粘结相对烧结矿强度的影响机理及其合理组分的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结矿是由粘结相和铁矿物相组成的人造块矿。在烧结过程中,烧结原料中的不同矿物通过固相反应生成低熔点化合物,在高温条件下形成液相,液相冷却凝结后就形成烧结矿中的粘结相。粘结相组分约占烧结矿的30%~35%。
     粘结相的成分和矿物组成取决于烧结原料的成分、烧结温度的高低(与配碳量有关)和烧结矿的冷却过程。随烧结原料不同和烧结工艺的改变,其组分和矿物组成都要发生变化。高碱度烧结矿中的粘结相以铁酸钙为主,自熔性烧结矿以硅酸盐为主。
     粘结相的物性包括其流动性(液态时)、液相生成能力、润湿性和自身的强度性能。流动性影响粘结相在烧结矿中均匀分布,液相生成能力影响烧结过程中液相的生成量,润湿性影响粘结相与铁矿物间的粘结强度,粘结相自身强度直接决定着烧结矿的强度。
     本文主要考察粘结相的物性对烧结矿冷态强度的影响机理,以期得到保证烧结矿具有较好强度的合理粘结相组分。
     对烧结矿粘结相的组成进行EPMA分析,根据分析结果用化学试剂配制粘结相,研究粘结相组分对粘结相物性影响的规律。结果表明:
     (1)高碱度烧结矿中的铁酸钙粘结相
     流动性试验结果表明:无杂质时,nCaO:nFe2O3=1:1时,铁酸钙粘结相的流动性最好;nCaO:nFe2O3=1:1下,粘结相中添加MgO, SiO2或Al2O3都使流动性变差。
     液相生成能力试验结果表明:nCaO:nFe2O3=1:1(无杂质)时,铁酸盐粘结相的液相生成能力最好;nCaO:nFe2O3=1:1下,添加Mg0使铁酸盐粘结相的液相生成能力变差,适量的Si02和Al2O3能改善粘结相的液相生成能力。
     润湿性试验结果表明:nCaO:nFe2O3=1:1(无杂质)时,铁酸盐粘结相的润湿性最好;nCaO:nFe2O3=1:1下,添加MgO, SiO2或Al2O3都使粘结相的润湿性变差。
     粘结相自身的强度试验结果表明:无杂质条件下,nCaO:nFe2O3=1:2时,粘结相的抗压和抗折强度最高;nCaO:nFe2O3=1:1下,添加MgO使粘结相的抗折、抗压强度降低,适量的Si02能提高粘结相的抗折、抗压强度,Al2O3含量增加不利于提高粘结相的抗折抗压强度。
     (2)自熔性烧结矿中的硅酸盐粘结相
     流动性试验结果表明:当碱度(w(CaO)/w(SiO2))为1.40时,粘结相的流动性最好;碱度为1.18时,适量的MgO能改善粘结相的流动性,CaF2和FeO含量的增加,粘结相的流动性变好。
     液相生成能力试验结果表明:当碱度(w(CaO)/w(SiO2))为1.18时,粘结相的液相生成能力最好;相同碱度(1.18),MgO含量为1.97%时,粘结相的液相生成能力最好;相同碱度(1.18),CaF2和FeO含量增加能改善粘结相的液相生成能力。
     润湿性试验结果表明:当碱度(w(CaO)/w(SiO2))为1.18时,粘结相对Fe304的润湿性最好,添加MgO使粘结相的润湿性变差,CaF2和FeO含量增加能改善粘结相的润湿性。
     粘结相自身的强度试验结果表明:当碱度为1.18时,粘结相的抗折、抗压强度最高,当碱度大于(或等于)1.40时,粘结相熔融冷却后,产生明显的粉化现象;相同碱度(1.18),添加MgO使粘结相的抗折、抗压强度降低,少量的CaF2能提高粘结相的抗折、抗压强度,FeO含量为3.86%时,粘结相的抗折、抗压强度最高。
     (3)烧结试验验证
     通过粘结相物性试验得到,合理的铁酸钙粘结相组分为nCaO:nFe2O3=1:1,MgO和Al2O3含量越低越好,SiO2的含量为3%;合理的硅酸盐粘结相组分为,碱度(w(CaO)/w(SiO2))1.18, w(MgO)1.97%, w(CaF2)4.42%, w(FeO)7.53%。
     高碱度烧结矿的烧结试验结果表明:不同碱度(w(CaO)/w(SiO2))条件下,碱度为2.0时,烧结的成品率最高,烧结时间最短,烧结杯利用系数最高,烧结矿转鼓指数随碱度的增加而升高。在碱度(w(CaO)/w(SiO2))2.0条件下:随着MgO含量的增加,烧结矿的成品率降低,烧结时间变长,烧结杯利用系数降低,烧结矿的转鼓指数逐渐降低;随着铁精矿中Si02含量的降低,烧结时间有所延长,成品率和烧结杯利用系数略有降低,转鼓指数显著降低;随着铁精矿中Al2O3含量的增加,烧结成品率、烧结利用系数和烧结垂速都有所降低,烧结矿的转鼓指数随Al2O3含量的增加而降低。
     综上所述,铁酸钙粘结相物性的研究和烧结试验结果表明,碱度大于1.8时,烧结矿的强度随碱度升高而提高,但烧结矿的TFe品位降低,因而碱度不宜过高;添加MgO和Al2O3都不利于烧结矿强度的提高;适量的SiO2是烧结过程中形成一定数量液相的前提,当铁精矿中SiO2含量低时可适当提高碱度来保证烧结过程中的液相量。通过对硅酸盐粘结相物性的研究,解释了包钢第三代烧结矿具有较好强度的原因。
Sinter ore was mainly composed of iron mineral phase and binding phase. The content of binding phase in sinter ore could be 30%~35%, and it generated from the low melting point compounds which generated by solid phase reaction during sintering process.
