铁矿烧结烟气减量排放基础理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业是能耗大户,也是污染大户,而烧结工序是钢铁工业中排放空气污染物的主要污染源之一,由烧结工序产生的SO_2约占钢铁生产系统空气污染物中SO_2的40%~60%,烧结能耗则占钢铁工业总能耗的10%~15%。目前,国外发达国家对钢铁工业中SO_2、NO_x等的治理技术已经商业化,进入第三代污染物CO_2以及二嗯英等治理技术的研究和应用阶段。国内则由于技术和经济方面的原因,对钢铁工业的SO_2、NO_x的污染控制尚处于工业化应用前期研究,而烧结烟气脱硫脱硝处理基本处于空白,CO_x排放量的控制更没纳入议事日程。
     本论文结合国家自然科学基金项目《烧结烟气SO_2、NO_x、CO_2减量化排放基础理论与应用研究》(NSFC50274072),从清洁生产的观点出发,通过热重分析、红外光谱测试、X-射线衍射分析、扫描电镜及能谱分析、气相色谱分析等分析测试技术及对烧结烟气中SO_x、NO_x、CO_x在线检测等手段,对铁矿烧结工艺过程SO_2、NO_x、CO_x烟气的形成机制、排放规律及影响因素进行了研究。
     系统研究了铁矿烧结烟气中SO_2生成机理,结果表明:铁矿烧结烟气中SO_2来源于含铁原料和燃料中硫在高温下的热解,烧结混合料中硫的热解和脱硫率主要受温度、时间、空气中氧浓度、焦粉粒度等因素的影响。烧结脱硫率越高,烧结矿中残余的硫含量越低,越有利于改善生铁质量,但烧结烟气中排放的SO_2量越大。研究表明,脱硫率随温度升高、加热时间延长、氧浓度提高和焦粉粒度减小而迅速升高。但温度过高,烧结混合料中硫的脱除率愈低,烟气中SO_2排放量愈少。首次揭示了烧结烟气中SO_2的排放特征,提出了烧结烟气中SO_2浓度变化具有自持性的新观点,即无论烧结工艺参数和原料特性如何变化,烧结烟气中SO_2浓度始终在烧结终点前某一时刻急剧上升到最大值,随后急剧下降。阐明了烟气中SO_2的排放特征受烧结料层水分的迁移规律及料层中SO_2的热解生成-吸附-解吸机制所控制。采用动态法研究了烧结混合料对SO_2的吸附机理和吸附动力学,结果表明,在低吸附量时吸附速度1/C(?) dA/dt与吸附量A遵从一级反应动力学方程,两者有较好的线性关系;并且在吸附初期,当混合料碱度越高且CaO来源于生石灰、混合料含水量高、混合料平均粒度细及烟气中SO_2浓度越高时,均有利于混合料对烟气中SO_2的多相反应吸附过程。随着料层对SO_2的吸附量增加,吸附速度与吸附量间符合零级反应,吸附速度不再随吸附量的增大而加快。研究SO_2在烧结料层中的迁移规律时发现,存在CaSO_3的再氧化和CaSO_4的高温热分解过程,这是导致烟气中SO_2排放存在峰值特征的主要原因之一。在此理论研究基础上,创立了烧结过程SO_2的热解生成-料层吸收-热解解吸的迁移及富集排放模型,成功开发出了烧结烟气分段脱硫新工艺。在采用湿法石灰石-石膏法脱硫工艺的前提下,与传统全烟气脱硫相比,分段烟气脱硫新工艺减少烟气处理量40%,烟气脱硫率提高2.4%,吸收液大幅度减少,烟气脱硫设备投资和运行成本可明显降低。
     在线检测烧结烟气的气体成分表明,铁矿烧结烟气中NO_x主要来源于烧结点火阶段煤气燃烧及烧结料层中固体燃料燃烧。烧结过程生成的NO_x也主要以NO为主,只有微量的NO_2存在。与烧结过程烟气中SO_2的排放规律相比,烧结过程烟气中NO_x的排放存在显著差异,从点火结束后开始到烧结终点前,始终保持在一个较高的浓度水平。NO_x的生成及排放量受燃料N含量、氮的存在形态、燃料粒度、空气中氧含量、烧结混合料化学成分等因素的影响。而研究结果表明,提高烧结碱度或增加烧结料层高度均有利于降低烟气中NO_x排放浓度,由此提出了烧结过程形成的铁酸钙对烧结体系的NO_x还原反应具有催化作用。根据铁矿烧结特点,运用晶体结构、反应活化能、催化还原反应的热力学和动力学基础理论,系统研究了铁酸钙自催化NO_x还原反应机理。研究表明,烧结料层中的铁酸钙对CO还原NO反应具有明显的自催化作用。催化作用的强弱取决于铁酸钙的结构特点,其催化能力由强到弱的顺序为CF>C2F>2CF,CF使CO还原NO反应的活化能由无CF存在时的246.68 kJ/mol降到有CF存在时的138.80kJ/mol;揭示了铁酸钙催化CO还原NO的反应机理为:作为催化剂的铁酸钙参与了反应,发生了催化剂被CO还原和被NO重新氧化的反应,与此同时,铁酸钙催化NO还原还服从多相催化的吸附活化物理论,在铁酸钙催化剂活性部位发生NO分子吸附、离解、表面活性物种的重组和产物脱附的反应。在铁酸钙自催化作用下,降低了烧结体系NO还原的表观反应活化能,加快了反应速度。促进铁酸钙在烧结矿表层的分布和提高烧结矿中铁酸钙矿物的含量,有利于强化铁酸钙自催化作用和降低NO_x的排放,在此基础上开发了分流制粒非均质烧结新工艺,优先发展铁酸钙系粘结相,改善铁酸钙在烧结矿表层的分布,与常规烧结工艺流程相比,可降低NO_x排放浓度44%左右。
     对烧结过程固体燃料的燃烧特性进行了系统研究,运用催化燃烧和燃烧化学的理论,成功开发出具有助燃和助熔多种功能的烧结节能添加剂,改善了烧结矿产质量指标,降低烧结固体燃耗,烧结过程CO、CO_2和NO_x的排放浓度也明显降低,但烧结料层中氧化性气氛增强,强化了烧结混合料中硫的脱除,烧结烟气中SO_2的排放浓度峰值有所提高,但其排放规律仍维持其自持性。研究表明,节能添加剂催化焦粉燃烧的作用机理为活化固定碳的晶体结构、形成反应活性中心、降低反应活化能和促进燃烧过程的氧传递,焦粉经节能添加剂处理后,气化反应活化能由25.8kJ/mol降低到18.9kJ/mol,燃烬率由80.2%提高到89.8%,燃烧速率由2.25%/min加快到3.15%/min;催化剂中还含有助熔剂,可诱导低熔点的铁酸钙液相形成,在较低烧结温度下使液相产生的速度加快,粘结相量增多,从而提高烧结成品率和烧结矿强度。烧结节能添加剂工业试验结果进一步证明,烧结产质量指标明显改善,产量提高了15.72%,转鼓强度提高了1.99%,固体燃耗降低了4.19 kg·t_(烧结矿)~(-1),烧结过程废气中CO_2浓度下降10.53%,CO浓度降低35.29%,NO浓度降低25%,但SO_2平均排放浓度提高了16.74%,峰值排放浓度提高了17.70%,还需结合后续烟气处理才能达到烧结烟气SO_2的减量排放。
     通过对铁矿烧结过程SO_2、NO,、CO_x排放规律的系统研究,设计了烧结烟气减量排放综合方案,即有机结合烟气分段处理+烧结节能添加剂+热风返烟烧结的工艺方案。以450m~2烧结机为例,与传统工艺流程相比,综合方案可减少烧结烟气脱硫时40%左右的处理烟气量,烧结烟气脱硫装置设备投资和运行成本分别可减少40%左右,而由热风返烟烧结节约的固体燃耗可带来直接经济效益936万元。
The iron and steel industry consumes more energy and brings about heavier pollutions than other ones,especially sinter mills are one of the main emissions of air pollutants in integrated steelworks, with SO_2 emissions accounting for 40%-60% of the total.At the same time the unit energy consumption amounts to about 10%-15% of total energy consumption of steelworks. At present, the techniques reducing the emissions of SO_2 and NO_x from iron and steel industry has been put into operation commercially in some developed country, even the efforts to minimize the emissions of CO_2 and polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) have also been made. However, the control techniques of air pollutants such as SO_2 and NO_x are still on the prophase of industrialization in iron and steel industry of China because of the deficiency of techniques and economy.For sinter plants,the desulphuriza-tion and denitrification of flue gas has not been applied except for few small sinter strands, the minimisation of CO_2 emissions were even not brought into schedule.
     Theoretical and process studies of the abatement of CO_2,NO_x and SO_2 during iron ore sintering was conducted,which was supported by National Natural Science Foundation of China(NSFC50274072). Based on the viewpoint of clean production, the formation mechanism, the emissions and the factors affecting the formation and emissions of SO_2, NO_x, CO_2 during iron ore sintering were studied systematically via different measures for the first time,such as TGA, infrared spectral analysis,XRD analysis, SEM analysis, gas chromatography and online analysis.
     The formation mechanism of SO_2 during iron ore sintering was fully studied, the results show that sulphur oxides (mainly SO_2) in the flue gas originate from the pyrogenation of sulphur compounds in the iron ore and coke breeze at high temperatures.The pyrogenation of sulphur and the rate of desulfurization were mainly affected by these factors, such as temperature, time, oxygen concentration and coke particle size. With an increase in desulfurization,the remnants sulfur contents of sinter are further reduced improving the quality of pig iron. However, the emissions and concentration of SO_2 in the flue gas increase significantly. And the desulfurization augments rapidly along with the temperature, calefaction time,oxygen concentration and a decrease in the coke particle size. However,too higher temperature would deteriorate the desulfurization and lead to a lower emission of SO_2. In this paper, it is put forward means that the emission of SO_2 possesses the characteristics of self-sustaining which means the emission of SO_2 rises to a peak value rapidly just before the sintering end point and declines dramatically no matter how parameters of sinter technology and the properties of raw material change. It is also revealed that the emission of SO_2 is controlled by the transfering pattern of moisture in sintering bed,and also controlled by the mechanism of pyrogenation formation-adsorption-desorption of SO_2. The adsorption mechanism and kinetics of sinter bed adsorbing SO_2 were studied by adopting dynamic methods.It is shown that the relationship betweenadsorptive rate 1/C_o dA/dt and adsorption capacity A agrees linely with the first order reaction kinetics equation at low adsorption capacity. Furthermore, at the initial stages of adsorbing, the multiphase reaction of blends absorbing SO_2 is enhanced by an increase in the basicity of blends, with CaO originating from quicklime better than limestone, the moisture of blends and the concentration of SO_2 in the flue gas, and decrease in the average particle size of blends, raising. With the adsorption capacity increasing sequentially, the relationship between adsorptive rate and adsorption capacity would obey zero order reaction kinetics equation, with the adsorptive rate at steady state.During the transfering of SO_2 in sinter bed, there occur important reactions,such as the oxidization of CaSO_3 and thermal decomposition of CaSO_4 at high temperatures, which dominates the self-sustaining characteristics of the emission of SO_2. Based on the theoretical research,an emission model describing the pyrogenation formation-adsorption-desorption reactions of SO_2 in sintering bed was founded innovatively, and a new technology of sectional desulphurization of flue gas was developed triumphantly. When the limestone-gypsum wet flue gas desulfurization technology used in a sinter plant ,compared with conventional desulphurization tecnology, the new technology of sectional desulphurization can reduce the volume of flue gas by about 40% to be treated, resulting in the lower consumption of absorbing solution, an increase in desulfurization by about 2.4%, Moreover the investment of waste gas treatment facilities and operational costs can be significantly decreased.
