基于烧结终点预测的烧结过程智能控制系统及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁矿石烧结过程是钢铁生产的重要环节,烧结矿是高炉炼铁的主要原料,烧结矿质量的优劣直接影响到炼铁生产的产量、质量及能源消耗。目前,在我国铁矿石烧结生产过程中,控制技术落后、自动化水平较低的问题已经成为制约烧结矿产量、质量的一个瓶颈。
     烧结过程是一个具有强非线性、强耦合性、不确定性、时变、时滞的复杂工业过程,采用传统的控制技术难以满足生产要求。本文综合运用机理分析、先进控制理论、人工智能技术等多学科知识,对烧结过程及其控制的方法和技术进行了深入研究,提出一种基于烧结终点预测的烧结过程智能控制策略,建立了相应的智能控制系统,为有效解决铁矿石烧结过程的控制问题提供了新的途径。论文的主要研究内容和贡献如下:
     (1)基于烧结终点预测的智能控制系统结构
     针对烧结过程特性和目前烧结生产过程中存在的主要控制问题,综合运用神经网络、模糊控制和专家控制等多种智能控制方法,提出了一种基于烧结终点预测的智能控制系统结构,为解决烧结过程控制问题提供了一种有效的解决方案。
     (2)烧结终点预测模型
     针对烧结过程的大滞后性、非线性以及参数信息的不完整性,结合灰色理论和改进的神经网络方法,建立了烧结终点灰色BP神经网络预测模型,在烧结工况稳定时能有效预测烧结终点;针对烧结过程工况不稳定时该模型预测精度不高的缺陷,建立基于主元分析的预测模型,对灰色BP神经网络模型进行修正,实验及应用结果表明其具有较高的预测精度。
     (3)烧结终点混杂模糊—预测控制模型
     针对烧结过程的混杂特性,综合运用模糊控制、预测控制等智能化控制方法,建立了烧结终点混杂模糊—预测控制模型。在稳态时,采用模糊控制为主的控制策略;在非稳态时,采用预测控制为主的控制策略。同时,通过研究多模型柔性切换控制技术实现两模型的协同工作,解决了烧结终点的优化控制问题。
     (4)基于满意度的智能协调优化方法
     针对台车速度对混合料料槽料位的持续性影响,在建立混合料料槽料位专家控制模型的基础上,采用基于满意度的烧结过程智能协调优化方法,综合协调控制烧结终点和混合料料槽料位,以保证料槽料位处于安全状态的同时,减小烧结终点的波动,从而实现了整个烧结过程的优化控制。
     (5)烧结过程智能控制系统
     基于SIMATIC PCS 7集散控制系统,采用一种多层分布式软件体系结构设计了烧结过程智能控制系统的整体框架;利用OPC通信技术实现了应用软件和基础自动化系统的通信;运用VC++6.0完成了系统功能模块的设计,并且实现了烧结终点软测量模型、预测模型、混杂模糊一预测控制以及协调优化等智能优化控制策略。实际工业应用效果验证了该系统的可行性和有效性。
     通过应用基于烧结终点预测的烧结过程智能控制策略,提高了铁矿石烧结工艺过程优化控制水平,有效地抑制了烧结终点的波动,产量质量得到了提高,降低了工人的劳动强度,取得了显著的经济效益和社会效益。同时也为复杂工业过程优化控制提供一种实用的、值得借鉴的工业化实现方法。
Iron ore sintering process is an important step in iron and steel production. As the main raw material of the blast furnace, the sinter quality has a direct influence on the yield and quality of iron and the energy consumption. At present, the backward control technology and low-level automatization of iron ore sintering process have become the bottleneck to restrict the yield and quality of the sinters in China.