     The chemical and mineral composition of binding phase depended on component of raw materials, sintering temperature and cooling process of sinter. The chemical and mineral composition of binding phase would changed with the composition of raw materials and sintering technologies. In high basicity sinter, calcium ferrite was the main binding phase, and silicates for self-fluxing sinter.
     The physical properties of binding phase, including fluidity, liquid phase generative capacity, wettability and self-strength, have great influence to the sinter quality, due to relationships of fluidity with distribution of binding phase in sinter, liquid phase generative capacity with liquid amount in sintering process, wettibility with binding strength, and self-strength directly with sinter strength.
     This paper studied the effect of binding phase's physical properties on sinter strength, and discussed the proper composition of binding phase.
     The binding phase samples were made up with analytic reagents based on the binding phase composition obtained by EPMA analysis, and the physical properties were investigated. The results indicated that:
     (1) Calcium ferrite binding phase in high basicity sinter
     The better fluidity of calcium ferrite binding phase was obtained at nCaO:nFe2O3=1:1 (with no other compounds); at nCaO:nFe2O3=1:1, the fluidity was deteriorated with addition of MgO, SiO2 and Al2O3.
     The liquid phase generative capacity of calcium ferrite binding phase was the best at nCaO:nFe2O3=1:1 (with no other compounds); at nCaO:nFe2O3=1:1, the liquid phase generative capacity was deteriorated with addition of MgO, was improved when proper contents of SiO2 and Al2O3 were added.
     The wettability of calcium ferrite binding phase was the best at nCaO:nFe2O3=1:1 (with no other compounds); at nCaO:nFe2O3=1:1, the wettability was deteriorated when MgO, SiO2 or Al2O3 was added.
     The best fracture and compression strength of calcium ferrite binding phase was obtained at nCaO:nFe2O3=1:2 without other compounds, the strength was the lowest at nCaO:nFe2O3=2:1; at nCaO:nFe2O3=1:1, the strength of binding phase was deteriorated with addition of MgO, proper contents of SiO2 was helpful for improving the fracture and compression strength, but Al2O3 was not favor for strength.