     The results of online measurement of sinter flue gas showed that NO_x emitting from sintering flue gas originates primarily from the combustion of gas fuel during ignition and solid fuel in sintering bed. Fuel NO_x is the main resource while prompt-NO_x and thermal-NO_x are inferior. Furthermore, NO dominates and NO_2 only amounts to several ppm among NO_x. Compared with the emission of SO_2 during sintering, the emission of NO_x is quite different. From the finish of ignition to the end of sintering, the concentration of NO_x in the flue gas always maintaines at a high level.The amount of NO_x generated was affected by some factors, such as the fuel-N content, the presence form of nitrogen, the particle size of fuel, the oxygen content in the air,the material composition of sinter blends.It is shown that an increaseing in basicity of sinter and sinter beds height are conducive to reducing the emission of NO_x in flue gas.It is inferred that calcium ferrite(CF) forming during sintering catalyzes the reduction of NO_x.Based on the characteristics of iron ore sintering,and using the theories of crystal structure, activation energy, the thermo-dynamic and kinetics of catalytic reduction, the mechanism of calcium ferrite catalyzing NO_x reduction was studied. It is demonstrated that calcium ferrite catalyzes the reduction of NO by CO, and the catalytic capacity of calcium ferrite depends on their molecular structure.The order of catalytic capacity from strong to weak is as following: CF> C2F>2CF. Compared with the reduction of NO by CO with absence of CF, the activation energy is declined from 246.68 kJ /mol to 138.80kJ /mol when CF occurs during the reduction of NO by CO. The mechanism of calcium ferrite catalyzing NO_x reduction is proven for the first time. During the reaction course, calcium ferrite is reduced by CO and oxidized by NO. The mechanism of calcium ferrite catalysing NO_x reduction also obey the theoretics of adsorption-activation where NO molecule adsorbs, decomposes,surfactant species restructures and product desorbs at activity site of calcium ferrite catalyst.The function of calcium ferrite catalysing NO_x reduction is defined as self-catalysis in sintering system,where CF reduces the activation energy and accelerate the reaction rate. It is the self-catalysis of calcium ferrite help to abate NO_x emission by improving the calcium ferrite distribution on the surface of sinter bed and increasing the calcium ferrite proportion in sinter.Therefore, a new technology of separate granulation and heterogeneous sintering (SGHS)was put forward, which can develop calcium ferrite firstly and modify the calcium ferrite distribution on the surface of sinter. Compared with the traditional sintering process, the emission of NO is nearly reduced by 44% ,and sinter quality is also improved by the new SGHS process.
     On the basis of study of the combustion of solid fuel in sintering process and using the theories of catalytic combustion and combustion chemistry, an energy-saving additive with multiple functions, such as improving combustion and reducing fusion temperature, was developed successfiilly,which improves the quality and productivity of sinter, decreases solid fuel consumption, and lower the emissions of CO, CO_2 and NO_x significantly. Due to an enhancement in the oxidizing atmosphere of sinter beds, the desulfurization of sinter blends is strengthened, with a higher peak value of SO_2 concentration occurring in the flue gas. However, the characteristics of self-sustaining is not affected. It is shown that action mechanism of the additive catalysing coke combustion is by activating the crystal structure of fixed carbon and forming reaction centers, the activation energy is decreased and the oxygen transfer is promoted in the combustion process.When coke is soaked by the solution of sintering energy-saving additive,the gasification activation energy of coke was decreased from 25.8kJ/mol to 18.9kJ/mol, combustion efficiency was increased from 80.2% to 89.8%,and combustion rate was increased from 2.25%/min to 3.15% /min. The additive also contains flux which help to induce liquid formation, such as calcium ferrite which has low melting point.Therefore, the formation rate of binding liquid was speeded at the lower sintering temperatures, and the volume of bond phase was also increased. Consequently, the yield and strength of sinter was enhanced largely. The industrial tests further demonstrated that the quality and productivity of sinter was improved dramatically after using sinter energy-saving additive.The unit productivity of sinter was increased by 15.72%, the tumble index by 1.99%, the solid fuel consumption decreased by 4.19 kg/t_(sinter), the emissions of CO_2,CO,NO decreased by 10.53%, 35.29% and 25%, respectively .However, the average and peak concentration of SO_2 in the flue gas increased by 16.74% and 17.70%, respectively.The abatement of SO_2 emission is only achieved by desulphurizing the flue gas of sintering.
     Through the study of emissions of SO_2, NO_x, CO_x during iron ore sintering process, an integrated scheme of abatement emission of sintering flue gas was designed,which consists of the new technology of sectional desulphurization of the flue gas , sinter energy-saving additive and heat recovery from sintering and sinter cooling. Compared with the traditional FGD process, it is expected that the volume of flue gas can be reduced by 40%,and the investment of FGD equipment and operation costs can also be cut down by 40%. Recycling of part of the waste gas from the sinter strand can significantly save solid fuel consumption and bring direct economic profits of RMB9.36 million for 450m~2 sinter strand.
引文
[1]徐矩良.我国炼铁系统能耗现状和今后节能的途径[J].冶金管理,2002(12):42-44.
    
