铁精矿复合粘结剂球团直接还原法工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电炉炼钢短流程的兴起,作为废钢替代品和生产优特钢不可或缺的原料,直接还原铁倍受青睐,直接还原技术及直接还原铁产量发展迅速。我国煤资源及铁精矿丰富,适宜发展球团煤基直接还原法。与传统的煤基“二步法”球团直接还原相比,“一步法”直接还原流程短、投资省、成本低、产品质量好,因而在我国获得广泛地应用。继北京密云6.2万t直接还原铁(DRI)、鲁中5万t DRI投产并取得良好效果后,单窑年产15万t DRI的“一步法”直接还原工艺在新疆也即将投产。但对铁精矿复合粘结剂球团在大型链篦机—回转窑内强度变化、还原行为及微观和宏观结构演变机制缺乏系统深入的研究,相关工艺流程和参数有待进一步优化。本论文以新疆磁铁精矿和进口赤铁矿为研究对象,开展了铁精矿复合粘结剂球团直接还原法工艺及机理研究,对“一步法”直接还原投产及其推广应用具有重要的指导作用。
     系统研究了铁精矿种类和配比、预处理方式、粘结剂种类和用量、内配煤种类和用量对生球制备、球团预热固结及还原行为的影响,进一步优化了工艺参数。结果表明,润磨预处理可明显降低干球粉末率,消除回转窑结圈的隐患;复合粘结剂CB可大幅度提高干球抗压强度,增大预热球团孔隙率,促进球团还原。
     对磁铁矿复合粘结剂球团和磁铁矿氧化球团进行了还原动力学研究。等温还原动力学研究表明,还原温度800℃~1050℃范围内,复合粘结剂球团还原反应受界面化学反应和内扩散混合控制。氧化球团在800℃~900℃还原阻力主要为化学反应阻力,1000℃~1050℃,还原反应受界面化学反应和内扩散混合控制。当还原温度为800~1000℃,复合粘结剂球团反应速率常数和气体有效扩散系数远远大于氧化球团;当还原温度为1050℃时,复合粘结剂球团化学反应速率常数略低于氧化球团,气体扩散系数大于氧化球团。当还原温度大于900℃时,复合粘结剂球团可快速还原,而氧化球团需1000℃上才能快速还原。非等温还原实验结果表明,复合粘结剂球团还原速率比氧化球团快一倍。动力学研究结果为铁精矿复合粘结剂球团“一步法”直接还原采用热球入窑和全窑高温(>900℃、)的热工制度,提供了有力的理论支撑。
     研究了两种磁铁矿球团在还原过程强度的变化规律。结果表明,复合粘结剂球团还原过程中,球团抗压强度低谷区(抗压强度小于500 N/个)持续时间仅30 min,氧化球团还原过程中抗压强度“低谷区”持续时间长达70 min。即使处于强度“低谷区”,复合粘结剂球团结构全部保持完整,氧化球团50%裂为碎片。越过抗压强度“低谷区”后,复合粘结剂球团抗压强度迅速提高,氧化球团抗压强度升高缓慢。复合粘结剂球团还原产品抗压强度为2570 N/个,球团结构完整,外表光滑;氧化球团还原产品抗压强度仅为775 N/个,球团表面布满裂纹,部分球团裂为碎片。
     两种球团还原过程中抗压强度变化规律及球团结构变化的差别是由球团还原过程中微观和宏观结构演变机制所决定。采用光学显微镜、X射线衍射仪、扫描电镜、图像分析软件对球团还原过程微观结构演变机制进行了研究;采用热膨胀仪、热传导系数测定仪对复合粘结剂团块和氧化团块的热物性参数进行了测定;运用X射线衍射仪结合MDI Jade软件对两种球团内矿物晶体的微观应变进行了测定。揭示了复合粘结剂球团和氧化球团还原过程中应力累积和释放机制,首次阐述了两种球团还原过程强度和还原行为差异的本质原因。结果表明,球团内部裂纹生成和扩展机制的差异决定了强度的差异。还原过程中,复合粘结剂球团裂纹主要由相变应力产生,裂纹形态以同心裂纹为主。同心裂纹出现后,很快被金属铁外壳包裹、约束,随着还原过程球团体积膨胀,裂纹得到“自愈合”,还原产品结构完整、表面光滑、强度高。相变应力和热应力耦合作用导致氧化球团产生大量径向裂纹,球团整体结构被破坏后,金属铁壳才出现;此外,还原后期,球团体积沿球面和径向收缩,径向裂纹甚至扩展(大),故无法消除。还原产品布满裂纹,强度差。
     磁铁精矿复合粘结剂球团“一步法”直接还原扩大试验主要技术指标为:直接还原铁全铁含量91.48%,金属铁含量87.05%,金属化率95.16%;铁回收率为93.58%,矿耗为1.442 t/t·DRI,煤耗为0.854 t/t·DRI,磁性粉率(-3 mm)为0.3%,烟尘0.161 t/t·DRI。磁铁矿氧化球团冷球直接还原对应的技术指标为:直接还原铁全铁含量89.24%,金属铁含量83.22%,金属化率93.25%;铁回收率90.66%,矿耗为1.508t/t·DRI,煤耗为0.889 t/t·DRI,烟尘0.223 t/t·DRI。复合粘结剂球团与氧化球团直接还原相比,全铁和金属铁品位高、金属化率高;还原过程产生含铁粉尘少,烟尘量小,铁回收率高;DRI抗压强度高。通过扩大试验,确定了新疆直接还原铁厂适宜的工艺流程,并为其建厂设计提供了工艺参数和依据。
     首次对赤铁矿复合粘结剂球团还原进行工艺优化试验和扩大试验研究。结果表明,印度赤铁矿可以任意配比与磁铁精矿混合,采用“一步法”直接还原法生产金属化球团。100%印度赤铁矿复合粘结剂球团直接还原后,可得到全铁87.83%,金属化率93.30%的金属化球团。研究结果扩大了原料来源,提升了“一步法”直接还原工艺的适应性。
In recent years, with the rapid development of steelmaking by EAF process, direct reduced iron (DRI) has gained world-wide recognition as an indispensable charge to replace scrap for quality steel production. DRI technology has been making great progress meanwhile global DRI output has been surging year by year. In China, there are abundant resources of high grade magnetite concentrate and noncoking coal, which provides advantages to develop direct reduction process of pellets by coal-based rotary kiln. In comparison with the traditional direct reduction of fired pellets (two-step process), direct reduction of pellets made from concentrate and composite binder (one-step process) possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profits and better quality of DRI. One step process has been finding more application in China. Miyun DRI plant with a capacity of 62 ktpa and Luzhong DRI plant with a capacity of 50 ktpa have been under operation successfully, and a brand-new plant with 150 ktpa DRI using one-step direct