     (2) Silicate binding phase in self-fluxing sinter
     With the change of basicity (w(CaO)/w(SiO2)), the better fluidity was obtained when basicity was 1.40. When basicity was 1.18, proper content of MgO could improve the fluidity of binding phase and the fluidity was improved with increase of CaF2 and FeO.
     The liquid phase generative capacity was the best at basicity 1.18; Under this condition (basicity 1.18), the liquid phase generative capacity was the best when the MgO content was 1.97%, and the liquid phase generative capacity was improved with increase of CaF2 and FeO contents..
     The best wettability was obtained at basicity 1.18; Under this condition (basicity 1.18), the wettability was deteriorated with increase of MgO contents, while the wettability was improved with increase of CaF2 and FeO contents.
     With the change of basicity, the fracture and compression strength was the highest at basicity 1.18, when the basicity was greater than or equal to 1.40, binding phase disintegrated after melting and cooling; at the same basicity 1.18, the self-strength decreased with increase of MgO contents, the self-strength increased when little CaF2 was added, and the fracture and compression strength was the highest when the FeO content was 3.86%.
     (3) Sintering Experiments
     According to the physical properties of binding phase, the proper composition of calcium ferrite binding phase was, nCaO:nFe2O3=1:1, w (SiO2) 3% without MgO and Al2O3; the proper composition of silicate binding phase was, basicity (w(CaO/w(SiO2)) 1.18, w(MgO) 1.97%, w(CaF2) 4.42%, w(FeO) 7.53%.
     The sintering pot experiments for high basicity sinter were carried on, the results were:The drum intensity increased with increase of basicity. At the basicity 2.0, the highest yield, the shortest sintering time and the highest utility coefficient for sintering pot was obtained. Under this condition (basicity 2.0), with increase of MgO content, the yield decreased, sintering time increased, utility coefficient for sintering pot decreased and drum intensity decreased; with decrease of SiO2 content, yield and utility coefficient decreased, sintering time increased and drum intensity decreased dramatically; with increase of Al2O3 content, the yield and utility coefficient decreased, sintering time increased and drum intensity of sinter decreased.
     Summarily, the drum intensity increased with increase of basicity, but the TFe decreased sequently and the basicity should not be too high; with addition of MgO and Al2O3, the drum intensity decreased; proper content of SiO2 was important for the generation of definited liquid phase in sintering process, when the content of SiO2 in iron preparation concentrate was low, the basicity should be increased to guarantee the generation of definited liquid phase. The high strength of the third generation sinter could be explained reasonably based on the physical properties of silicate binding phase.
引文
1.任允芙主编.钢铁冶金岩相矿相学[M].北京:冶金工业出版社,1982.
    2.沈志成,杨永宜主编.铁矿石的富选和烧结[M].北京:冶金工业出版社,1955,10.
    3.薛俊虎主编.烧结生产技能知识问答[M].北京:冶金工业出版社,2003,2.
    4.吴德礼,朱申红,马鲁铭,王铮.利用硫酸渣生产铁精粉的新工艺研究[J].环境工程,2004,22(4):73.
    5.夏志间.杭钢超高碱度烧结矿的生产[J].烧结球团,2005,30(5):36.
    6.周取定.铁矿石造块理论与工艺[M].北京:冶金工业出版社,1989,5.
    7. Ernest M. et al. Phase Diagrams for Gergrams for Ceramists. America Silicate Society Fourth Printing,1979, P146.
    8.东北工学院炼铁教研室编.高炉炼铁,上册[M].北京:冶金工业出版社,1977,100-105.
    9.东北大学冶金物理化学课题组.冶金物理化学[M].东北大学出版社,2004,131-137.
    10.谢传荣译.Transactions ISIJ.1981,21,318-325.
    11.孔令坛.烧结料层中的温度变化和透气性[J].烧结球团,1980,(1).
    12.H·希尔.铁矿石烧结过程基本理论的研究[J].烧结球团,1978,(4).
    13.吴胜利,刘宇,杜建新,米坤,林鸿.铁矿石的烧结基础特性之新概念[J].北京科技大学学报,2002,24(3):254-257.