    [2]张夏,郭占成.我国钢铁工业能耗与大气污染物排放量[J].钢铁,2000,35(1):63-68.
    
    [3]宋伟民.钢铁联合企业控制二氧化硫污染的探讨[J].钢铁,1997,34(7):66-69.
    
    [4]杨飏.环境保护专论选[M].北京:冶金工业出版社,1999:13.
    
    [5]苏天森.中国钢铁工业的清洁生产[J].炼钢,2003,19(2):1-5.
    
    [6]马广大.大气污染控制工程[M].北京:中国环境科学出版社,1985.
    
    [7] Kazmann.R.G.Global Warming, an Engineering Appraisal[J].Mining Engineering, 1992 ,44(2): 144-146.
    
    [8]国家环保总局.环境保护[M].北京:科学出版社,1999:3-9.
    
    [9]中国环境科学学会.脱硫技术[M].北京:中国环境科学出版社,1995.
    
    [10]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,1989.
    
    [11]刘天齐,林肇信,刘逸农.环境保护概论[M].北京:高等教育出版社,1988.
    
    [12]北京市环境保护科学研究所.大气污染防治手册[M].上海:上海科学技术出版社, 1987.
    
    [13]国家环境保护总局.2003年中国环境状况公报.2004,6.
    
    [14]国家环境保护总局.2004年中国环境状况公报.2005,6.
    
    [15]杨飏.二氧化硫减排技术与烟气脱硫工程[M].北京:冶金工业出版社,2004:11.
    
    [16]《三废治理与利用》编委会.三废治理与利用[M].北京:冶金工业出版社,1994:308 -311.
    
    [17] Cook.P.J,Hooper.B.CO_2 Geosequestration-The Challenges of Capturing and Storing CO_2 From the Process Industries.in:CSIRO,eds.The 2nd International Con- ference on the Sustainable Processing of Minerals Green Processing.Fremantle,Western Australia: The Australasian Institute of Mining and Metallurgy,2004:15-19.
    
    [18]童钧耕,席时桐.上海地区经济能源与温室效应[J].城市环境与城市生态,1996,2(2): 30-33.
    
    [19]陈新强,郑国光等.可持续发展中的若干气候问题[M].北京:气候出版社,2002:46- 49.
    
    [20] Stainforth.D.A, Aina.T, Christensen.C,et.al.Uncertainty in Predictions of the Climate Response to Rising Levels of Greenhouse Gases[J].Nature,2005,(433):403-406.
    
    [21]韩才元,徐明厚.煤粉燃烧[M].北京:科学出版社,2001.
    
