Extraction of chromium(Ⅵ)from sulfuric acid solutions by mean of tri-octylamine[J].J.Inoryg.Nucl Chem,1968.30(5):1309-1316.
    [17]王铁汉,我国铬生产的新进展和今后努力方向[J],铁合金,1996,(6):31-33.
    [18]王瑞林,铝热法冶炼99%金属铬[J],铁合金,1985,(3):18-21.
    [19]D.P.Glavin,A.Kubny,E.Jagoutz,et al,Mn-Cr isotope systematics of the D'Orbigny angrite[J].Meteoritics & Planetary Science,2004,39(5):693-700.
    [20]张明俊,刘福泉,铬矿烧结工艺研究[J],铁合金,1994,(3):7-10.
    [21]陈国翠,硅铬合金生产方法的选择[J],铁合金,2002,167(6):42-45.
    [22]吴慎初,金属铬生产工艺和铬浸出渣治理探讨[J],铁合金,1992,(6):35-37.
    [23]Klaus Langer,Alexej N.Platonov,Stanislav S.Matsyuk.Local mean chromium-oxygen distances in Cr~(3+) centered octahedra of natural grossular-uvarovite garnet solid solutions from electronic absorption spectra[J],Zeitschrift f Kristallographie,2004,219(5):272-272.
    [24]EdwardA.Cloutis,J.M.Sunshine,R.V.Morris.Spectral reflectance-compositional properties of spinets and chromites:Implications for planetary remote sensing and geothermometry[J],Meteoritics&Planetary Science,2004,39(4):545-565
    [25]A.L.Petrou,P.Paraskevopoulou,M.Chrysi kopoulou.Kinetics and mechanism of the reaction between chromium(Ⅲ) and 3,4-dihydroxyphenylpropionic (dihydrocaffeic) acid in weak acidic aqueous solutions[J],Journal of Inorganic Biochemistry,2004,98(1):123-132.
    [26]D.Bagchi,M.Bagchi,S.J.Stohs.Chromium(Ⅵ)-induced oxidative stress,apoptotic cell death and modulation of p53 tumor suppressor gene[J],Molecular and Cellular Biochemistry,2001,222(1):149-158.
    [27]S B Whitfield,B D Krosschell,R Wehlitz.Photoelectron spectrometry of atomic chromium in the region of the 3p-3d giant resonance[J],Journal of Physics B:Atomic,Molecular and Optical Physics,2004,37(17):3435-3455.
    [28]S.Takahashi,Y.Sato,Y.Kamada,et al.Study of chromium depletion by magnetic method in Ni-based alloys[J],Journal of Magnetism and Magnetic Materials,2004,269(2):139-149.
    [29]A.P.Vonderheide,J.Meija,K.Tepperman,et al.Retention of Cr(Ⅲ) by high-performance chelation rion chromatography interfaced to inductively-coupled plasma mass spectrometric detection with collision cell[J],Journal of Chromatography A,2004,1024(1):129-137.
    [30]T.Belgya,G.L.Molnar.Accurate relative g-ray intensities from neutron capture on natural chromium[J],Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,213(1):29-31.
    [31]A.A.Edigaryan,E.N.Lubnin,B.F.Lyakhov,et al.Hydrogen Content in Chromium and Multilayer Nickel-Chromium Coatings Deposited by Periodic Current[J],Protection of Metals,2003,39(5):405-410.
    [32]K.N.Mehrotra,M.Jain.Spectroscopic and Thermal Behavior of Chromium Soaps[J],Journal of Solid State Chemistry,1996,122(1):100-106.
    [33]J.Barnhart,Occurrences.Uses and Properties of Chromium[J],Regulatory Toxicology and Pharmacology,1997,26(1 ):3 -7.
    [34]L.N.Vykhodtseva,A.A.Edigaryan,E.N.Lubnin,et al.Composition,Structure,and Corrosion-Electrochemical Properties of Chromium Coatings Deposited from Chromium(Ⅲ) Electrolytes Containing Formic Acid and Its Derivatives,[J]Russian Journal of Electrochemistry,2004,40(4):387-393.
    [35]莫叔迟等,世界金属硅,金属锰及金属铬的生产与消耗[J],铁合金,1992,55(3):31-33.