process will put into operation in Xinjiang in July 2007. However, no systematic and mechanism study have been carried out on strength change, reduction behaviors, variations of macrostructure and microstructure of pellets made from concentrate and composite binder during reduction in huge grate-kiln. In this paper, Xinjiang magnetite and imported hematite concentrate are chosen as pellet feed, a study on mechanism and process of direct reduction of pellets made from concentrate and composite binder was conducted, which enhances the spread and application one-step process for DRI production.
     The effects of concentrate types and pellet blends, pretreating methods, types and dosage of binder, and internal coal on green ball making, pellet preheating concretion and direct reduction behavior have been studied systemically. It was shown that damp milling can reduce fines ratio of dry pellets to eliminate potential kiln accretion. Using composite binder CB can dramatically increase compressive strength of dry pellets, enhance the porosity of preheated pellets and accelerate the reduction.
     The isothermal and non-isothermal kinetics of the reduction of pellets with CB as binder and fired pellets with bentonite as binder were investigated respectively. Results from isothermal reduction kinetics show that the reduction rate of CB pellets is controlled by a mixed mechanism of chemical reaction and diffusion when the reduction temperature ranges from 800 to 1050℃. However, the reduction rate of fired pellets is primarily controlled by chemical reaction in the range of 800 ~ 900℃, but by both chemical reaction and diffusion from 1000 to 1050℃. In the range of 800 to 1000℃, the chemical reaction rate and effective gas diffusivity of CB pellets are much bigger than that of fired pellets. When the temperature is above 900℃, CB pellets can be reduced rapidly, while high-speed reduction of fired pellets only happens at temperatures higher than 1000℃.
     Results from non-isothermal reduction research showed that the reduction rate of CB pellets is twice as fast as that of fired pellets. Based on the outcomes of reduction kinetics, one-step direct reduction of pellets made from concentrate and composite binder is significantly improved by using preheated hot pellets as feed and reducing at high temperatures higher than 900℃inside whole kiln.
     During the reduction, an investigation of strength changes of two kinds of pellets was carried out. It is shown that CB pellets present the valley of compressive strength (less than 500 Newton per pellet) for 30 mins during reduction. However, the valley of compressive strength lasts for 70 mins during reduction of fired pellets. Even more, CB pellets can maintain as whole pellets after reduction finished, but 50% of fired pellets broke into many fragments. The compressive strength of CB pellets increases dramatically when reduction proceeds beyond the valley, while that of fired pellets increases slowly. DRI products of CB pellets possess firm structure and smooth surface, with an average compressive strength 2570 Newton per pellet. However, cracks were bestrewn on the surface of DRI products of fired pellets and some pellets even turned into many pieces, with compressive strength of 775 Newton per pellet.