     Since iron ore sintering is a complex industrial process with strong nonlinearity and coupling, uncertainty, time variation, and time-delay, it is difficult to meet the production requirements by using the traditional control techniques. Thus, this dissertation makes a deep research on sintering process and the related control methods and techniques by comprehensive application of multi-subject knowledge, such as the mechanism analysis, advanced control theory and artificial intelligence technique, etc. An intelligent control strategy based on the prediction for the Burning Through Point (BTP) is proposed in this dissertation, and a corresponding intelligent control system is also established, which provides a new effective approach to solve the control problems in iron ore sintering process. The main study contents and achievements include:
     (1) Structure of intelligent control system based on BTP prediction
     View of the characteristics and the main existing control problems in the sintering process, a structure of intelligent control system based on BTP prediction is presented by integrating various intelligent control methods, such as neural networks, fuzzy control and expert control. The designed control structure provides an effective solution to the control problems in sintering process.
     (2) Prediction model of BTP
     Due to the characteristics of long time-delay, nonlinearity and incompletion of parameter information in sintering process, the gray BP neural networks prediction model of BTP is established by using the grey theory and improved neural networks combinatively. When the sintering operating condition is stable, this model can predict the BTP effectively. In order to solve the insufficiency of downtrend of predictive precision when the state of sintering process is unstable, the prediction model based on PCA has been put forward to modify the gray BP neural networks prediction model. The results of simulations and actual applications show that the prediction model of BTP has high prediction precision.
     (3) Hybrid fuzzy-predictive control model of BTP
     Considering the hybrid characters of sintering process, the hybrid fuzzy-predictive control model of BTP is established based on intelligent control methods of fuzzy control and predictive control. While BTP is in a steady state, the fuzzy control model is mainly used in the system. Otherwise, the predictive control model is mainly used. In addition, multi-model flexible switching control technique is applied to realize the smoothly switching between the two models, which solves the optimal control problem of BTP in sintering process.
     (4) Intelligent coordination and optimization method based on Satisfactory Solution Principle (SSP)
     Mainly aimed at the problem that the pallet velocity directly affects the sinter bed position continuously, the sinter bed position expert control model is set up. Then, an intelligent coordination and optimization method based on SSP is proposed to synthetically coordinate and control the BTP and the sinter bed position. The proposed method ensures the normal state of sinter bed and reduces the fluctuation of BTP, so as to realize the optimization control of the overall sintering process.