    [36]吴慎初,用铬铁生产金属铬(铬盐)新工艺研究,铁合金[J],1995,(4):35-38.
    [37]邓庆球编译,关于世界铬生产的概况[J],冶金矿山设计与建设1992,(4):23-26.
    [38]E.P.L.Roberts,H.Yu.Chromium removal using a porous carbon felt cathrode[J].Journal of Applied Electrochemistry.2002,32(10):1091-1099.
    [39]V.Y.Trubitsin,V.P.Shirokovskii,Relativistic calculation of the electronic structure of antiferro magnetic chromium with a sinusoidal spin-density wave[J].Journal of Physics:Condensed Matter.1996,8(49):10601-10608.
    [40]N.R.Moody,D.P.Adams,D.Medlin;T.Headley,et al.Effects of diffusion on interfacial fracture of gold-chromium hybrid microcircuit films[J].International Journal of Fracture.2003,119(4):407-419.
    [41]T.Akiyama,S.Kobayashi,J.Ki,et al.Role of polyethylene glycol in electrodeposition of zinc-chromium alloys[J].Journal of Applied Electrochemistry.2000,30(7):817-822.
    [42]T.Alam,H.Tarannum,S.R.Al,Adsorption and Oxidation of Aniline and Anisidine by Chromium Ferrocyanide[J].Journal of Colloid and Interface Science.2002,245(2):251-256.
    [43]J.Burgess,C.D.Hubbard,M.S.Patel,et al.Salvation of iron and chromium complexes in alcohol-water mixtures[J].Transition Metal Chemistry.2002,27(2):134-144.
    [44]Padhi A K,Nanjuad Aswamy K S,Goodenough J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].Electrochem Soc,1997,144(4):1188-1192.
    [45]Tarasoon J-M,Arm and M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,144(15):359-361.
    [46]And Ersson A S,Kalska B,L,et al.lithium extraction/insertion in LiFePO4:an X-ray diffraction and spectroscopy spectroscopy study[J].Solid States Ionics,2001,130(15):41--45.
    [47]Padhi A K,Nanjuand Swawy K S,Masquelier C,et al.Effect of structure on the Fe~(3+) /Fe~(2+) redox couple in iron phosphates[J].Electrochem Soc,1997,144(5):1609.
    [48]曹艳军,龙翔云,程云峰.锂离子电池正极材料的研究现状和展望.化学技术与开发,2007,36(3):16-18.
    [49]Yang Shou-Feng,Zai Alij P Y,Whittingha M M S.Hydrothermal synthesis of lithium iron phosphate cathodes[J].Electrochemistry Communications,2001,35(4):16-18.
    [50]Yang Shou-Feng,Song Yan-Ning,ZavAlij P Y,et al.Reactivity,stability and electrochemical behavior of lithium iron phosphates[J].Electrochemistry Communications,2002,4:239.
    [51]杨蓉,赵铭姝,杜宝中.共沉淀法制备正及材料LiFePO_4的研究进展[J].稀有金属材料与工程,2007,36(S2):631-634.
    [52]Croce F,Epifanio A D,Hassoun J,et al.A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode[J].Electrochem.Solid State Lett.,2002,5(3):47-50.
    [53]Cho Tae-H-yung,Chung Hoon-Taek.Synthesis of olivinetype LiFePO4 by emulsion-drying method[J].J Power Sources,2004,133(5):272-276.
    [54]Masashi H.Synthesis of LiFePO_4 cathode material by microwave processing[J].Power Sources.2003.119-121:258.
    [55]吴川,吴锋,陈实等.锂离子电池正极材料研究进展[J].电池.2000,30(1):36-39.
    [56]Monshtev R,Zlatilova P,Manev V,et al.Synthesis of LiNiO_2 in air atmosphere:x-ray diffraction characterization and electrochemical investigation[J].Power Sources,1996,62(1):59-65.
    [57]周宗子,朱刚.磷酸铁锂材料及其动力电池产业化现状及前景.船电技术,2007,27(4):257-260.
    [58]赵新兵,谢健.新型锂离子电池正极材料LiFePO_4的研究进展.机械工程学报, 2007,43(1):69-76.
    [59]A.S.Andersson,J.O.Thomas.The source of first-cycle capacity loss in LiFePO_4[J].Journal of Power Sources,2001,97-98:498-502.