     During the reduction, there are some differences in compressive strength and structure changes between two types of pellets, which is determined by microstructure and macrostructure variations. Microstructure development of pellets during the reduction was studied by using microscope, XRD, SEM and image analysis software. Thermal properties of two types of compact were measured by using thermal dilatometer and thermal conductivity measurer. The mineral crystal microstrain of two types of pellets was investigated by employing XRD and MDI Jade software. The mechanism of stress accumulation and releasing was unveiled for two kinds of pellets and for the first time, the essential reasons to explain the difference on compressive strength and reduction behavior between two kinds of pellets were discovered. It is demonstrated that the strength difference is caused by different crack generation and extension inside pellets. During the reduction, the concentric cracks occurred inside CB pellets as a result of only phase change stress. After the appearance of concentric cracks, CB pellets are enwrapped, constricted by shell of metallic iron. In the latter stage of reduction, cracks can be self-cicatrized with pellet volume shrinking, which makes DRI pellets present whole structure, smooth surface and high strength. However, inside fired pellets, some radial cracks appeared at early stage of reduction due to coupling stress of phase change and thermal stress. The layer of metallic iron formed after pellets structure has been destroyed by radial cracks. Furthermore, in the latter reduction, the direction of pellet shrinking was vertical to the direction of cracks, resulting in wider radial cracks instead of cracks close. So the DRI products of fired pellets possess many cracks with low compressive strength.
     The main technical and economic results of scale-up test for one-step direct reduction process of CB pellets in a rotary kiln were achieved as follows: total iron content of DRI 91.48%, metallic iron content 87.05%, metallization degree 95.16%, Fe recovery 93.58%, ore concentrate consumption 1.442 t/t·DRI, dry coal consumption 0.854 t/t·DRI, magnetic fines ratio (-3 mm) 0.3%, dust 161 Kg/t·DRI. In contrast, the results of for direct reduction process of fired pellets were as follows: total iron content of DRI 89.24% , metallic iron content 83.22%, metallization degree 93.25%, Fe recovery 90.66%, ore concentrate consumption 1.508 t/t·DRI, dry coal consumption 0.889 t/t·DRI, dust 223 Kg/t·DRI. Direct reduction of CB pellets has such advantages as: higher total iron and metallic iron grade, higher metallization degree, less dust, higher recovery of iron and higher compressive strength of DRI compared with direct reduction of fired pellets. Through the scale-up tests, the direct reduction of Xinjiang DRI plant is using one-step process certified as feasible, and process parameters were utilized for designing the plant.