     (5) Intelligent control system for sintering process
     Based on SIMATIC PCS 7 distributed control system, the intelligent control system frame is designed by using the multi-layer distributed software architecture. The communication between the application software and basic automation system is realized with OPC. By using VC++ 6.0, the system function modules are designed, moreover, the BTP soft-sensing model, BTP prediction model and intelligent optimization and control strategies including the hybrid fuzzy-predictive control of BTP, coordination of BTP are realized. The feasibility and effectiveness of the designed system are verified by the practical control results.
     The application of intelligent control strategies based on the prediction for the BTP to iron ore sintering process, improves the optimizaiotn control level of the iron ore sintering process, restrains the fluctuation of BTP effectively, and improves the yield and quality of the sinters. Moreover, it reduces the labor intensity of workers, and achieves remarkable economic benefits and social benefits. Meanwhile, a set of practical and recommendable industrialized methods is supplied for the optimization control of complex industrial processes.
引文
[1]唐贤容,王笃阳,张清岑.烧结理论与工艺.长沙:中南工业大学出版社,1992.1-4,141-149
    [2]P.Lacroix,G.Dauwels,P.Dufresne,R.Godijn.High blast furnaces productivity operations with low coke rates in the European Union.La Revue de Metallurgie-CIT,2001,3:259-268
    [3]孔德彪.从烧结机大型化看我国烧结业的发展.江苏冶金,1989,2:29-31
    [4]G.S.Upadhyaya.Some issues in sintering science and technology.Materials chemistry and physics,2001,67:1-5
    [5]F.Patission.Study of Moister Transfer during the Strand Sintering Process.Metal Transactions,1990,2(21B):37-47
    [6]胡氢,司纪凯.智能控制技术现状分析及发展.煤矿机械,2006,27(6):921-923
    [7]V.Boquete,R.Garcia,R.Barea.Neural control of the movements of a wheelchair.Journal of Intelligent and Robotic Systems,1999,25(3):213-216
    [8]马毅潇,钱东海,赵锡芳,等.基于串级变结构神经网络的机器人补偿控制.上海交通大学学报,1999,33(7):842-846
    [9]赵秀粉,王时龙,简毅,等.基于智能代理的机械制造系统的动态建模.机械设计与制造工程,2002,31(4):50-52
    [10]陈丽安,张培铭,雷德森.人工智能在电气设备中的应用现状与前景展望.电网技术,2000,24(7):21-24
    [11]Z.G.Pawel,P.Marian,K.Kazmier.A simple direct-torque neuron-fuzzy control of PWM-inverter-fed induction motor drive.IEEE Transactions on Industrial Electronics,2000,47(4):863-870
    [12]王耀南,王辉,彭建春,等.复杂工业过程的综合集成智能控制.信息与控制,1999,28(4):298-304
    [13]吴敏,沈德耀.配煤过程基于神经网络和数学模型的专家系统.控制理论与应用,2000,17(6):868-872
    [14]吴敏,桂卫华.锌浸出过程的专家控制和故障诊断方法.控制理论与应用,2001,18(6):861-866
    [15]卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述.系统工程与电子技术.2002,24(1):52-57
    [16]K.S.Chin,S.Q.Zhou,R.Krishnamurthy.An intelligent approach of knowledge searching within internet-based distributive knowledge integrated environment,Engineering Applications of Artificial Intelligence,2002(15):607-618
    [17]葛红,毛宗源.一种新的数据分析方法:人工免疫网络.计算机工程与应用,2002,13:6-10
    [18]冯瑞,张浩然,邵惠鹤.基于SVM的软测量建模.信息与控制,2002,31(6):567-571