    14.曹立刚.包钢用铁矿粉烧结基础特性研究[J].烧结球团,2005,30(5).
    15.于强.铁精矿粉低温烧结技术[J].山西冶金,2005,1.
    16.胡明意,喻安红,邱家用.用小球团烧结法生产高碱度烧结矿的经验[J].烧结球团,2005,30(2).
    17.邢宏伟,李杰,胡长庆,张伟,尹海生.宣钢配加伊朗矿的烧结试验研究[J].烧结球团,2007,32(6):6-9.
    18.陈平,王长秋,吴铿.用赤铁细精矿生产高质量烧结矿的工业实践[J].钢铁,2004,39(5).
    19.曹学忠,边美柱,马祥.包钢低硅烧结初探[J].包钢科技,2004,30(4).
    20.赵佩琛.促进烧结固相反应的条件和措施[J].烧结球团,1994,(1):15-17.
    21. Steven Wright, Ling Zhang, Shouyi Sun, Sharif Jahanshahi. Viscosities of calcium ferrite binding phases and calcium alumino— silicate binding phases containing spinel particles[J]. Journal of Non-Crystalline Solids,2001,282:15-23.
    22.郎建峰,张玉柱,李振国.含硼添加剂对磁铁矿烧结过程中正硅酸钙生成的影响[J].矿产综合利用,1999,(6):12-15.
    23.张克诚,朱德庆,李建,曾新中,胡友明,肖力华.高铁低硅高料层烧结研究[J].烧结球团,2003,28(2).
    24.鲁芳臣.邢钢高碱度烧结矿矿物组成及影响[J].烧结球团,2000,25(1):17-18.
    25.张瑞堂,代汝昌,孙艳红.烧结矿低硅含量合理性的辩析[J].烧结球团,2004,29(3):5-8.
    26.中岛一磨ら.低渣烧结矿制造に关する课题と对策[J].CAMP-ISIJ,2000,13(4):722-725.
    27.大山ら.烧结反应机构に及ぼす高结晶水矿石の影响[J].铁と钢,1997,83(3):287-292.
    28.黄柱成,江源,毛晓明等.铁矿烧结中燃料合理分布研究[J].中南大学学报(自然科学版),2006,37(5):884-890.
    29.陈宏,张美芳.铁矿粉反应性研究[J].宝钢技术,2001,(5).
    30.高峰.太钢高精粉低硅烧结生产实践[J].烧结球团,2004,29(6).
    31.李久.使用高、低碱度烧结矿抑制碱金属对高炉危害的探讨[J].钢铁,1986,21(5):66-69.
    32.郝志忠,李小刚.包钢高炉低碱度烧结矿冶炼实践[J].炼铁,2001,20(1):57-59.
    33.应育浦.高铁铁橄榄石热处理产物的研究[J].矿物学报,1981,(2):112-117.
    34.张玉柱,冯向鹏,李振国,伊海生.提高低硅烧结矿强度的研究及在生产上的应用[J].钢铁,2004,39(8).
    35.郭兴敏,朱利,李强,沈红标,周明顺.高碱度烧结矿的矿物组成与矿相结构特征[J].钢铁,2007,42(1):17-19.
    36.郝素菊,蒋武锋,白彦东,张玉柱,方觉.石灰活性对烧结矿中铁酸钙结晶形态的影响[J].烧结球团,2007,32(5):15-17.
    37.刘兰英.论烧结矿中铁酸钙的形成机理与合理的工艺条件[J].包钢科技,1999,(8):3-7.
    38.韩志国,周节旺,姜涛,杨熙鹏.MgO对以细磁铁精矿为主的烧结矿微观结构的影响[J].钢铁,2005,40(9).
    39.王如英.烧结矿显微硬度的研究[J].烧结球团,1995,20(3):9-13.
    40. C. E. Loo et al. Ironmaking and steelmaking.1988,15(6):279.
    41.乔瑞庆.含氟粘结相的工艺矿物学研究[D].东北大学博士论文,1979.10,P1.