     One-step direct reduction process of pellets made from hematite concentrate and composite binder was also optimized in scale-up tests for the first time. It is shown that Indian hematite can be used to produce metallic pellets by one-step direct reduction process when mixing with magnetite concentrate at any ratio. High quality metallic pellets with iron grade of 87.83% and metallization degree of 93.30% were manufactured using 100% Indian hematite as feed. Which further extend the raw material of direct reduction feed and enhance the applicability of one-step direct reduction process.
引文
[1]国际钢协.钢产量统计数据.http://www.worldsteel.org/index.php,2007
    [2]Midrex technologies,Inc..2006 world direct reduction statistics,www.midrex.com,2007
    [3]宗玉生,许海川.中国废钢资源供需状况分析及应对措施.中国冶金,2005,15(9):19-22
    [4]全钰嘉.钢铁冶金百科全书.北京:冶金工业出版社,2001:472-477,543,713
    [5]邱冠周,姜涛,徐经沧等.冷固结球团直接还原.长沙:中南大学出版社,2001,1:12-15,18,22,41,63-65,211-212
    [6]杨天均,黄典冰,孔令坛.熔融还原.北京:冶金工业出版社,1998:2-4,150
    [7]E.Kasai,T.Kitajima and T.Kawaguchi.Carbothermic reduction in the combustion bed packed with composite pellets of iron oxide and coal.ISIJ International,2000,40(9):842-849
    [8]方觉,郝素菊,李振国等.非高炉炼铁工艺与理论.北京:冶金工业出版社,2003,1:18-21,107-137
    [9]徐匡迪,洪新.电炉短流程回顾和发展中的若干问题.中国冶金,2005,15(7):1-8
    [10]刘淇.结构优化是钢铁工业上新台阶的中心环节.中国冶金报,1993,12:4
    [11]周传典.正视钢铁工业第三次革命的来临.科技导报,1994,2:27-29
    [12]殷瑞钰.钢铁工业结构优化综论.中国冶金报,1993,12:7-8
    [13]周传典.两年来世界钢铁冶炼技术的发展趋势.见:中国金属学会炼铁委员会,全国直接还原铁生产及应用学术会议论文集.北京:中国金属学会,1999:3-7
    [14]傅杰,朱荣,李晶.我国电炉炼钢的发展现状与前景.冶金管理,2006,8:20-23
    [15]M.Iwase and K.Tokinori.A feasibility study for the removal of copper from solid ferrous scrap.Steel Research,1991,62(6):235-239
    [16]N.Katsuhiko.Necessity of scarp reclamation technologies and present condition of Technical development.ISIJ International,1997,37(3):198
    [17]M.Iwase,K.Tokinori and H.Ohshita.Separation of copper from solid ferrous scrap by using molten aluminum.Iron & Steelmaker,1993,20(7):61-66
    [18]A.D.Hartman,L.L.Oden and D.L.Davis.Copper removal from solid ferrous scrap by a solid/gas reaction[J].Iron & Steelmaker,1994,21(5):59-62
    [19]A.W.Cramb.A new low temperature process to copper removal from ferrous scrap. Iron & Steelmaker,1994,(5):59
    [20]W.Pioter,Van Rij et al.,Dezincing of steel scrap.Iron and Steel Engineer,1997,4:32
    [21]肖玉光,阎立懿,张光德.废钢中有害元素的去除技术.钢铁研究,2001,(4):1-4
    [22]阎立懿,张光德.废钢资源及废钢中铜的去除.特殊钢,2000,21(6):17-19
    [23]李连福,姜周华,施丹昭.废钢中铜的去除方法.钢铁研究学报,2000,12(S1):77-80
    [24]李素芹,于秉杰,李士琦等.铵盐法钢液脱铜技术基础研究.包头钢铁学院学报,1999,18(3):252-255
    [25]李联生,项长祥,赵沛等.熔体过滤法钢液脱铜的研究.钢铁研究学报,1998,10(3):5-7
    [26]李长荣.金属循环过程中渣化法分离铁与铜锡等元素技术的基础研究:[博士学位论文].上海:上海大学,2004
    [27]周传典,陶晋.发展电炉钢要重视废钢铁和海绵铁产业建设.冶金信息工作,1997,(1):1-4
    [28]朱德庆.细磨精矿冷固成型机理研究及在直接还原中的应用:[博士学位论文].长沙:中南工业大学,1994
    [29]刘树立.国外铁矿石直接还原厂.北京:冶金工业出版社,1990:4-46,185,230-233,252-258,261
    [30]史占彪.非高炉炼铁学.沈阳:东北工学院出版社,1991:2-6
    [31]秦民生.非高炉炼铁.北京:冶金工业出版社,1988:14.15,60-62,79,80-89
    [32]陈宏.HYL-Ⅲ海绵铁生产技术.钢铁,1999,34(11):64-67
    [33]R.T.Roberts,Midrex yesterday and today.Ironmaking Proceedings,Metallurgical Society of AIME,Iron and Steel Division,1976,35:373-380
    [34]J.E.Bonestell and B.G..Midrex hot briquetted iron-a direct reduced iron product for oxygen steelmaking.Proceedings-Ironmaking Conference,1983:171-175
    [35]Inada,Yutaka.Improvements in the MIDREX Direct Reduction Process.Research and Development Kobe Steel Engineering Reports 2000,50(3):86-89
    [36]D.F.Wood.Stretching the boundaries of DRI production with Midrex.Steel Times,1996,224(11):394-395
