从含锌铟复杂物料中提取金属铟新工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀散金属铟由于具有十分独特而优良的物理和化学性能,成为了现代电子工业中最重要的材料之一,全球金属铟60~80%用于制造ITO透明导电膜,而ITO是目前性能最好的导电膜材料,暂时还无其它材料可比拟、代替。因此,金属铟支撑着全球为数巨大的平板电视、计算机、手机等各种尺寸显示器的生产,在国民经济中有重要的作用。
     我国铟资源十分丰富,已探明储量世界第一,主要集中于西部地区的广西、云南、内蒙古和青海等地。在火法炼锌中年产约3万吨富含锌铟的物料,其中含锌2.4万吨,含铟100吨,综合利用价值很高。长期以来,这种含锌铟物料缺乏高效先进的处理技术,现有方法生产铟的回收率低,有的甚至不到50%。因此从这种含锌铟物料中高效提取锌铟新技术的研究开发具有重要意义。
     在本论文中针对火法炼锌得到的一种含锌铟物料,通过分析物料的物相和性质,在查阅大量资料、对比多种处理方法的基础上提出了真空蒸馏、湿法浸出、净化、富集、置换、电解提纯多项技术相结合的新工艺,并对其中的关键技术进行了理论及应用基础研究和实验:(1)从理论上研究了金属在真空条件下的蒸发、冷凝、杂质分离的理论基础及过程,计算了铟与主要杂质元素的分离系数、挥发速率、气液相成分及气液相平衡图。然后在此基础上进行了含锌铟物料及粗铟的真空蒸馏实验,考查了含锌铟物料回收锌、富集铟的相关指标、工艺条件,粗铟蒸馏中铟及杂质元素的走向、分布规律等。得到的相关指标和操作条件用于下一步的工业化设计和应用;(2)研究了铟水系的电位φ—pH图、浸出置换过程的理论基础及过程热力学、动力学基础及浸出反应的活化能等相关计算,进行了富铟渣浸出过程、置换过程的相关试验,考查了酸度、液固比、时间、温度等因素对铟浸出率的影响,置换剂的选择、粒度、温度、时间对置换率的影响,得到了相关参数;(3)根据电解的基本原理讨论了影响电解的诸多因素并进行了小型实验,得到了可靠的技术参数;(4)对粗铟的真空蒸馏进行了小型(100g)、扩试(20kg)及工业化(200kg)试验,开发了不同处理量的专用设备。
     理论及实验研究得到了各工序最佳的工艺条件为:
     1)含锌铟物料真空蒸馏:蒸馏温度900~950℃,炉内压力小于100 Pa,冶炼时间16-20h,金属锌回收率97%,金属铟回收率99%,金属铟富集倍数7倍。
     2)富铟渣浸出:分为中性浸出、酸性浸出两段
     ①中性浸出:液固比6~8:1;温度:80~90℃;时间:6小时左右;始酸为:120~150g/l H2SO4;终酸为:PH=5.0~5.4。
     ②酸性浸出:液固比8~10:1;温度80~90℃;浸出时间为12小时左右;始酸为:150~200g/l H2SO4;终酸为:PH≤1.5。
     3)锌粉置换的工艺条件为:锌粉和金属铟的质量比1.1:1,置换时间72h,置换温度≥20℃,pH值1~1.5,锌粉含锌99.9%以上,粒度80~120目。
     4)粗铟(95~99%In)真空蒸馏的工艺条件为:温度750~850℃,真空度小于10 Pa,锌镉去除率大于98%,可取代化学法。
     5)粗铟(~99%In)电解精炼的工艺条件为:
     电流密度80A/m2
     槽电压0.25-0.35v
     同极中心距70mm
     电解周期阳极周期14~21天,阴极周期5~7天
     电解液温度20~30℃电解液成分(g/l)如下:
     电解后可得到含铟大于99.99%(4N)精铟。
     其创新点包括:①集成创新了提取金属锌、铟新工艺;②含铟物料的真空蒸馏技术;③富铟渣两段浸出、锌粉置换制备海绵铟技术;④粗铟真空蒸馏和电解精炼联合生产精铟技术;⑤与新技术配套的真空冶金装备的研制。并进行了规模为10吨/年精铟工业化设计及实验。实践证明该工艺具有技术集成度高、流程短、铟的回收率高、生产过程对环境友好等特点。
     至今整套工艺技术和装备在云南省建成年产10吨/年精铟的生产线,2004年成功实现了产业化应用,该工艺中的部分关键技术和装备还应用于国内几家炼铟企业。截止2006年底利用该技术共生产99.993%精铟62吨,金属锌5000多吨,新增产值5亿多元人民币,其中创外汇810万美元,实现利税近1亿元人民币。并和拥有最大铟资源的企业—云南华联锌铟股份公司签订协议开始实施利用该技术在2008年建成亚洲最大铟生产工厂(年产铟60吨/年)。
     该工艺创新性强,拥有自主知识产权,已获得国家发明专利3项。经有关专家鉴定,一致认为整体技术属国内外首创,达到国际先进水平。2007年获得中国有色金属工业协会科技发明一等奖,云南省科技发明一等奖。
     总之,该课题研发的提铟新技术有广阔的推广前景,能够实现含铟矿产资源的综合高效合理利用,实现金属铟清洁生产。同时为稀散金属的真空冶炼起到一定的示范作用,尤其是对提纯稀散金属及其高纯产品生产也有一定的推广应用前景,对有色金属冶金工业的科技进步有着积极的意义。
Scattered metal indium with unique and excellent physical and chemical properties has become one of the most significant support materials in the modern electronics industry. Sixty to eighty percent of global gross output of indium has been applied to the manufacture of ITO transparent conductive film, which is the best conductive film material and has no alternative to be compared or replaced at present. Therefore, tremendous support of the global production of displays with various size including flat-panel TVs, computers, cell phones, etc. with indium, and thus plays increasingly important role in the national economy.
     As China is rich in indium resource which ranks first in the world, indium resources mainly concentrated in the western regions including Guangxi, Yunnan, Neimenggu and Qinghai etc. The annual output of the materials with rich zinc and indium is about 30,000 tons by pyrometallurgy. It contains zinc 24,000 tons and indium 100 tons, which contribute to its high value of comprehensive utilization. Nevertheless, for a long time there has been little efficient and advanced processing techniques to treat such materials with zinc and indium. Accordingly to study and develop the new technologies of efficient extraction of indium and zinc from such materials with zinc and indium is of great significance.