    [19]朱学峰.软测量技术及其应用.华南理工大学学报,2002,30(11):61-67
    [20]宋国民,张为公,翟羽健.基于模糊推理误差模型的传感器数据分析.传感器技术,2001,20(1):42-44
    [21]杨会志.BP网络与RS理论在浮选生产数据分析中的应用.计算机工程于应用,2002,7:218-220
    [22]杨晓玲,张素伟,吴裕树,等.基于数据仓库的数据分析系统研究.山西电子技术,2002,5:16-19
    [23]陈宗海,王雷.基于混合智能技术的非线性对象优化控制模型.系统工程与电子技术,2002,24(8):90-93
    [24]K.Sungshin,J.V.George.An intelligent approach to integration and control of textile process.Information Science,2000,13:181-199
    [25]熊刚,李阳春,许晓鸣,等.流程工业CIMS中的集成建模.上海交通大学学报,1999,33(5):600-603
    [26]崔德光,程朋,项天成.CIMS管理信息系统设计开发中的集成化建模方法.计算机集成制造系统CIMS,2000,6(6):37-40
    [27]姚建初.面向CIPS的智能集成优化设计系统研究.计算机集成制造系统CIMS,2000,6(5):39-42
    [28]M.A.Thoma.Intelligent control applications in the process industries.Annual Reviews in Control,2002,26:75-86
    [29]C.A.Hsuan,R.Chen.Intelligent control of exit temperature in a gas-fuel can-type combustor.Engineering Application of Artificial Intelligence,2002,15:391-400
    [30]M.Jarvensivu,K.Saari,S.L.Jounela.Intelligent control system of an industrial lime kiln process.Control Engineering Practice,2001,9:589-606
    [31]陶明璋.工业控制过程系统中智能优化控制策略的研究.浙江大学学报,30(6):683-690
    [32]黄道平,朱学锋,周其节.基于一种集成模型的多变量非线性预测控制.控制理论与应用,1999,16(1):38-42
    [33]姚俊峰,梅炽,彭小奇,等.炼铜转炉优化操作智能决策支持系统的开发与研制.信息与控制,2002,31(2):176-179
    [34]潘丰,须文波.造纸过程集成优化控制系统.计算机测量与控制,2002,10(1):794-797
    [35]李新春,孙艳.综合人工智能优化矿业工程复杂大系统.系统工程学报,2002,17(4):379-384
    [36]桂卫华,阳春华,吴敏,李勇刚.智能集成优化控制技术及其在工业中的应用.首届全国有色金属自动化技术与应用学术年会论文集,有色冶金设计与研究,2003,24:6-14
    [37]T.Kawanguchi,M.Yoshinaga.Development and Application of an Integrated Simulation Model for Iron Ore Sintering.Annual Reviews in Control,1987,46:99-106
    [38]G.S.Upadhyaya.Sintering 2000:a report.Materials and design,2001,22:239-242
    [39]M.J.Cumming,W.J.Rankin,J.R.Siemaon.Modeling and Simulation of Iron Ore Sintering.Proceedings of the 4th International Symposium on Agglomeration,Roronto,Canada,1985:763-766
    [40]G.S.Upadhyaya.Some issues in sintering science and technology.Materials chemistry and physics,2001,67:1-5
    [41]A.G.Waters.A Mathematical Model for the Prediction of Granule Size Distribution for Multi-component Sinter Feed.Transactions of ISIJ,1989,29(4):274-283
    [42]F.Patission.Study of Moister Transfer during the Strand Sintering Process.Metal Transactions,1990,2(21B):37-47
    [43]N.D.Corte,J.L.Gerbe.Automation and Modelisation of the Process at the Usinor Dunkirk No.3 Sintering Plant.Proceedings of the 4th International Symposium on Agglomeration,Toronto,Canada,1985:787-804
    [44]N.Tamure,M.Konishi.Mathematical Approach for the Optimization of Sintering Process Operation.In IFAC Automation in Mining,Mineral and Metal Process,Tokyo,Japan,1986,:203-208
    [45]袁熙志,周取定.铁矿石烧结过程基本理论的研究.见:徐瑞图,吴胜利.中国铁矿石烧结研究—周取定教授论文集.北京:冶金工业出版社,1997. 203-211
    [46]胡长庆,张玉柱.烧结过程中的传输理论.烧结球团,2000,25(3):1-4
    [47]N.Tamure,M.Konishi.Mathematical Approach for the Optimization of Sintering Process Operation.In IFAC Automation in Mining,Mineral and Metal Process,Tokyo,Japan,1986,:203-208
    [48]V.Errigo,C.Riccardi.Waste Gas Analysis Under Grate as a New Means of Sinter Process.In 4th International Symposium on Agglomeration,Toronto,Canada,1985:153