    [22]胡怀生,郑旭东,胡浩斌.氮氧化物对环境污染的分析与防治措施[J].甘肃高师学??报,2003,8(5):38~39.
    
    [23]赵由才.环境工程化学[M].北京:化学工业出版社,2003:529-530.
    
    [24]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,1990:15-107.
    
    [25]刘静.化学与环境保护[M].成都:西南交大出版社,2004:119.
    
    [26]冯玲,杨景玲,蔡树中.烟气脱硫技术的发展及应用现状[J].环境工程,1997,15(2):19 -24.
    
    [27]陈文颖,吴宗鑫.未来中国的SO_2和CO_2排放控制对策[J].清华大学学报(自然科学 版),2002,42(10):1320-1323.
    
    [28]黄军左,顾立军,刘宝生,等.脱除工业姻道气中SO_x和NO_x的技术[J].现代化工,2001, 21(12):44-47.
    
    [29]田景春.浅论温室效应[J].岩相古地理,1996,16(5):54-58.
    
    [30]张寿荣,毕学工.我国钢铁工业CO_2排放状况及减排的途径.见:中国金属学会,编. 2005中国钢铁年会论文集.北京:冶金工业出版社,2005:655-661.
    
    [31]张少军,杨海波,窦忠强,等.对中国钢铁企业在入世后面临的现状和发展取向的思 考[J].河北冶金,2003(2):3-7.
    
    [32]无暇.钢铁业:调整也别搞重复[N].中国经济导报,2006,2,8(1331).
    
    [33]祁国琴.钢铁工业清洁生产[J].矿山环保,2001,6:3-10.
    
    [34]上海科学技术情报研究所.国内外钢铁企业能耗及环保指标比较研究.上海情报服 务平台,2006,9,20.
    
    [35] Price. L, SintonJ, Worrell.E, et.al. Energy Use and Carbon Dioxide Emissions from Steel Production in China[J]. Energy, 2002,(27 ):429-446.
    
    [36]周和敏,聂柞仁,左铁镛.钢铁生产流程CO_2编目分析评价[J].广州环境科学,2002, 17(1):21-24.
    
    [37]BIRAT Jean-Pierre.后京都(议定书)时代的钢铁工业与CO_2排放问题.见:中国 金属学会,编.2005中国钢铁年会论文集.北京:冶金工业出版社,2005:49-57.
    
    [38]殷瑞钰.绿色制造与钢铁工业-钢铁工业的绿色化问题[J].科技和产业,2003,3(9): 25-31.
    
    [39]蔡九菊,赫冀成,陆钟武,等.过去20年及今后5年中我国钢铁工业节能与能耗剖析 [J].钢铁,2002,37(11):68-73.
    
    [40]中国钢铁工业协会科技环保部.中国钢铁工业能耗现状与节能前景[J].冶金管理, 2004,9:15-19.
    
    [41]王维兴.钢铁企业工序能耗和节能潜力[J].冶金管理,2005,6:32-34.
    
    [42]王建.中国必须建设新工业化社会[DB/CD].中国权威经济论文库.北京:中经网数 据有限公司,2006.
    
    [43]李庭寿,苏笑鹏.烧结烟气脱硫技术.见:中国金属学会,编.2005中国钢铁年会论文 集.北京:冶金工业出版社,2005.484-487.
    
    [44] Dawson.P.R.Recent Developments in Iron Ore Sintering[J].Ironmaking and Steel making,1993,20(2):135-143.
    
    [45]唐先觉.我国烧结能耗状况及节能途径[J].烧结球团,1998,23(2):1-6.
    
    [46]金永龙,张军红,徐南平,等.烧结工艺综合节能与环保的现状与意义[J].冶金能源, 2002,21(4):12-16.
    
    [47]张军红,徐南平,谢安国.烧结过程降低固体燃耗途径的探讨[J].冶金能源,2002,21 (1):25-27.
    
    [48]李寿宝,潘宝巨,任志国.降低烧结固体燃耗的理论分析及工艺技术[J].钢铁,1997, 32(2):61-64.
    
    [49]胡长庆,张春霞.烧结工艺清洁生态化技术[J].中国稀土学报,2004,22:588-591.
    
    [50]陈冲宝.我国烧结能耗现状与节能对策[J].烧结球团,1997,22(5):11-15.
    
    [51] Ball.D.F. Agglomeration of Iron Ores[M].London:Heinemann Educational Books Limited,1972:132.
    
    [52]李桂田.中日钢铁工业节能历程之比较[J].中国能源,1997,(10):22-29.
    
    [53]朱德庆,姜涛,祝宝军.烧结过程焦粉催化燃烧与节能[J].钢铁,2000,35(增刊):215- 220.
    
    [54]陈仕红.厚料层烧结与能耗的关系[J].四川冶金,1999,(2):40-41.
    
    [55]张寿荣.炼铁系统节能-我国钢铁工业21世纪技术进步的重点[J].钢铁,2005,40 (5):1-4.
    
    [56]Hofstadle.K.烧结与电炉烟气的二恶英脱除方案[J].世界钢铁,2004,(4):45-49.
    
    [57] Anderson.David .R, Raymond Fisher.Sources of Dioxins in the United Kingdom:the Steel Industry and other Sources[J]. Chemosphere, 2002,(46): 371-381.
    
    [58] Environmental Protection Agency (UBA). Comments on the Draft 'Dutch Notes on Best Available Techniques for Pollution Prevention and Control in the Production of Primary Iron and Steel'[R].Berlin: Environmental Protection Agency of Germany, 1997.
    
    [59]郝继锋,汪莉,宋存义.钢铁厂烧结烟气脱硫技术的探讨[J].太原理工大学学报, 2005,36(4):491-494.
    
    [60]汤静芳,黄新发.烧结厂大气污染控制技术的应用及发展[J].武钢技术,2002,40(5) :50-53.
    
    [61]曲英,蔡科开.钢铁工业环境意识的评论[J].中国冶金,2002,(4):22-25.
    
    [62] Environmental Resources Management.Integrated Pollution Prevention and Control??(IPPC)Best Available Techniques Reference Document on the Production of Iron andSteel[R]. Brussels:EUROPEAN COMMISSION,2001.
    
    [63] Environmental Resources Management.Technical Note on Best Available Techniquesto Reduce Emissions of Pollutants into the Air from Sinter Plants, Pelletisation and Blast Furnaces[R]. Brussels:EUROPEAN COMMISSION, 1995.
    
    [64]李光强,朱诚意.钢铁冶金的环保与节能[M].北京:冶金工业出版社,2006.
    