     According to the materials with zinc and indium by pyrometallurgy in this thesis, a new process was proposed on the basis of the analyzing the phases and properties of the materials, referring to a large number of datas and comparing with a variety of treatment, which combined vacuum distillation, wet leaching, purification, enrichment, replacement, and electrolysis purification. The key technologies as indicated above were also studied in terms of theoretical research, applied basic research and experimental study. (1)The principle, mechanism and thermodynamics, kinetics of metal evaporation, condensing, impurity separation was studied in theory firstly, and the separation coefficient, evaporation rate, gas composition and gas-liquid equilibrium diagram of indium and main impurities were calculated. Then the vacuum distillation tests of the materials with indium and crude indium were carried out on the basis hereinabove, which examined the related indicators and process conditions of zinc recovery and indium enrichment from the materials with indium and zinc, and the trend and distribution of impurity elements in the distillation of crude indium. The relevant indicators and operating conditions can be applied in for the following of industrial design and application. (2)Electrode potential-pH diagram based on indium, mechanism, process thermodynamics and kinetics of leaching replacement process were studied, which includes rich indium slag leaching, related tests of the replacement process. The influences of the acidity, liquid-solid ratio and time on the rate of extraction of indium and the influences of the replacement of choice, size, temperature and time on the replacement rate were also observed, and related parameters were obtained. (3) Through the small-scale tests in the process of electrolysis in accordance with the basic principles of electrolysis, reliable technical parameters were gained. (4)On the basis of the small-scale test(100g), bench-scale test(20kg) and industrial test(200kg) of vacuum distillation of crude indium, appropriative equipments with different capacity were developed.
     The operating parameters of the process-were determined by theory and experimental research as follows:
     1) Vacuum distillation of the materials with indium and zinc:distillation temperature: 900-950℃, furnace pressure:<100Pa, smelting time:16-20h, recovery rate of indium: 97%, recovery rate of zinc:99%, multiple of indium enrichment:7 times.
     2) Leaching of slag with rich indium was divided into neutral leaching and acid leaching:
     ①NNeutral leaching:ratio of liquid-solid:6-8:1, temperature:80-90℃,time:about 6 hours, before acid:H2SO4120-150 g/l; end acid:PH= 5.0~5.4.
     ②Acid leaching:ratio of liquid-solid:8-10:1, temperature:80-90℃, time:about 12 hours, before acid:H2SO4150~200 g/l, end acid:PH≤1.5.