    [60]Takahashi M,Tobishima S-I,Takei Koji S.Reaction behavior of LiFePO_4 as a cathode material for rechargeable lithium batteries[J].Solid State Ionics,2002,148(24):283-286.
    [61]Daniela Zane,Maria Carewskab,Silvera Scaccia,et al.Factor affecting rate performance of undoped LiFePO_4[J].Electrochimica Acta,2004,49(25):4259-4271.
    [62]Pankaj Arorat,Ralph E.White.Capacity fade mechanisms and side reactions in lithium-ion batteries[J].Journal of The Electrochemical Society,1998,145(10):3647-3667.
    [63]Kathryn Striebel,Joongpyo Shiml,Azucena Sierra,et al.The development of low cost LiFePO_4-based high power lithium-ion batteries.Journal of Power Sources,2005,146(1-2):33-38.
    [64]N.Ravet,M.Gauthier,K.Zaghib,et al.Mechanism of the Fe~(3+) reduction at low temperature for LiFePO_4 synthesis from a polymeric additive.Chem.Mater.,2007,19(10):2595-2602.
    [65]Hu Guo-rong,Gao Xu-guang,Peng Zhong-dong,et al.Influence of Ti~(4+) doping on electrochemical properties of LiFePO_4/C cathode material for lithium-ion batteries.Transactions of Nonferrous Metals Society of China,2007,17:293-300.
    [66]M.E.波任.无机盐工艺学[M].北京:化学工业出版社,1981,369-376.
    [67]丁翼.纪柱.铬化合物[M],第5卷,北京:化学工业出版社.1993.861-864.
    [68]A.H.Sully,E.A.Brandes.Metallurgy of the Rarer Metals I Chromium.2nded[M],London:Butter worths.1967.
    [69]丁翼.铁铬木质素硫酸盐[M].实用小化工大全第一卷,北京:化学工业出版社,1996.
    [70]徐如人,庞文琴[M].无机合成与制备化学,北京:高等教育出版社,2001,6.
    [71]F,布雷夏,J,阿伦茨,H,麦斯利希,等.化学基础究[M].北京:冶金工业出版社,1983.
    [72]Oleg S.Yurchenko,Tatyana N.Bondarenko.Powdering Lower Chromium Carbide and Nitride Phases[J],Powder Metallurgy and Metal Ceramics,2004,43(3):201-204.
    [73]M.B.Hansen,J.D.Johansen,T.Menne.Chromium allergy significance of both Cr (Ⅲ) and Cr(Ⅵ)[J],Contact Dermatitis,2003,49(4):206-212.
    [74]A.Cotarta,J.Bouteillon,J.C.Poignet,et al.Preparation and characterization of chromium deposits obtained from molten salts using pulsed currents[J],Journal of Applied Electrochemistry,2001,31(9):987-995.
    [75]D.V.Vukomanovic,G.W.vanloon,K.Nakatsu,et al.Determination of Chromium(Ⅵ) and(Ⅲ) by Adsorptive Stripping Voltammetry with Pyrocatechol Violet[J],Microchemical Journal,1997,57(1):86-95.
    [76]U.C.Ghosh,M.Dasgupta,S.Debnath,et al·Studies on Management of Chromium(Ⅵ)-Contaminated Industrial Waste Effluent using Hydrous TitaniumOxide(HTO)[J],Water,Air,and Soil Pollution,2003,143(1 ):245-256.
    [77]Y.Li,N、 K.Pradhan,R.Foley,et al.Selective determination of airborne hexavalent chromium using inductively coupled plasma mass spectrometry[J],Talanta,2002,57(6):1143-1153.
    [78]张小林,化工生产流程图解北京[J],化学工业出版社,1997,12.
    [79]K.Pillay,H.and its relation tovon Blottnitz,J.Petersen.Ageing of chromium (Ⅲ)-bearing slag the atmospheric oxidation of solid oxide[J],Chemosphere,2003,52(10):chromium(Ⅲ)-oxide in the presence of calcium 1771-1779.
    [80]F.Cavani,M.Koutyrev,F.Trifiro,et al.Chemical and Physical Characterization of Alumina-Supported Chromia-Based Catalysts and Their Activity in Dehydrogenation of Isobutane[J],Journal of Catalysis,1996,158(1):236-250.