    [65]伍九畴.武钢烧结厂第四烧结车间工程烧结烟气治理情况介绍[J].冶金环境保护, 2003,(5):17-20.
    
    [66]王剑涛.鞍钢烧结烟气SO_2测试结果分析[J].矿山环保,2002,(5):11-13.
    
    [67]谭志东,唐涌,汪建川.攀钢烧结机头烟气脱硫技术方案的建议[J].工业安全与防 尘,2000,(8):15-17.
    
    [68]杨飏.清洁生产与宝钢的SO_2削减方略[J].宝钢技术,1997,(6):28-32.
    
    [69]沈晓林.宝钢环境保护[J].中国冶金,2005,15(6):39-42.
    
    [70]王力,刘泽常.煤的燃前脱硫工艺[M].北京:煤炭工业出版社,1996.
    
    [71]陈文敏,李文华,徐振刚.洁净煤技术基础[M].北京:煤炭工业出版社,1997.
    
    [72]K.H施密特(著),潘德慧,董炜波(译).煤石油天然气化学和工艺[M].北京:化学工 业出版社,1992.
    
    [73]孙丽梅,单忠健.国内外煤炭燃前脱硫工艺的研究进展[J].洁净煤技术,2005,11(1): 55-58.
    
    [74]沈晓林.宝钢工业污染防治对策、实践与展望.见:中国金属学会,编.2003中国钢铁 年会论文集.北京:冶金工业出版社,2003.817-824.
    
    [75]冶金工业部长沙黑色冶金矿山设计研究院.烧结设计手册[M].北京:冶金工业出版 社,1990:271-274.
    
    [76]李乐丰.氨法烟气脱硫工艺及应用时要注意的问题[J].山东电力技术,1999,(6): 45-49.
    
    [77] Information Centre for Environmental Licensing.Dutch Notes on BAT for the Productionof Primary Iron and Steel[R]. Berlin:the Ministry of Housing,Spatial Planning and the Environment,Directorate for Air and Energy,Department of Industry, 1997.
    
    [78]郝继锋,宋存义,钱大益.烧结烟气脱硫技术基本工艺参数的试验研究[J].烧结球团 ,2006,31(3):1-3.
    
    [79]王旭辉,刘义梅.石钢烧结机机头烟气脱硫工程方案的论证[J].烧结球团,2006,31 (3):4-7.
    
    [80]张承中,党筱凤,严秉勤.循环流化床烧结烟气脱硫热态模拟试验研究[J].西安建筑 科技大学学报,1997.29(3):349-354.
    
    [81]刘立忠,张承中,黄学敏,等.三种钙基脱硫剂在CFBA烧结烟气脱硫中的对比试验研 究[J].环境污染与防治,2004,26(6):418-420.
    
    [82]杨飏.宝钢FGD工艺抉择之我见[J].宝钢技术,1999,(1):54-59.
    
    [83]亢燕铭,李世龙.管道内烟气喷雾脱硫的研究[J].环境工程,2001,19(1):31-33.
    
    [84]刘精今,陈竹新.碱性工业废水在锅炉烟气脱硫除尘中的应用[J].环境工程,1996, 14(2):24-27.
    
    [85]张同文.钢铁联合企业二氧化硫减排与控制[J].工业安全与环保,2004,30(7):37- 38.
    
    [86]杨怀东.烧结烟气脱硫技术探讨[J].工业安全与环保,2004,32(3):12-13.
    
    [87]Hofstadler.K,Murauer.F,Steiner.D,et.al.WETFINE-烧结厂和球团厂的废气净化 新技术[J].钢铁,2002,37(1):70-72.
    
    [88]赵玮.烧结烟气净化系统的原理分析及改进[J].包钢科技,2002,28(3):66-68.
    
    [89]Romelot.P.铁矿石烧结烟气中和的试验研究[J].武钢技术,1998,36(4):3-6.
    
    [90] Kawamura.K. On the Removal of NO_x and SO_2 in Exhaust Gas from the Sintering Machine by Eletron Beam Irradiation[J]. Ra-diat.Phys.Chem,1980,16:133-138.
    
    [91] SenichiMasuda, HideyukiNakao. Control of NOx by Positive and Negative Pulsed Corona Discharges[J].IEEEran sactionson industry Applications, 1990,26(2):374-383.
    
    [92]宣小平,姚强,岳长涛.选择性催化还原法脱硝研究进展[J].煤炭转化,2002,25(3): 26-30.
    
    [93]郭绍义,韩利华,梁英华.烟气脱除氮氧化物技术概况[J].辽宁化工,2006,35(2):88 -91.
    
    [94] Krishnan.A.T, Boehman.A.L.Selective Catalytic Reduction of Nitric Oxide with Ammoniaat Low Temperature. Applied Catalysis B: Environmental, 1998, 18: 189-198.
    
    [95] Hodjati .S, Bernhardt .P, Petit .C, et .al. Removal of NO_x: Part I Sorption / DesorptionProcesseson BariumAluminate [J].Applied CatalysisB:Environmental, 1998, (19):209-219.
    
    [96] Philippe.O, Thevenin.P,Govind Menon,et.al.Catalytic Processes to Convert Methane:Partial or Total Oxidation Part II Catalytic Total Oxidation of Methane [J].CATTECH, 2003,7(1):10-22.
    
    [97] Bosch.H, Janssen .F.J. Catalytic Reduction of Nitrogen Oxides:A Review on the Fundamentalsand Techno logy[J]. Catalysis Today, 1998, (2): 369.
    
    [98] Zhenping ZHU, Zhenyu LIU, Shoujun LIU, et al. Adsorption and Reduction of NO??Over Activated Coke at Low Temperature[J]. Fuel, 2000,79: 651 -658.
    
    [99] Gerasimov.G.Y, Gerasimov.T.S, Makarov.V.N,et.al.Homogeneous and HeterogeneousRadiation Induced NO and SO_2 Removal from Power Plants Flue Gases Modeling Study[J].Radiat.Phys.Chem, 1996,48(6):763 -769.
    
    [100]谭志东,陈建中.烧结烟气应用电子束脱硫脱硝技术之利弊[J].工业安全与环保 ,2005,31(10):1-3.
    
    [101]胡国生,唐涌.攀钢烧结烟气脱硫技术要求研究[J].冶金能源,2002,21(4):49-52.
    
    [102]王德荣,林彦奇,赵蔚,等.利用焦炭吸附进行燃煤烟气脱硫脱氮技术的研究[J]. 环境保护科学,2002,28(109):4-6.
    