    42.张玉柱,佘雪峰,邢宏伟.不同印度铁矿粉配比烧结矿的显微结构对烧结性能的影响[J].钢铁研究学报,2008,20(1):59-62.
    43.于素荣,于淑娟,王慧.鞍钢人造富矿的矿物组成与显微结构分析[J].鞍钢技术,2006,(5):14-17.
    44.李骞,黄柱成,姜涛,杨永斌,李光辉.白云石和蛇纹石对烧结矿质量及显微结构的影响[J].钢铁,2006,41(12):10-14.
    45.蒋有义,杨永革.东鞍山难选矿石工艺矿物学研究[J].金属矿山,2006,(7):40-43.
    46.蒋有义,杨永革,王忠红,李维兵,陈本红.鞍山地区铁矿石工艺矿物学研究(二)[J].矿业工程,2005,3(4):26-28.
    47.王荣成,傅菊英.高铁低硅烧结技术研究[J].钢铁,2007,42(6):17-20.
    48.客海滨,张玉柱,王丽丽等.碱度对石钢烧结矿质量的影响[J].中国冶金,2007,17(3):21-24.
    49.刘竹林,陈子林,汤乐云.烧结工艺优化的试验研究[J].钢铁,2006,41(5):15-19.
    50.市川孝一ら.低SiO2烧结矿の被还原性ぉょび高温性状评价[J]. CAMP-ISIJ,1998,11(4):850.
    51.星雅彦ら.低SiO2烧结矿の高温性状评价[J]. CAMP-ISIJ,1996,9(4):813.
    52.张铁根,贺淑珍.提高烧结矿强度的试验研究[J].钢铁研究,2008,36(1):13-16.
    53.于素荣,周节旺,于淑娟等.碱度对鞍钢烧结矿产、质量的影响[J].钢铁研究,2007,32(5):18-20.
    54.棍川修二ら.高品质烧结矿の制造[J].铁と钢,1983,69(2):9-12.
    55.金明芳,李光森,魏国等.矿石特性对CaO-Fe2O3系初熔体渗透性影响[J].中国冶金,2007,17(7):51-54.
    56.梁中渝,胡林,邓能运等.优化烧结配料分析[J].钢铁,2001,36(10):12-13.
    57.刘素丽.高炉和烧结的配矿生产实践[J].钢铁,2004,39(11):5-8.
    58.何环宇,王庆祥,曾小宁.MgO含量对高炉炉渣粘度的影响[J].钢铁研究学报,2006,18(6):11-13.
    59.黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2002,211-219.
    60. Kondratiev Alex, Jak Evgueni. Predicting coal ash binding phase flow characteristics (viscosity model for the Al2O3-CaO-'FeO'-SiO2 system) [J]. Fuel,2001,80(14):1989-2000.
    61. Hurst H. J, Novak F, Patterson J. H. Viscosity measurements and empirical predictions for some model gasifier binding phases. Fuel,1999,78(4):439-444.
    62.周传典主编.高炉炼铁技术手册北京[M].北京:冶金工业出版社,2003,19-30,121-127.
    63. Lee Y. J, Yi S. H. Viscosities of CaO-MgO-SiO2-Al2O3 binding phase systems in a melter-gasifier. Fuel and Energy Abstracts,1997,38(6):431.
    64.戴曦,张传福.CaO对FenO-MgO-SiO2系渣粘度的影响[J].有色金属(冶炼部分),2005,(1):8-10.
    65.梁丽华.粘度在炼铁过程中的作用分析[J].科技情报开发与经济,2004,14(11):249-251.
    66.郁庆瑶,张龙来,林成城.高炉炉渣流动性的实验研究[J].宝钢技术,2002(3):37-40.
    67.杜鹤桂,马喜明.包钢高炉渣含氟和碱金属限量的实验研究[J].钢铁,1997,32(3):4-10.
    68.崔传孟,徐秀光.B2O3-MgO-SiO2-Al2O3-CaO系渣组成对熔体物性的影响[J].金属学报,1996,32(6).