    [81]M.J.Avena,C.E.Giacomelli,C.P.de Pauli.Formation of Cr(Ⅲ)Hydroxides from Chrome Alum Solutions.Precipitation of Active Chromium Hydroxide[J],Journal of Colloid and Interface Science,1996,180(2):428-435.
    [82]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [83]傅肃嘉,许克强.金属铬粉表面氧含量的测定[J].浙江冶金,1995(2):42-44.
    [84]李洪桂,冶金学原理[M].中南大学出版社,2004.
    [85]杨慧芬,铝土矿的强化除铁方法[J].轻金属,1992(9):1-5.
    [86]周国华,薛玉兰,何伯泉.铝土矿选矿除铁研究进展概况[J].矿产保护与利用,1999(4):44-47.
    [87]谢岷.铝土矿选矿试验研究[J].有色金属:选矿部分,1995(6):12-16.
    [88]朱友益.山西阳泉铝土矿浮选分级及提纯试验研究.
    [89]金属矿山[M],1994(10):40-43.
    [90]Kahn H,Tassinari M M L,Ratti G.Characterization of bauxite fines aiming to minimize their iron content[J].Mineral Engineering,2003,16(11):1313-1315.
    [91]Rao R B.Novel approach for the beneficiation of ferruginous bauxite by microwave[J].Minerals and Metallurgical Processing,1996,13(3):103-106.
    [92]庞思明,文明芬.一水硬铝石型铝土矿盐酸浸出脱铁过程表观动力学[J].有色金属,1999,51(3):49-53
    [93]温英,甘怀俊,王巧华.阳泉铝矾土矿富铝除铁的研究[J].中国锰业,1995,13(6):26-29.
    [94]Pawemnarakis G,Paspaliaris Y.Leaching of iron Ox-sides in bothmitic bauxite by hydrochloric acid[J].Hydrometallurgy,1989,23(1):77-90.
    [95]姜力夫,程秀莉,张蕊等.煤矸石合成4A沸石过程中除铁方法的研究[J].山东化工,2002(31):5-6.
    [96]郭保万,张艳娇,赵平等.某高铁钾长石除铁工艺流程研究[J].矿产保护与利用,2002(2):22-26.
    [97]付丽珠,邱廷省.某钾长石矿脉动高梯度磁选除铁试验研究[J].矿产保护与利用,1997(3):30-34.
    [98]Chou kan sen,Lin Chun cheng.Extracting iron from aluminum sulfate solution [J].Hydrometallurgy,1986,15(2):391-394.
    [99]邓良辉.高岭土生产硫酸铝除铁新方法的探讨[J].化学世界,1982,23(4):100-102.
    [100]张显生.湖南三立应用简易黄铵铁矾法生产电锌的实践[J].湖南冶金,2003,3 1(3):32-35.
    [101]Flood.H W.Removel offerric iron from aqueous solution of aluminium salts:US[p],3586477.1971,06,22.
    [102]陈家镛.湿法冶金中铁的分离和利用[M].北京:化学工业出版社,1991:187-188.
    [103]汤兵,朱又春,白雪梅等.溶剂萃取法从镀锌酸洗废液中分离锌、铁的研究[J].矿冶工程,2003,23(5):48-52.
    [104]一种从炭素铬铁中生产三氧化二铬和酸亚铁的方法[P],专利申请号:200710034327.0.
    [105]姜效军.二硫代氨基甲酸钠分离电解铬储备液中的铁[J].铁合金.2000,154(5):19-21.
    [106]卢里耶Ⅱ[苏].工业污水的化学分析[M].雷世寰译.北京:化学工业出版社.
    [107]张国栋,贾金平.pH值对含铬废水处理效果的影响研究[J].工业用水与废水,2006,5(37):44-46.
    [108]王会,周松颖.铜铬电镀废液中铬回收方法[J].环境保护科学,2005,12(31):43-44.
    [109]刘存海,王廷平.从铬鞣废水中回收硫酸铬技术的研究[J].中国皮革2007,1(1):57-59.
    [110]徐根良,肖大松,肖 敏.重金属废水处理技术综述[J].水处理技术,1991,17(2):77-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700