     3) Process conditions of the replacement of zinc powder:mass ratio of zinc powder and indium, replacement time:72h, replacement temperature:≥20℃, pH:1~1.5, zinc content in zinc powder:>99.9%, particle size:80~120 mesh.
     4) Process conditions of vacuum distillation of crude indium:temperature:750-850℃, degree of vacuum:<10Pa, removal efficiency of zinc cadmium:>98%, as replacement of chemical methods.
     5) Process conditions of electrolytic refining of crude indium:
     Current density:80 A/m
     Cell voltage:0.25~0.35V
     Center distance between two electrode with same electrode:70 mm
     Electrolysis cycle:anode cycle 14-21 days, cathode cycle 5-7 days
     Electrolyte temperature:20-30℃
     Composition of electrolyte(g4) are as follows:
     Fine indium with indium content more than 99.99%(4N) can be obtained after the electrolysis of indium.
     Its key point of innovation cover 5 items:①The integrated innovative new process of the extraction of the metal zinc and indium;②The technology of vacuum distillation of the materials containing indium;③Slags with rich indium were leached by sulfuric acid in two steps including neutral and acid leaching, and sponge indium was thus prepared by the replacement of zinc powder;④The technology of refined indium production combining vacuum distillation of crude indium with electrolytic refinement;⑤Vacuum equipments matched with the new technology. In addition, industrial design and experiment of refined indium with the scale of 10 tons per year of indium fine design and industrialization has been proceeding. Practices prove that the new technology developed has many advantages including high technical integration, short flow, high recovery rate of indium and little pollution.
     So far product line of refined indium with annual output of 10 tons/year was built in Yunnan Province by the integrated process technologies and equipments which realized industrial application successfully in 2004. Part of the key technologies and equipments in this process was also applied in several domestic enterprises of refining indium. Up to the end of 2006, the output of the refined indium(99.993%) has achieved 62 tons while the output of zinc has reaches over 5,000 tons, and the output value has increased by 500 million yuan, which covers foreign exchange 8.1 million US dollars and profits and taxes nearly 100 million yuan. Under the cooperation with the enterprises which owns the greatest resources, Asia's largest indium-production factories (annual output of indium 60 tons/year) are prepared to be built by virtue of this technology.
     This innovative technology with autonomous intellectual property rights were authorized 3 state invention patents. Identified by the relevant experts, the integrated technology was agreed that it's the pioneer technology at home and abroad and has reached the international advanced level. Besides, this technology has won the first prize of China Nonferrous Metal Industry Association for scientific and technological inventions and first prize of scientific and technological inventions in Yunnan Province in 2007.
     In conclusion, this technology has a vast range of prospects for promotion and popularization, and can realize the comprehensive efficient reasonable utilization of the mineral resources and clean production of metal indium. Meanwhile it plays a demonstrative role for vacuum smelting of scattered metals, especially for the promotion and popularization of the purification of scattered metals and high-purity products. Furthermore, there's positive meaning for the scientific and technological progress of non-ferrous metallurgical industry.