    [103]吴铿,王欣,窦力威.钢铁工业中CO_2排放和降低的措施[J].钢铁,2001,36(11):67.
    
    [104] Dolf Gielen,Yuichi Moriguchi.CO_2 in the Iron and Steel Industry: an Analysis ofJapanese Emission Reduction Potentials[J]. Energy Policy ,2002,(30):849-863.
    
    [105] Daqiang CANG, YunzeGUAN, Hao BAI,et.al. Consideration and Practice Strategyfor Minimizing CO_2 of Science,Technology and Emission in Chinese Steel Industry[J].ISIJ International, 2002,42 (Supplement):S1-S4.
    
    [106] Lee.L.O, Shin .M.K, Cho.M,et.al.Energy and Pollutants Reducing in New IronmakingProcesses Technologies at Posco[J]. ISIJ International, 2002,42(Supplement):S33-S37.
    
    [107] Wert.Joachim,Otto. Jurgen. Environmental protection in iron ore sintering by wastegas recirculation[J]. MPT International, 1995,(4): 120-126.
    
    [108] Gudenau.H.W, Schlebusch.D, Cappel .F, et.al. EOS-Emission-Optimised Sintering:A New Technique for the Improvement of Environmental Protection in theSintering of Iron Ores.Proceedings Umwelttage der Fakultaet fuer Bergbau, Aachen:Huettenwesen und Geowissenschaften derRWTH, 1992.26-27.
    
    [109] M.te Lindert, A.L.J.van der Panne.Demonstation.Plant for Sintering with ReducedVolume of Flue Gases[R]. 7215/AA/602, ECSC Steel, 1997.
    
    [110] Robert .M, Mary.B,Wormer.Van. Cleaning Up NO_x Emissions[J]. Chem.Eng(N.Y),1990,97(9): 130.
    
    [111]沈学静,王海舟.固定源NO_x的排放控制及DeNO_x催化剂的应用[J].钢铁,2000,35(9) :68-72.
    
    [112]刘丽珍.浓淡燃烧低NO_x燃烧器研制的探讨[J].煤气与热力,2000,20(5):349- 359.
    
    [113]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002.
    
    [114]高春梅.低NO_x燃烧器的研制[J].煤气与热力,2002,22(1):23-27.
    
    [115]彭好义,蒋绍坚,周孑民.高温空气燃烧技术的开发应用、技术优势及其展望[J]. 工业加热,2004,33(3):11-15.
    
    [116]邴国强,孙艳萍.蓄热式燃烧技术的工业应用[J].化学工程师,2006,(4):62-64.
    
    [117] Gupta.A.K, Hasegawa.T.High Temperature Air Combustion:Flame Characteristics, Challenges and Opportunities [A] .In: T.C.Hsiao,Yoshikawa Kunio, eds.Proceedings of Beijing Symposium on High Temperature Air Combustion[C]. Beijing: The Federation of Engineering Societies of China Association for Science and Technology, 1999.10-28.
    
    [118]蒋绍坚,艾元方,彭好义.高温低氧燃烧技术及其高效低污染特性分析[J].中南工 业大学学报,2000,31(4):311-313.
    
    [119] Chin.LU.MO,Cher.SON.TEO, Hamilton.lAN,et.al.Admixing Hydrocarbons in Raw Mix to Reduce NO_x Emission in Iron Ore Sintering Process[J].ISIJ International, 1997,37(4):350-357.
    
    [120] MORIOKA. Koichi, INABA.Shinichi, SHIMIZU.Masakata,et.al.Primary Applicationof the "In-Bed-DeNO_x"Process Using Ca-Fe Oxides in Iron Ore Sintering Machines[J]. ISIJ International,2000,40(3):280-285.
    
    [121] NAKANO. Masanori, YAMAKAWA.Takuji, HAYAKAWA. NaOki,et.al.Effects of Metalic Iron Bearing Resources on Iron Ore Sintering[J].ISIJ International, 1998,38 (1):16-22.
    
    [122] Eiki Kasai.Takeshi Sugiyama,Yasuo Omori.Suppression of Nitrogen Oxides Formationfrom Iron Ore Sintering Process Using Iron-Bearing Coke [A].In:ISIJ,eds.the First International Congress of Science and Technology of Ironmaking [C]. Sendai:ISIJ, 1994:665- 670.
    
    [123]Kouichi Morioka,Shoji Shirouclli,Takeshi Sugiyama.采用铁酸钙的烧结料层内脱 NO_x法[A].见:周取定,张济中,张志明,等编.第六届国际造块会议论文选[C].北京: 中国金属学会,1994:347-359.
    
    [124]李寿宝,任志国.日本使用离心转动型造球机对焦粉制粒的研究[J].烧结球团, 1996,21(4):33-38.
    
    [125] Jin Luh Mou.In-Plant De-SOx,De-NOx in Iron Ore Sintering Process[J]. Kuangye, 2000,44 (2): 41-48.
    
    [126]毕学工,廖继勇,熊玮,等.降低铁矿石烧结过程中SO_2排放量的初步研究[J].武汉 科技大学学报,2005,(2):109-111.
    
    [127]秦姣平,朱彤,李加禄.烧结综合利用可回收资源的生产实践[J].宝钢技术,2002, (3):5-8.
    
    [128]卡佩尔.F.铁矿粉烧结[M].杨永宜译.北京:冶金工业出版杜,1979.
    
    [129]周取定,孔令坛.铁矿石造块理论及工艺[M].北京:冶金工业出版社,1989:52-55.
    
    [130]杨旭辉.烧结使用活性石灰的研究及实践[J].烧结球团,1985,(6):19-22.
    
    [131]孙济中.关于烧结用生石灰的生产方法浅见[J].烧结球团,1985,(3):32.
    
    [132]张瑞年.浅谈烧结节能降耗的技术途径和措施[J].烧结球团,2003,28(3):18-20.
    
    [133]A.Das,李益慎.比莱钢厂采用蒸汽预热提高烧结机生产率[J].武钢技术,1990,(4): 1-4.
    
    [134]朱德庆.梅山烧结矿冷却废气热风烧结工艺的研究[J].烧结球团,1997,22(5):13- 16.
    
    [135]杜华云,译.烧结生产二次能源利用的研究及研究成果.国外钢铁节能新技术[R]: 164-165.
    
    [136]沙永志,曹军,王风岐,等.我国炼铁节能与环保[J].钢铁,2000,35(7):62-66.
    
    [137]胡冬海译.利用点火表面余热改进烧结技术工艺[J].烧结球团,1989,14(2):42.
    