    [37]R.Quintero.Operational results of HYL Ⅲ process.Proceeing-Ironmaking Conference,1981,40:235-240
    [38]R.Quintero and E.Martinez-Vera.Operating ecperiences and results of HYL-Ⅲplants.Proceeing-Ironmaking Conference,1984,43:501-507
    [39]R.Quintero and Jorge Becerra,Proceeing-Ironmaking Conference.1987,46:421-434
    [40]R.Quintero and E.Martinez-Vera,Stage Ⅱ.Sicartsa plant ironmaking technological aspects.Proceeing-Ironmaking Conference,1986,45:51-62
    [41]G.Wolters,P.Heinrich,M.Schoppen,et al.Advanced control engineering in the Sicartsa/Mexico HYL-Ⅲ direct reduction plant.MPT Metallurgical Plant and Technology.1984,7(4):64,66-71
    [42]T.E.Dancy.The evolution of direct reduction.Proceeing-Ironmaking Conference,1991:611-624
    [43]A bibliographical survey by European Communities' Commission,Direct reduction of iron ore.The Metals Society,London,1979,86-92,93-105,117-126,153-161,207-219,241-253,352-361,371-381
    [44]R.L.Stephenson and R.M.Smailer.Direct reduced iron-technology and economics of production and use.The iron & steel society of AIME,U.S.A.,1974,11:73-75
    [45]C.G.Davis,J.F.McFarlin and H.R.Pratt.Direct-reduction technology and ecnomics.Ironmaking & steelmaking.1982,9(3):93-129
    [46]H.D.Pantke.Proceeing-Ironmaking Conference.1978,37:149-158
    [47]R.Ferrari and F.Colautti.Iron and steel engineer.1975,52(5):57-60
    [48]A.Barbi.Kinglor-Metor process:commercial operation of world's smallest DR unit.Iron and Steel International.1977,50(4):229,231-233,236
    [49]何其松.KR法:发展和应用.钢铁钒钛,1984,3:41-44
    [50]R.H.Whipp and H.A.Kulderg.Operation of the Fior De Venezuela DR plant production,shipping and use of Fior briquettes.Proceeing-Ironmaking Conference.1985,44:287-296
    [51]L.S.Robert and R.M.Smailer.Direct reduced iron-technology and economics of production and use.The iron & steel society of AIME,U.S.A.,1980:91-94
    [52]A.Hassan and R.Whipp.The finmet process-an operational and technical update.Stahl und Eisen,2004,124(4):53-58
    [53]G.Deimek.Status of Finmet plant operations at BHP DRI and Orinoco Iron.AISE Steel Technology,2000,77(11):48-50
    [54]我国的钢铁.2005年世界直接还原铁生产状况.http://www.mysteel.com 2006,4:12
    [55]张庆云.新西兰的回转窑直接还原厂.烧结球团.1987,3:78-81
    [56]G.Elsenheimer.Latest SL/RN-plants performance and combined steelmaking.Proceeing-Ironmaking Conference.1988,45:63-70
    [57]H.Serbent,Lurgi's SL/RN process:Steelmaking exclusively with noncoking coals,Lurgi-symposium in Beijing-China,1985,1
    [58]Anon.,Direct reduction plants built by Lurgi.Current state,1978,6
    [59]K.H.Ulrich.Codir em dash the krupp process for sponge ironmaking.Iron and Steel Engineer.1980,57(12):56-59
    [60]C.G.Davis,J.F.McFarlin and H.R.Pratt.Direct-reduction technology and economics.Ironmaking & Steelmaking.1982,9(3):93-129
    [61]J.A.Lepinski.Accar system and its application to direct reduction of iron ores.Iron and Steel Engineer.1980,57(12):25-31
    [62]R.K.LeRoy,J.F.Nowicki and D.W.Rierson.500 tonne per day Accar direct reduction plant at Orissa,India.Proceeing-Ironmaking Conference.1981,40:230-234
    [63]V.P.Keran.A.C.Baker,G.N.Boulter,et al..Direct reduction corporation's process technology.Proceeing-Ironmaking Conference.1980,39:412-419