引文
[1]周令治,邹家炎.稀有金属手册[M].长沙:中南工业大学出版社,1993
    [2]巴.依.费多洛夫,拉.哈.阿克楚林(俄)编,张启运,许克敏译.铟化学手册[M].北京:北京大学出版社,2005
    [3]沈华生编.稀散金属冶金[M].上海:上海人民出版社,1976
    [4]周令治.稀散金属冶金[M].北京:冶金工业出版社,1988
    [5]《稀有金属手册》编辑委员会编.稀有金属手册[M],北京:冶金工业出版社,1997
    [6]王树楷.铟冶金[M].北京:冶金工业出版社.2006:147-155
    [7]Zhang Qian. Geochemical enrichment and mineralization of indium [J]. Chinese journal of geochemistry.1998(3):221-225
    [8]刘世友.铟工业资源、应用现状和展望[J].有色冶炼,1999,(1):30-32
    [9]王顺昌,齐守智.铟的资源、应用和市场[J].世界有色金属,2000(12):22-24
    [10]邓志杰摘译.铟[J].现代材料动态,2002(8):34
    [11]邹家炎.铟的提取、应用和新产品开发[J].广东有色金属学报,2002,9(12):16-18
    [12]戴永年主编.金属及矿产品深加工[M].北京:冶金工业出版社.2007:218-228
    [13]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保[M],北京:化学工业出版社,2003:298-306
    [14]刘世友.铟锡氧化物薄膜的生产现状与应用[J].材料科学与工程,1997(2):49-51
    [15]张树高.ITO薄膜的半导体化机理、用途和制备方法[J].材料导报,1997(4):75-78
    [16]刘郎明.铟及其高新技术产品开发[J].株冶科技,1996,11(4):51-52
    [17]尹成先,兰新哲.铟的用途及提铟方法[J].有色金属2002(7):187-188
    [18]安泰科金属报价[EB/OL]. http://www.metalchina.com
    [19]冯君从.资源紧张将使铟价继续坚挺[J].北京:世界有色金属,2003,(7):20-23
    [20]侬健桃.我国铟产业现状及发展[J].有色冶炼,2002(8):12-14
    [21]刘大春,杨斌,戴永年.云南省铟资源及产业发展[J].广东有色金属学报,2005(1):1-3
    [22]刘大春,杨斌,戴永年.云南省铟资源的合理开发[J].中国工程科学,2005(增 刊):42-44
    [23]马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟[J].湿法冶金,1997(2):58-61
    [24]沈奕林,覃蔗宏,熊志军.铁矾渣的处理及萃取提取铟新工艺的研究[J].有色金属(冶炼部分),2001,(4):33-35
    [25]曾冬铭,舒万艮,刘又年等.低酸浸出-溶剂萃取法从含铟渣中回收铟[J].有色金属,2002,54(3):41-44
    [26]韩照炎.锌浸出渣综合利用回收铟的研究[J].有色金属(冶炼部分),1997,(6):41-43
    [27]Lei Cunxi.Separation and concentration of indium from leaching solution containing indium, antimony and iron ions[J]. Rare Metals.2000.19 (1):76-80
    [28]Xu Xiulian, Xu Zhifeng. Separation of indium and iron from dilute sulphate solutions with a phosphorous mixer extractant [J]. Rare Metals.2001.20 (3):152-156
    [29]Le Quesne Y, Fossi P. Extraction of indium from chloride solutions [P]. European patent EP 318,384.1989-08-15
    [30]Sato T, Sato k. Liquid-liquid extraction of indium from aqueous acid solutions by acid organophosphorus compounds [J]. Hydrometallurgy,1992,30:367-383
    [31]A.M.Alfantazi, R.R.Moskalyk. Processing of indium[J]: a review. Minerals Engineering,2003, (16):687-694
    [32]Xu Xiulian,Xu Zhifeng,Zhou Faying.Recycle use of phosphorous mixer extrractant to extract indium[J].Rare Metals.2003.22 (2):91-94
    [33]郭天立,李春军,刘大勇.铟的冶炼的生产实践[J].有色矿冶.2000,16(6):18-22
    [34]赵秦生.俄罗斯制取高纯铟和铟粉的新进展[J].稀有金属和硬质合金,2004,6(2):24-25
    [35]周智华,莫红兵,许国荣等.稀散金属铟富集与回收技术的研究进展[J].有色金.属,2005,57(1):71-76
    [36]宁顺明,陈志飞.从黄钾铁矾渣中回收锌铟[J].中国有色金属学报,1997,7(3):56-58
    [37]Hino A, Hirai T, Komasawa I. The recovery of phosphorus value from incineration ashes of sewage sludge solvent extraction [J].kagaku ronbunshu,1998,24:273-281
    [38]Nishihama S, Hirai T, Komasawa I. Extraction and separation of gallium and indium from aqueous chloride solution using several organophorus compounds extractants [J].J Chem Jpn,1998,31:818-826
    [39]Abe H. The recovery of gallium and indium from zinc refinery by-product[J]. Nippon kogyo kaishi, 1982,98:561-569
    [40]郑顺德.从电炉底铅中回收铟和锗[J].有色金属(冶炼部分),1997,(3):26-29
    [41]张丽霞.从废合金线中回收铅、锡、铟[J].湿法冶金,1990,(1):70-73
    [42]李严辉,张欣,杨永峰等.ITO废靶中铟的回收[J].中国稀土学报,2002,20(1):256-258
    [43]陈坚,姚吉升,周友元等.ITO废靶回收金属铟[J].稀有金属,2003,27(1):101-103
    [44]Man-Seung Lee, Jong-Gwan Ahn, young-joo oh. Production of high-purity indium and gallium metals by vacuum refining [J].Materials Transactions.2002.43(12):3195-3198
    [45]Man-Seung Lee, Keun-Yong Sohn. Comparison of indium purification between vacuum refining and electrowinning [J].Journal of Materials science,2003 (38):4843-4848.