    [138]戴玉山.热风烧结工艺在三(明)钢烧结生产中的应用[A].见:烧结球团信息网, 编.2004年度全国烧结球团技术交流年会论文集[C].南宁,2004:121-123.
    
    [139]Petcra.K.H.烧结混合料组分特别是焦粉粒度对制粒特性及其对烧结过程的影响 [A].见:周取定,张济中,张志明,等编.第五届国际造块会议论文集[C].北京:冶金 工业出版杜,1991:66.
    
    [140]郭奠球.西德曼内斯曼公司胡金根烧结厂简介[J].烧结球团,1984,(6):66.
    
    [141]石川安士.烧结工艺的最新进展[A].见:周取定,张济中,张志明,等编.第二届国际 造块会议论文集[C].北京:冶金工业出版杜,1980:18.
    
    [142]安田本雄,廖国瑞.川崎千叶厂4号烧结系统的最低能耗烧结生产[J].武钢技术, 1989,(10):16-20.
    
    [143]李益慎.国外烧结技术发展的动向[J].武钢技术,1989,(8):8-15.
    
    [144] Trisc.A.Coke Combustion Efficiency in Sintering [J].Meralurgija (Zagreb), 2001,40 ,(3):143-146.
    
    [145]王宏斌,张咏梅.降低烧结工序能耗的措施[J].矿冶工程,1998,18(9):147-150.
    
    [146]郑炷祈.宝钢1号烧结机降低固体燃耗的实践[J].烧结球团,1997,(3):13.
    
    [147]刘兰英.降低烧结厂固体燃耗的措施[J].矿冶工程,1998,18(9):143-146.
    
    [148]贺先新,翁得明.烧结固体燃料分加的研究[J].武钢技术,2002,40(4):5-8.
    
    [149]冯娟.首钢烧结节能的实践[J].烧结球团,2004,29(1):53-54.
    
    [150]朱德庆,潘建,李建,等.分流制粒降低高铁低硅烧结固体燃耗的研究[A].见:烧结 球团信息网,编.2004年度全国烧结球团技术交流年会论文集[C].南 宁,2004:19-24.
    
    [151]祝宝军.烧结节能添加剂的开发及机理研究:[硕士学位论文].长沙:中南工业大 学,1998:53-54.
    
    [152]傅志华,宋国良,张全.新型节能添加剂在烧结中的应用研究[J].燃料化学学报, 2000,28(6):573-576.
    
    [153]游想琴,王世玉,李玉银,等.邯钢二烧添加催化助燃剂工业试验[A].见:中国金属 学会,编.2003年中国钢铁年会论文集[C].北京:冶金工业出版社,2003:320.
    
    [154]诸荣孙,鲁逢霖,徐天龙.添加催化助燃剂降低烧结焦耗的工业试验[J].烧结球团, 2004,29(1):15-17.
    
    [155]张同山.高料层低温烧结技术在柳钢烧结机上的开发与应用[J].矿冶工程,1998, 18(1)(增刊):43-46.
    
    [156]贺先新.浅析武钢厚料层烧结的发展[J].烧结球团,2004,29(3):1-4.
    
    [157]冯二莲,侯慧军,李强.700mm料层烧结生产及发展[A].见:中国金属学会,编.2003 年中国钢铁年会论文集[C].北京:冶金工业出版社,2003:316-319.
    
    [158]宋国良,傅志华.烧结环保现状分析与对策[J].冶金环境保护,2000,(3):77.
    
    [159]王志花,王树同,孔令坛.球团烧结法成矿过程的试验研究[J].钢铁,1994,29(8):1- 7.
    
    [160]李余增.热分析[M].北京:清华大学出版社,1987.
    
    [161]宋鸿恩.热天平[M].北京:计量出版社,1985.
    
    [162]沈兴.差热热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995.
    
    [163]李光辉.铝硅矿物的热行为及铝土矿石的热化学活化脱硅:[博士学位论文].长 沙:中南大学,2002:21-24.
    
    [164]李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.
    
    [165]Klug.H.P,Alexander.L.E,宋世雄译.X射线衍射技术(多晶和非晶质材料)[M].北 京:冶金工业出版社,1986.
    
    [166]张振儒.近代岩矿测试新技术[M].长沙:中南工业大学出版社,1987.
    
    [167]廖乾初,蓝芬兰.扫描电镜原理及应用技术[M].北京:冶金工业出版社,1990:142.
    
    [168]宁玲,文耀爱.关于烧结工艺SO_2排放量的计算[J].环境工程,2001,19(1):55-56.
    
    [169]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996:88-89.
    
    [170]陈铁军.现代烧结理论与实践[M].武汉:武汉科技大学出版社,2002.
    
    [171]周诗建,齐庆杰,郝宇,等.煤燃烧过程中硫析出影响因素的正交实验研究[J].辽宁 工程技术大学学报,2006,25(3):321-324.
    
    [172]郑瑛,史学锋,周英彪,等.煤燃烧过程中硫分析出规律的研究进展[J].煤炭转化, 1998,21(1):36-40.
    
    [173]任强,刘建忠,周俊虎,等.石煤燃烧硫析出动态特性[J].煤炭学报,2006,31(1):99??-103.
    
    [174]王正华,周昊,翁安心,等.不同煤种高温燃烧时NO_x和SO_2生成影响因素的实验[J]. 锅炉技术,2003,34(3):11-14.
    
    [175] Patrick.J.W.Sulfur Release from Pyrites in Relation to Coal Pyrolysis[J].Fuel,1993, 72(3):281-285.
    
    [176]王雁,郑楚光,游小清.煤燃烧过程中硫化物的生成特性研究[J].煤炭转化,2002, 25(3):43-46.
    
    [177]于洪观,刘泽常,王力,等.型煤燃烧过程中硫析出特性的研究[J].煤炭转化,1999, 22(1):53-57.
    
    [178]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996:130-147.
    
    [179]王应时,范维澄,周力行,等.燃烧过程的数值计算[M].北京:科学出版社,1986.
    
    [180]张健,万祥,杨建玲,等.关于改进液化气组成分析方法的探讨[J].河南石油,2000, (3):40-42.
    
    [181]刘庆玲,徐绍辉.地下环境中胶体促使下的污染物运移研究进展[J].土壤,2005, 37(2):129-135.
    
    [182]林玉锁,薛家骅.用一级动力学微分方程讨论土壤吸附锌的特性[J].南京农业大 学学报,1990,13(4):137-141.
    
    [183]杨志生,郭琦.动态法研究苯酚在土壤中吸附的动力学[J].农业环境科学学报, 2003,22(4):477-479.
    