    [64]A.C.Baker,G.N.Boulter and J.A.Kennelley.Process control in the direct reduction kiln.Proceeing-Ironmaking Conference.1982,41:237-243
    [65]A.C.Baker,A.J.Ridley and D.H.Wilbert,Start-up of the Scaw metals direct reduction plant.Proceeing-Ironmaldng conference,1984,43:467-473
    [66]A.Harvey and A.J.Ridley.Two years operating experience at Scaw metals direct reduction plant.Proceeing-Ironmaking Conference,1986,45:83-87
    [67]徐基璇编译.直接用煤的斯凯瓦直接还原厂.烧结球团,1987,13(2):53-58
    [68]K.J.Reid and M.G.Hebsur,Ironmaking & Steelmaking,1983,34-38
    [69]P.J.Doel.戴维煤基直接还原技术的进展.烧结球团,1994,4:41-43
    [70]P.Weber,M.Hirsch.CIRCOFER法——一种成本低廉的直接还原工艺.烧结球团,1995,20(2):38-42,26
    [71]J.K.Pargeter,J.A.MacDougall,G.Rottmann,et.al.Ironmaking using the Inmetco process and pelated technologies.Proceeing-Ironmaking conference,1985,44:275-285
    [72]J.A.Lepinski,The Fastmet direct reduction process.Proceeing-Ironmaking conference,1993,52:349-352
    [73]S.Ito,K.Tokuda,F.Sammt,et.al.Technical & economical considerations of new DRI melting process.Proceeing-Ironmaking conference,1997,56:565-569
    [74]G.E.Hoffman and T.Harada.A status report on the Fastmet process from the Kakogawa demonstration plant.Proceeing-Ironmaking conference,1997,56:553-555
    [75]徐国群.FASTMET直接还原新工艺的发展.烧结球团,1999,5:17
    [76]J.Borlee,D.Steyls and R.Munnix.Scale-up of the comet direct reduction process.Proceeing-Ironmaking conference,1998,57:869-875
    [77]胡俊鸽,吴美庆,毛艳丽.直接还原炼铁技术的最新发展.钢铁研究,2006,34(2): 53-57
    [78]F.G.Rinker and V.R.Daiga.Value added iron units.Proceeing-Ironmaking conference,1999,58:375-380
    [79]邬士英,徐南平,金永龙.Hoganas直接还原法在我国的状况.烧结球团,1996,21(1):36-39
    [80]陈鹏.中国煤炭性质、分类和利用.北京:化学工业出版社,2001:24-26,174-175
    [81]冯燕波,曹维成,杨双平等.中国直接还原技术的发展现状及展望.中国冶金,2006,16(5):10-13
    [82]史占彪.直接还原技术的新发展.中国冶金,2002,12(3):15-18
    [83]张汉泉,朱德庆.直接还原的现状与发展.钢铁研究,2002,2:51-54
    [84]刘国根,王淀佐,邱冠周.国内外直接还原现状及发展.矿产综合利用,2001,5:20-24
    [85]段东平,万天骥,任大宁.利用普通品位铁矿的煤基直接还原新工艺研究.钢铁,2001,36(8):7-11
    [86]陈永国,郭森魁,何祥义.铁直接还原技术的现状及发展.上海金属,1999,21(4):40-42
    [87]魏国,赵庆杰,董文献等.直接还原铁生产概况及发展.中国冶金,2004,14(9):16-20
    [88]范晓慧,邱冠周,姜涛等.我国直接还原铁生产的现状与发展前景.炼铁,2002,21(3):53-55
    [89]李宏煦,姜涛,邱冠周等.铁矿球团有机粘结剂的分子构型及选择判据.中南工业大学学报,2000,1:17-20
    [90]朱德庆,郭宇峰,邱冠周等.钒钛磁铁精矿冷固结球团催化还原机理.中南工业大学学报,2000,3:208-211
    [91]朱德庆,姜涛,邱冠周等.圆盘造球机中的强制分级机理及其应用.中南工业大学学报,1999,2:137-140
    [92]姜涛,李宏煦,黄柱成.铁矿球团粘结剂分子结构设计的初步研究.烧结球团,1998,1:30-35
    [93]李宏煦.铁矿球团粘结剂的分子设计与初步应用:[硕士学位论文].长沙:中南工业大学,1998
    [94]刘国根.直接还原冷固结球团HA型粘结剂及其原料特性的研究:[博士学位论文].长沙:中南工业大学,1997
    [95]候拥和.介绍一种新的煤基直接还原工艺.烧结球团,1996,21(5):33-34
    [96]陶晋.环形转底炉直接还原工艺现状及发展趋势.冶金信息管理,1997,6:11-13
    [97]冯俊小,乐恺,王尚槐.石人沟矿敞焰煤基直接还原的实验研究.北京科技大学 学报,2004,26(1):30-33
    [98]王尚槐,冯俊小,南士卿等.台车连续炉直接还原法.钢铁,2005,40(3):13-16
    [99]周渝生,曹传根,齐渊洪等.含碳球团竖炉直接还原试验研究.宝钢技术,1999,5:31-49
    [100]陈津,林万明,赵晶.非焦煤冶金技术.北京:化学工业出版社,2007:218
    [101]李永全,陈宏,周渝生等.BL法煤气基竖炉直接还原工艺的开发.特殊钢,1999,20(3):40-43
    [102]李永全,陈宏,周渝生等.BL法直接还原工艺研究和开发.钢铁,1999,34(9):6-10
    [103]冯俊小,刘红艳,王尚槐.顺流加热含碳球团直接还原的实验研究.工业加热,2005,34(3):53-55
    [104]周红.铁精矿冷固结球团直接还原的机理研究:[博士学位论文].中南工业大学,1998
    [105]黄希祜.钢铁冶金原理.北京:冶金工业出版社,2002:289,291-295,306-307
    [106]J.Szekely,J.W.Evans,and H.Y.Sohn.GAS-SOLID REACTIONS.London:Academic Press,1976:66-89
    [107]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987:193-207;