    [46]易鸿飞,奚长生.国内外稀散元素镓铟锗的提取技术[J].广东化工,2003(2):62-64
    [47]陈家镛主编.湿法冶金手册[M].北京:冶金工业出版社.2005
    [48]傅崇说.有色冶金原理[M].北京:冶金工业出版社.2000
    [49]梅光贵,王德润等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [50]蒋继穆.我国锌冶炼现状及近年来的技术进展[M].中国有色冶金,2006,5:19-23
    [51]戴永年,杨斌.有色金属材料的真空冶金[M].北京:冶金工业出版社,2000.
    [52]戴永年,赵忠编著.真空冶金[M],北京:冶金工业出版社,1988
    [53]杜清枝,杨继舜.物理化学[M],重庆:重庆大学出版社,1997
    [54]A.伏尔斯基,E.谢尔吉耶夫斯卡娅著,董庆和译.冶金过程理论[M],北京:科学出版社,1987
    [55]O.Winkler, R.Bakosh编,康显澄,潘健武译.真空冶金学[M],上海:上海科学技术出版社,1980
    [56]叶大伦,胡建华编著.实用无机物热力学数据手册[M],北京:冶金工业出版社,2001
    [57]A. N. Nemeyanov. Vapor pressure of the chemical elements [M],1963
    [58]Dai Yongnian, Yang bin, Ma Wenhui et al. Advance on vacuum metallurgy of nonferrous metals [J]. Engineering Science,2004,2(3):12-19
    [59]丘克强,段文军,陈启元.金属在真空状态下的蒸发速率[J].有色金属,2002,5(2)48-52
    [60]陈志飞,沈湘默,蒙在吉等编.锌铟实用冶金[M].长沙:中南工业大学出版社,1996:17-24
    [61]杜挺.杜挺科技文集[M],北京:冶金工业出版社,1996
    [62]戴永年,夏丹葵,陈燕等.金属在真空中的挥发性[J].昆明工学院学报,1994,12(6):26-31
    [63]虞觉奇,易文质,陈邦迪.二元合金状态图集[M],上海:上海科学技术出版社,1983
    [64]杜国山.真空蒸馏制备4N精铟的研究[D].昆明:昆明理工大学,2006
    [65]魏昶,罗天骄.真空法从粗铟中脱除镉锌铋铊铅的研究[J].稀有金属,2003,11(5):853-856
    [66]吴成春.粗铟真空蒸馏除镉的研究及生产实践[J].广东有色金属学报,2005,1(15):12-13
    [67]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社.1998
    [68]李洪桂等.湿法冶金学[M].长沙:中南大学出版社.2002
    [69]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社.1987
    [70]John P. Hunt, Metal ions in aqueous solution, Benjamin,1963
    [71]Marcel Pourbarx et al., Atlas dequilibres electrochemiques (25℃), Gamttheir-Villars,1963
    [72]刘大春,杨斌,戴永年.从富铟渣提取金属铟的研究[J].稀有金属,2005(29)4:574-577
    [73]陈世馆.置换过程的电化学和工艺分析[J].上海:上海有色金属,1996(1):36-41
    [74]周合兵,杨美珠,李伟善等.铟沉积及其在不同介质中的电化学行为[J].电池工业,2003,8(4):169-170
    [75]杨岳云.高纯铟的制备及其应用[J].株冶科技,2002,11(4):9-11
    [76]石玲斌.粗铟提纯的研究[J].昆明理工大学学报,2002,12(6):41-43
    [77]周智华,曾冬铭,游红阳等.精铟中铊的氯化脱除[J].稀有金属,2002,5(3):191-192
    [78]周智华,曾冬铭,莫红兵.铟电解精炼中异常行为的研究[J].稀有金属,2002,11(6):452-454
    [79]周智华,曾冬铭,莫红兵等.铟电解精炼中电解液酸度对锡含量的影响[J].中国有色金属学报,2003,4(2):522-524
    [80]杨斌,’戴永年,罗文洲.硬锌提锌和富集锗铟技术的研究与应用[J].真空科学与技术.1999,19(10):166-168
    [81]肖华利.铟浸出工艺探讨[J].稀有金属与硬质合金,2003(12):4-6
    [82]孙倬等.重有色金属冶炼设计手册铅锌铋卷[J].北京:冶金工业出版社,1996
    [83]李铁柱.关于影响电解铟产品因素的研究[J].有色矿冶,2002(6):45-48
    [84]铅锌冶金学编委会.铅锌冶金学[M].北京:科学出版社,2003
    [85]谢克强等.火法炼锌生产流程查定报告.昆明理工大学真空冶金国家工程实验室,2007:33-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700