    69.李桂荣,王宏明,李敬生,袁国银.含B203无氟连铸保护渣物理性能的研究[J].特殊钢,2005,26(3):12-14.
    70.何环宇,王庆祥,曾小宁.MgO含量对高炉渣粘度影响的实验研究[J].武汉科技大学学报(自然科学版),2002,25(4).
    71.张丙怀,刁岳川,廖东海,朱俊虹,王立芬,阳海彬.富三氧化二铝高炉炉渣的流动性[J].钢铁研究学报,2005,17(4).
    72.海国廷.液体表面张力定义浅谈[J].宁夏大学学报(自然科学版),1993,14(4):81-85.
    73.王常珍主编.冶金物理化学书名[M],北京:冶金工业出版社,1982,297.
    74.李红霞,杨彬,刘国齐等.钢液对连铸用含碳耐火材料的侵蚀作用研究[J].耐火材料,1993,41(3):161-167.
    75.范崇正,吴佑实.铜和铁的表面张力计算模型[J].中国科学技术大学学报,1996,26(4):409-415.
    76.崔传孟,徐秀光,张国藩,韩维儒.含B203高MgO炉渣组成对熔渣体积质量及表面张力的影响[J].东北大学学报(自然科学版),1996,17(4):369-373.
    77.刁日升.含Ti02炉渣表面张力测定及其与离子团结构的关系[J].金属学报,1995,31(6):247-250.
    78.吴洪全,钱学义,詹家林,汪勇,贺智勇.铁水脱硫聚渣剂的开发与应用[J].四川冶金,2007,29(5):56-59.
    79.李金锡,张鉴.CaO-Al2O3-SiO2熔渣表面张力的计算模型[J].北京科技大学学报,2000,22(6):512-514.
    80.师金红,陈伟庆,张昩茗等.AOD炉渣熔化温度的实验研究[J].中国冶金,2007,17(12):41-44.
    81.张东力,王晓鸣,匡世波等.LF精炼渣发泡性能的实验研究[J].钢铁研究学报,2003,15(6):12-15.
    82.乔瑞庆,杜鹤桂.TiO2对含氟熔渣粘度和熔化性温度的影响[J].钢铁研究学报,1998,10(4):1-4.
    83.李玉萍,徐晓伟,张永杰,王碧燕.LiF和CaF2助熔效果的研究[J].北京科技大学学报,2002,24(4):429-431.
    84. WU Shengli, Eiki Kasai, Yasuo Omori. Effec t of the Constitution of Granuleson Coalescing Phenomenon and Strength after Sintering[A]. Proceedings of the 6th International Iron and Steel Congress,1990,15~20.
    85.李晶,黄克雄,王造吉等.铝液-熔盐-电极间界面现象的研究[J].金属学报,1990,26(1):B6-B9.
    86.宝钢烧结厂,包钢钢研所,北京钢铁研究总院.包钢高碱度烧结矿的机理研究[J].烧结球团,1982,11(2).
    87.孙铭良,罗远辉.炼铜炉渣的物理化学性质[J].有色金属,1993,45(3):53-58.
    88.秦学武,宋灿阳,阎媛媛.高炉高铝炉渣性能研究[J].山东冶金,2006,28(1):29-32.
    89.徐惠久.包钢对白云鄂博矿产资源综合利用的开发与进展[J].包钢科技,1989,(1):1-5.
    90.李小刚,纪福忠.包钢铁精矿烧结固体燃耗高的原因研究[J].包钢科技,1996,(3):69-75.
    91.李小刚,沈茂森,沈峰满.一种新型烧结矿—包钢第三代烧结矿[J].钢铁,2003.38(6).
    92.王振山.包钢炼铁系统的技术进步[J].炼铁,1999,18(S1):1-3.
    93.邓克,李维兵.铁精矿铁品位与二氧化硅含量关系的研究[J].金属矿山,2004,(3):21.
    94.马燕生,高霞.钾钠氟在烧结矿中的行为[J].包钢科技,1996,(3).