    [108]梁连科,车荫昌,杨怀等.冶金热力学及动力学.沈阳:东北工学院出版社,1990:256-266
    [109]王筱留.钢铁冶金学.北京:冶金工业出版社,2000:90-95
    [110]孙康.宏观反应动力学及其解析方法.北京:冶金工业出版社,1998:78-124
    [111]华一新.冶金过程动力学.北京:冶金工业出版社,2004:162-165
    [112]M.Ettabirou,B.Dupre and C.Gleitzer.Hematite ore reduction to magnetite with CO/CO2 kinetics and microstructure.Steel research,1986,57(7):306-311
    [113]A.A.El-Geassy K.A.Shehata and S.Y.Ezz.Mechanism of iron oxide reduction with hydrogen/carbon monoxide mixtures.Transations ISIJ,1977,17(11):629-635
    [114]A.A.El-Geassy.Gaseous reduction of MgO doped Fe2O3 compacts with carbon monoxide at 1173-1473 K.ISIJ Inrernational,1996,36(11):1328-1337
    [115]M.I.Nasr,A.A.Omar,M.M.Hessien,et al..Carbon monoxide reduction and accompanying swelling of iron oxide compacts.ISIJ International,1996,36(2):164-171
    [116]丁涛,肖兴国.FeO高温气—固还原动力学研究.东北大学学报,1995,16(2):115-119]
    [117]A.A.El-Geassy.Gaseous reduction of Fe2O3 compacts at 600 to 1050℃.Journal of Materials Science,1986,21(11):3889-3900
    [118]刘建华,张家芸,周土平.CO及CO-H_2气体还原铁氧化物反应.钢铁研究学报,2000,12(1):5-9
    [119]陈宇飞,张宗诚.多孔铁矿石球团还原动力学.化工冶金,1987,8(2):9-10
    [120]齐渊洪,周渝生,蔡爱平.球团矿的还原膨胀行为及其机理的研究.钢铁,1996,31(2):1-5,86
    [121]康思琦.关于用固体碳还原攀枝花红格矿得研究:[硕士学位论文].中南工业大学,1984
    [122]S.Sun and W.K.Lu.A non-isothermal mathematical model for reduction of iron ore in ore/coal composites.Process Technol.Conf.Proc.,1992,10:403-408
    [123]A.Sadowski and J.Janowski.Reduction kinetics of iron oxides.Metal.Odlew.,1991,17(3):459-467
    [124]D.Bandyopadhyay,N.Chakraborti and A.Ghosh.A study on the kinetics of iron oxide reduction by solid carbon.Steel Research,1993,64(7):340-345
    [125]C.Bryk and W.K.Lu.Reduction phenomena in composites of iron ore concentrates and coals.Ironmaking and Steelmaking,1986,13(2):70-75
    [126]Y.K.Rao.The kinetics of reduction of hematite by carbon,Metall.Trans.,1971,2(5):1439-1447
    [127]R.J.Fruehan.The rate of reduction of iron oxide by carbon.Metall.Trans.B,1977,8B(2):279-286
    [128]M.C.Abraham and A.Ghosh.Kinetics of reduction of don oxide by carbon.Ironmaking & Steelmaking,1979,6(1):14-23
    [129]A.Bandopadhyay,A.Ganguly,K.N.Gupta,et al.Investigations on the anomalous oxidation behaviour of high-carbon gas-based direct reduced iron(DRI).Thermochimica Acta,1996,276:199-207
    [130]B.K.Pandey and T.Sharma.Reducing agents and double-layered iron ore pellets.International Journal Mineral Process,2000,59:295-304
    [131]T.Coetsee,P.C.Pistorius and E.E.de Villiers.Rate-determining steps for reduction in magnetite-coal pellets.Minerals Engineering,2002,15:919-929
    [132]黄典冰,杨学民,杨天钧等.含碳球团还原过程动力学及模型.金属学报,1996,32(6):629-636
    [133]唐惠庆,郭兴敏,张圣弼等.CO/CO2气氛下含碳球团还原动力学模型及其应用.钢铁研究学报,2000,12(6):1-6
    [134]傅菊英,姜涛,朱德庆.烧结球团学.长沙:中南工业大学出版社,1996:78-85,251-252
    [135]傅菊英,朱德庆.铁矿氧化球团基本原理工艺及设备.长沙:中南大学出版社, 2005:78-85,110-119,174-175,320
    [136]徐南平主编.钢铁冶金实验技术和研究方法.北京:冶金工业出版社,1995:122-124
    [137]付式,陈道栋.铁矿球团体积测定试验.烧结球团,1993,16(3):82-90
    [138][美]J.塞克利,J.W.埃文斯,H.Y.索恩,著胡道和译.气固反应(中).北京:中国建筑工业出版社,1986:75-92,112,177,191
    [139]李丽新,刘秋菊,刘圣春等.利用瞬态热线法测量固体导热系数.计量学报,2006,27(1):39-42
    [140]李志文.稳态法测量不良导体导热系数.承德民族师专学报,1999,2:66-68
    [141]刘燕,张本刚,张翠萍.非良导体热导率的测定.加热设备,2000,6:37-39