    [49]P.P.Kanjilal,E.Rose.Application of Adaptive Prediction and Control Methods for Improved Operation of the Sintering Process.Iron-making and Steel-making,1986,13(6):289-293
    [50]K.Hamada,Y.Matoba,T.Marai,et al.,Systeme de controle de la composition chimique de I' agglomere.Revue de Metallurgic-CIT,1987,(5):409-419
    [51]范晓慧,黄天正,陈荩.烧结过程控制专家系统(Ⅲ)-透气性中心控制策略和烧结终点预报策略.中南工业大学学报,1998,29(6):535-537
    [52]李桃,冯其明,范晓慧,姜涛.基于自组织神经网络的烧结终点自适应预报系统的开发.计算机工程与应用,2001,6:127-129
    [53]D.L.Zheng,Z.L.Zhao.Application of gray linear programming in sintering mixing calculation.Journal of University of Science and Technology Beijing,2000,7(4):273-276
    [54]李明河,王群京,孙雁飞.基于神经网络的烧结终点预报的研究.合肥工业大学学报,2004,27(6):24-27
    [55]田卫红,吴敏.烧结配料优化控制专家系统.烧结球团,2006,31(1):23-26
    [56]杨英华,郭文军,王福利,何力.烧结机点火器燃烧模糊控制及其应用.钢铁,1998,33(2):1-9
    [57]深川卓美.川崎制铁技报,1991,3:203-209v[58]W.S.Cheng.Prediction system of burning through point(BTP)based on adaptive pattern clustering and feature map.Proceedings Of 2006 International Conference On Machine Learning And Cybernetics,2006,7:3089-3094
    [59]姜宏州,张学东,张宏勋.烧结生产专家指导系统研究.烧结球团,2000,25(1):8-10
    [60]杜玉晓,吴敏,桂卫华.面向生产目标的铅锌烧结过程智能集成建模与优化控制技术.中国有色金属学报,2004,14(1):142-148
    [61]唐怀斌.工业控制系统的进展与趋势.1996,2:1-6
    [62]白锐,柴天佑,马恩杰.生料浆配料过程综合自动化系统.系统仿真学报,2007,19(11):2594-2598
    [63]欧阳奇,白晨光,何木光,文光远.考虑性能指标的烧结机操作优化控制模型.烧结球团,2005,30(3):27-29
    [64]《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003,99-100
    [65]傅菊英,姜涛,朱德庆.烧结球团学.长沙:中南工业大学出版社,1996,25-26
    [66]孔德彪.从烧结机大型化看我国烧结业的发展.江苏冶金,1989,2:29-31
    [67]张寿荣.试论进入21世纪我国高炉炼铁技术方针.钢铁,2000,38(5):42-46
    [68]王亦文,桂卫华,王雅琳.基于最优组合算法的烧结终点集成预测模型.中国有色金属学报,2002,12(1):191-195
    [69]谌晓文,邬捷鹏.基于BP神经网络的烧结终点预测模型.烧结球团,2006,31(4):21-25
    [70]李桃,冯其明,范晓慧,姜涛.基于自组织神经网络的烧结终点自适应预报系统的开发.计算机工程与应用,2001,6:127-129
    [71]李明河,王群京,孙雁飞.基于神经网络的烧结终点预报的研究.合肥工业大学学报,2004,27(6):24-27
    [72]郭立新,李浩,黄秋野,陈伟.烧结机模糊控制规则设计及其仿真.东北大学学报(自然科学版),2006,27(10):1075-1078
    [73]C.Arbeithuber,H.P.Jorgl,H.Raml.Fuzzy control of an iron ore sintering plant.Control Engineering Practice,1995,36(9):1669-1674
    [74]K.WookHyun,K.YongHo,L.SangJeong,P.KiNam.Event-based modeling and control for the bumthrough point in sintering processes.IEEE Transactions on Control Systems Technology,1999,20(5):31-41
    [75]宋向辉,黄鸿,侯朝桢,等.智能预测控制在工业滞后系统中的应用.计算机测量与控制,2003,11(3):184-186
    [76]D.L.Zheng,Z.L.Zhao.Application of gray linear programming in sintering mixing calculation.Journal of University of Science and Technology Beijing,2000,7(4):273-276
    [77]H.Unaki,K.Miki.New Control System of Sinter Plants at Chiba Works.In IFAC Automation in Mining.Mineral and Metal Processing.Tokyo,Japan,1986:209-216
    [78]俞忠原,陈一民.工业过程控制计算机系统.北京:北京理工大学出版社, 1995
    [79]李桃.烧结过程智能实施操作指导系统的研究:[博士学位论文].长沙:中南大学,2000
    [80]王克俊,王克成.神经网络建模、预报与控制.哈尔滨:黑龙江工业大学出版社,1996
    [81]M.Cabassud,N.Delgrange-Vincent,C.Cabassud,L.Durand-Bourlier,J.M.Laine.Neural networks:a tool to improve UF plant productivity.Desalination,2002,145(1-3):223-231
    [82]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社.2003,8
    [83]胡守仁,余少波,戴葵.神经网络导论.长沙:国防科技大学出版社,1993
    [84]张东平.城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测:[博士学位论文].杭州:浙江大学,2003