    95.蔡隆九,宋玉萍,王伟华.包钢的氟污染及其治理[J].包钢科技,2002,28(1):79-80.
    96.李小刚.含氟铁精矿烧结工艺优化及理论研究[D].东北大学博士论文,2004.1,P14.
    97.沈茂森,韩淑霞,康文革,李小钢.包钢第三代烧结矿强度研究[J].包钢科技,2002,28(1).
    98.S.J.B 里德著.林天辉,章靖国译.电子探针显微分析[M],上海:科学技术出版社,1980,11.
    99.金明芳.影响铁矿石液相烧结及烧结强度的因素分析[D].东北大学,2008,7:66-68.
    100.乔瑞庆,杜鹤桂.低氟烧结矿微气孔的形成机理及对烧结矿强度的影响[J].钢铁研究学报,1999,11(6):1-4.
    101.白云鄂博矿矿冶工艺学(上)[M].包钢,1995.
    102. Masakata S, MAEDA T, NISHIOKA K et al. Formation rate of calcium ferrite melt in iron ore sintering progress[C]. Proceedings of the first Australia-China-Japan symposium on iron and steelmaking. Shenyang:Liaoning Science and Technology Publishing House,2006:141-147.
    103.朱德庆,李建,潘建等.铬铁矿粉烧结试验研究[J].钢铁,2007,42(8):7-11.
    104.吴胜利,杜建新,马洪斌,田筠清,许海发.铁矿粉烧结液相流动特性[J].北京科技大学学报,2005,27(3):291-293.
    105. Masakata S, MAEDA T, NISHIOKA K et al. Formation rate of calcium ferrite melt in iron ore sintering progress[A].赫冀成,邹宗树.第一届澳中日钢铁冶金学术研讨会论文集[C].沈阳:辽宁科学技术出版社,2006,141-147.
    106.郁国城编.碱性耐火材料理论基础[M].上海:科学技术出版社,1982,97.
    107.李光森,魏国,李小刚,沈峰满.含氟烧结矿粘结相流动性的探讨[J].东北大学学报(自然科学版),2007,28(6):834-838.
    108. Wright S, Zhang L, Sun S et al. Visocsity of CaO-MgO-Al2O3-SiO2 melt containing spinel particles at 1646K[J]. Met Mat Trans,2000,31B:97-104.
    109.连双喜,陈柏杨,刘世贤等.熔融还原炼铁渣粘度之计算模式[J].材料导报,2004,18(8):74-78.
    110.侯怀宇,谢刚,陈书荣,张雄飞.NaF-AlF_3系熔盐结构的分子动力学计算[J].中国有色金属学报,2000,10(6):914-918.
    111.日本金属学会编,王魁汉,徐秀光译.冶金物理化学[M].北京:冶金工业出版社,1988:174.
    112.李帆,郑瑛,刘朝辉,郑楚光.煤灰助熔剂对灰熔化温度影响的研究[J].武汉城市建设学院学报,1997,14(1):23-26.
    113.江吉惠,洪灶熬.煤灰熔融性国家标准测定方法的探讨[J].烧结球团,2005,30(5):14-16.
    114.董凌燕,魏庆成.含SrO连铸保护渣熔化温度及粘度的研究[J].重庆大学 学报(自然科学版),1999,25(5):76.
    1115.铁生年,赵宙兴.特殊钢渣剂熔化温度熔速的技术指标选择[J].青海大学学报(自然科学版),2002,20(4):26-27.
    116.马广才,李文,李宏等.In-Sn合金熔体在非晶和晶态Cu_(46)Zr_(45)Al_7Gd_2合金上的润湿性及界面特性[J].金属学报,2006,42(2):201-204.
    117.朱建峰,王芬,夏祥林.复合添加剂对刚玉瓷结构性能的影响[J].陶瓷,2002,(2):26-28.
    118.姜鑫.MgO对烧结工艺及烧结矿冶金性能影响的研究[D].东北大学,2005,2.
    119.刘竹林.烧结矿FeO含量的影响因素探讨[J].烧结球团,2005.7(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700