    [I42]S.K.Nicl and Z.P.Adamiak,Role of bentonite in wet pelletizating.Institution of Mining and Metallurgy Sec.C.,1978,82:32
    [143]傅守澄,傅菊英.铁精矿成球动力学研究—粘结剂对成球速度的影响.烧结球团,1982,5:1-6
    [144]傅菊英,王笃阳.含铁尘泥渣造球性能研究,烧结球团,1989,5:1-6
    [145]傅菊英.铁物料成球性指数K的研究,烧结球团,1992,4:4-6
    [146]小埃里克森等著,肖琪译.膨润土对焙烧氧化球团块低温还原性的影响.国外烧结球团,1989,2:10-13
    [147]G.A.Zinyagin,S.S.Goncharov,A.A.Shevchenko,et al..Use of organic binders instead of bentonite in pellet production.Stal',2004,7:4-7
    [148]T.C.Eisele and S.K.Kavatra.A review of binders in iron ore pelletization.Mineral Processing & Extractive Metall.Rev.,2003,24:1-90
    [149]王昌安.强化球团制备的工艺及机械化学机理研究:[硕士学位论文].长沙:中南大学,2002
    [150]刘树立.密云“一步法”直接还原工程的设计特点.烧结球团,2000,25(5):26-31
    [151][日]川合保治著,徐同晏,戴嘉慧译.钢铁冶金反应动力学.北京:冶金工业出版社,1982:88-89
    [152]杨卫.宏微观断裂力学.北京:国防工业出版社,1995,3:91
    [153]王仁东.断裂力学理论和应用.北京:化学工业出版社,1984,1
    [154]《第三届国际造块会议论文选》编辑委员会编译.第三届国际造块会议论文选.长沙:《烧结球团》编辑部出版,1983:143-172
    [155][西德]K.梅耶尔著 杉木译.铁矿球团法.北京:冶金工业出版社,1986:168-175
    [156]肖琪.团矿理论与实践.长沙:中南工业大学出版社,1989:130-135
    [157]徐瑞图,吴胜利.碱金属和氟对球团矿还原膨胀影响机理的研究.中国铁矿石烧结研究—周取定教授论文集,北京:冶金工业出版社,1997
    [158]陈平主编.结晶矿物学.北京:化学工业出版社,2006:138-149
    [159]K.Meyer,Pelletizing of iron ores.Berlin,Springer,1980,Germany
    [160]B.E.盖脱伍德著;魏信方,邵成勋,张承煦译;王德荣校.热应力.北京:科学出版社,1964:1-3
    [161]徐婉棠,吴英凯.固体物理学.北京:北京师范大学出版社,1991:145-147
    [162]奚同庚.无机材料热物性学.上海:上海科学技术出版社,1987:213-273
    [163]I.Hideaki.Thermal expansion coefficients of alkali halides and alkaline earth fluorides.Jpn.J.Appl.Phy.,1996,35:3522-3528
    [164]I.Hideaki.Semi-empirical estimation of thermal expansion coefficients of oxides.Jpn.J.Appl.Phy.,1996,35:4730-4735
    [165]K.Wang and R.R.Reeber.High temperature thermal expansion of alkali halides.J.Phys.Chem.Solids,1995,65:895-900
    [166]K.Wang and R.R.Reeber.Thermal expansion of cesium halides with the CsCl structure.J.Appl.Cryst.,1995,28:306-313
    [167]H.D.Megaw.Crystal structures and thermal expansion.Mat.Res.Bull.,1971,6:1007-1018
    [168]R.K.V.Krishna and V.T.Peshpande.Thermal expansion and chemical bond.Thermal Expansion,1977,6:43-45
    [169]R.Hazen and C.T.Prewitt.Effects of temperature and pressure on interatomic distances in oxides and silicates.Am.Mineral.1977,62:309-315
    [170]李锁在,廖立兵.矿物热膨胀的晶体化学研究综述.高校地质学报,2000,6(2):333-339
    [171]朱建国,郑文琛,郑家贵等.固体物理学.北京:科学出版社,2005:78-81
    [172]李锁在,廖立兵.矿物材料热膨胀定量计算.地学前缘,2000,7(2):461-472
    [173]刘人达.冶金炉热工基础.北京:冶金工业出版社,1980:226-227
    [174]G.H.盖格,D.R.波伊里尔.冶金中的传热传质现象.北京:冶金工业出版社,1981:209-219
    [175]T.Aldyama and H.Ohta,R Takahashi,et al.,Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore agglomerates in stepwise reduction.ISIJ,International,1992,32(7):829-837
    [176]A.Luikov,A.Shashkov,L.Vasiliev,et al.,Thermal conductivity of porous systems.Int.J.Heat Mass Trans.,1968,11(1):117-140
    [177]彭兵.不锈钢电弧炉粉尘处理过程的基础理论及工艺研究:[博士学位论文].长 沙:中南大学,2000
    [178][美]R.B.博德,W.E.斯图沃特,E.N赖特福特著;戴干策,戎顺熙,石炎福译.传递现象.北京:化学工业出版社,2004:252
    [179]叶大伦,胡建华编著.实用无机物热力学数据手册.北京:冶金工业出版社,2002:366-368
    [180]张久甲,李俊华.司家营铁矿北区班采场露井联采境界矿柱合理厚度的研究.矿业快报,2006,6:212-214
    [181]黄继武.X射线衍射实验操作指导(MDI Jade使用手册).中南大学(内部教学资料),2006
    [182]何崇智,郗秀荣,孟庆恩等.X射线衍射实验技术.上海:上海科学技术出版社,1988:363-364
    [183]马礼敦.X射线粉末衍射的新起点—Rietveld全谱拟合.物理学进展,1996,16(2):251-266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700