    [85]李存军.基于集成神经网络的城市道路交通流量融合预测研究:[博士学位论文].成都:西南交通大学,2004
    [86]何悦盛,叶春,杨波,等.BP网络在电站故障诊断系统中的应用研究.电力自动化设备,2002,22(5):7-9
    [87]杨旭华.神经网络及其在控制中的应用研究:[博士学位论文].杭州:浙江大学,2004
    [88]陈祥光,人工神经网络技术及应用.北京:中国电力出版社.2003,9
    [89]C.X.Zhang.Hybrid Neural Network Model for RH Vacuum Refining Process Control.Iron and Steel Research International,2004,11(1):12-14
    [90]杜玉晓.铅锌烧结过程智能集成优化控制技术及其应用研究:[博士学位论文].长沙:中南大学,2004
    [91]张杰,阳宪惠.多变量统计过程控制.北京:化学工业出版社,2000
    [92]胡国定,张润楚.多元数据分析方法.天津:南开大学出版社,1990
    [93]刘洪霖,包宏.化工冶金过程人工智能优化.北京:冶金工业出版社,1999
    [94]A.C.Tamhane,R.S.H.Mah.Data Reconciliation and Gross Error Detection in Chemical Process Networks.Techometrics,1985,27:409-413
    [95]C.M.Crowe.Reconciliation of Process Flow Rates by Matrix Projection.Alche Journal,1986,2(4):616-623
    [96]M.Wu,J.H.SHE,M.Nakano.An expert control system using neural networks for the electrolytic process in Zinc hydrometaiiurgy.Engineering Applications of Artificial Intelligence.2001,14(5),589-598
    [97]张吉礼.模糊-神经网络控制原理与工程应用.南京工业大学学报,2005,27 (6):90-94
    [98]陆锦军.预测模糊协调控制在纯滞后系统中的应用.哈尔滨:哈尔滨工业大学出版社,2003,90-94
    [99]张立炎,徐华中,钱积新.一类混杂系统建模和优化控制的研究.控制工程,2005,12(5):409-411
    [100]李秀改,高东杰.一类混杂系统模型预测控制.信息与控制,2002,31(1):1-4
    [101]申燕,郭文军,王福利,等.模糊控制在烧结终点控制中的应用.冶金自动化,1998,2:24-27
    [102]J.Liao,E.M.Joo,J.Y.Lin.Fuzzy-Neural-Network-based quality prediction system for sintedng process.Proceedings of the American Control Conference,1999,15(2):3221-3225
    [103]E.M.Joo,J.Liao,J.Y.Lin.Fuzzy neural networks-based quality prediction system for sintering process.IEEE Transactions on Fuzzy Systems,2000,18(4):314-324
    [104]许敏,李少远.基于多步预测性能指标的模糊控制器参数优化设计.控制与决策,2004,19(12):1327-1342
    [105]D.Q.Sun,W.Huo.Linear Multi-step Fuzzy Logic Systems.Control Theory and Applications,2001,18(6):851-857
    [106]张日东,王树青.基于神经网络的非线性系统多步预测控制.控制与决策,2005,20(3):332-337
    [107]H.D.Wang,G.Z.Qiu,Shengsheng Huang.Modeling and control of dioxin formation during iron ore sintering.Transactions of Nonferrous Metals Society of China,1999,18(2):651-654
    [108]B.Rafael,M.Javier,C.Alesandro,D.R.Martin.Fuzzy control of micum strength for iron ore sinter.ISId International,2006,687-693
    [109]欧阳奇,白晨光,何木光,文光远.考虑性能指标的烧结机操作优化控制模型.烧结球团,2005,30(3):27-29
    [110]高桂革.最优控制理论的发展与展望.上海电机学院学报,2005,8:99-102
    [111]黄洪钟,姚新胜,周仲荣.满意度原理研究与应用的现状与展望.控制与决策,2003,18(6):642-648
    [112]A.Homaifar,E.Mccormick.Simultaneous design of membership functions and rule sets for controllers using genetic algorithms.IEEE Transactions on Fuzzy Systems,1995,3(2):129-139
    [113]席裕庚.复杂工业过程的满意控制.信息与控制.1995,24(1):14220
    [114]白广忱,陈焱.系统可靠性多目标优化的满意解.系统工程与电子技术.2000,22(8):85-87
    [115]陈树勋.基于互联网的结构系统协同优化设计.计算机工程与应用.2002,14:31-33
    [116]吴清烈,徐南荣.基于目标希望水平的多目标决策新方法.系统工程学报.1996,11(2):7-14
    [117]达庆利,刘新旺.区间数线性规划及其满意解.系统工程理论与实践.1999,4:3-7
    [118]吴清烈,徐南荣.基于满意度大规模含整变量多目标决策方法.控制与决策.1996,11(4):439-445
    [119]杨寅华.烧结过程的模糊控制系统设计.计算机应用与软件,2006,23(6):24-26
    [120]J.Q.Hu,E.Rose.Generalized predictive control using a neuro-fuzzy model.International Journal of Systems Science,1999,12(3):117-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700