    [184]杨志生,孙宇,郭琦,等.动态法研究苯酚在饱水细砂土中的吸附[J].离子交换与吸 附,1997,13(4):416-420.
    
    [185]李世丰,张永光.表面化学[M].长沙:中南工业大学出版社,1989:163-226.
    
    [186]曾庆衡.物理化学[M].长沙:中南工业大学出版社,1991:290-326.
    
    [187]时黎明,徐旭常.蒸气活化钙基吸收剂用于干法烟气脱硫的实验研究[J].工程热 物理学报,1999,20(2):242-246.
    
    [188]王世昌,徐旭常,姚强.水蒸汽对CaO颗粒脱硫反应催化作用的实验研究[J].中国 电机工程学报,2004,24(9):252-256.
    
    [189]杜清枝,杨继舜.物理化学[M].重庆:重庆大学出版社,1997.
    
    [190]武汉大学编.分析化学实验[M].北京:高等教育出版社,1991.
    
    [191]刘预知.无机物质理化性质及重要反应方程式手册[M].成都:成都科技大学出版 社,1993.
    
    [192]王玉慧,钱枫.喷钙脱硫渣中硫酸盐的稳定性研究[J].北京轻工业学院学报,2001 ,19(2):32-35.
    
    [193]曹慧芳,钱枫,张溱芳.钙基脱硫灰在酸性条件下的稳定性研究[J].环境污染与防??治,2002,24(1):21-22.
    
    [194]朱德庆,潘建,何奥平,等.铁矿烧结工艺中温室气体CO_2的排放规律[J].中南大学 学报(自然科学版),2005,36(6):944-948.
    
    [195]高洪阁,李白英,刘泽常,等.钙基固硫剂的动力学和热力学机理及其影响固硫产 物二次分解的因素[J].山东科技大学学报(自然科学版),2002,21(1):99-101.
    
    [196] Gruncharov.IV, Pelovski. Y.Effect of Some Additive on the ThermoChemical Decompositionof Phosphogypsum[J].Gypsum&Lime,1986,(205):385-388.
    
    [197] Lian.Z,TsushiSato.A,Shihiko.Ninomiya.YO,et.al. Desulfurization during Combustionof High-sulfur Coals Added with Sulfur Capture Sorbents[J].Fuel,2003,82:255-266.
    
    [198]武建军,杨晓东,韩甲业,等.添加剂抑制CaSO_4高温分解的TG-FTIR研究-复合固硫 剂[J].中国矿业大学学报,2005,34(5):660-663.
    
    [199]梅林,李金洪,王建春.氧化物及复合添加剂对硫酸钙高温稳定性的影响[J].岩 石矿物学杂志,2005,24(6):587-590.
    
    [200] Marica.J, Munoz.Gullena.M.C,Macias-Angel Linares-Solano.CaO Dispersed on Carbon as An SO_2 Sorbent [J].Fuel,1997,76(6):527-533.
    
    [201]张丽.数点法求不规则图形面积初步探讨[J].东北水利水电,2004,22(238):8.
    
    [202]王永皎,张引,张三元.基于图像处理的植物叶面积测量方法[J].计算机工程, 2006,32(8):210-212.
    
    [203]贾爱莲,张淑娟.基于Matlab的植物叶面积数字摄影图像处理[J].山西农业大学 学报,2006,26(1):20-26.
    
    [204]徐贵力,毛罕平,胡永光.基于计算机视觉技术参考物法测量叶片面积[J].农业工 程学报,2002,18(1):154-157.
    
    [205]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社,2001.
    
    [206]黄波,王育滨.石灰石/石膏湿法烟气脱硫的影响因素及调试运行注意事项[J]. 东方锅炉,2005,(3):9-16.
    
    [207]韩琪,李忠华.石灰石/石膏湿法烟气脱硫的化学过程研究[J].电力环境保护, 2002,18(1):1-3.
    
    [208]丁承刚.湿法烟气脱硫关键参数简析[J].国际电力,2002,6(1):52-55.
    
    [209]刘志杰,王喜魁.湿式石灰石石膏法脱硫技术的影响因素及其回归分析[J].沈阳 工程学院学报(自然科学版),2005,1(4):25-27.
    
    [210]庄沪丰,杨晨.135MW机组湿法烟气脱硫实践[J].浙江电力,2004,(4):28-30.
    
    [211]胡满银,刘松涛,刘炳伟,等.湿式脱硫装置脱硫效率的回归分析[J].中国电力, 2004,37(7):71-73.
    
    [212]任如山.影响石灰/石灰石湿法烟气脱硫的因素分析[J].新疆环境保护,2003,25 (1):36-38.
    
    [213]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001:375-376.
    
    [214]薛云波,汪翔.影响石灰石石膏湿法烟气脱硫效率因素的分析[J].南京工程学院 学报(自然科学版),2005,3(1):44-49.
    
    [215] Marek.A, Jtowicz.WO, Jan.R,et.al.the Fate of Nitrogen Functionalities in Coal duringPyrolysis and Combustion[J].Fuel,1995,74(4):507-516.
    
    [216]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002:556-587.
    
    [217]周永刚,邹平国,赵虹.燃煤特性影响燃料N转化率试验研究[J].中国电机工程学 报,2006,26(15):63-67.
    
    [218]王正华,周昊,翁安心,等.不同煤种高温燃烧时NO_x和SO_2生成影响因素的实验[J]. 锅炉技术,2003,34(3):11-14.
    
    [219] Alejandro Molina, Eric. Eddings.G, David.W.Pershing,et.al.Nitricoxide Destruction during Coal and Char Oxidation under Pulverized-coal Combustion Conditions [J].Combustion and Flame,2003,136(3):303-312.
    
    [220]肖理生,程俊峰,曾汉才,等.分级燃烧及煤粉细度对NO_x排放浓度的影响[J].华中 理工大学学报,1998,26(11):81-84.
    
    [221]闫晓,车得福,徐通模.煤热解过程中焦炭氮变化规律的试验研究[J].西安交通大 学学报,2004,38(9):980-983.
    
    [222] Zhiheng WU, Sugimoto.Y, Kawashima.H.Effect of Demineralization and Catalyst Addition on N_2 Formation during Coal Pyrolysis and on Char Gasification [J]. Fuel, 2003,82(6):2057-2064.
    
    [223] Tsubouchi.N, Ohshima.Y, Chunbao.XU,et.al. Enhancement of N_2 Formation from the Nitrogen in Carbon and Coal by Calcium [J]. Energy and Fuels, 2001,15 (5):158-162.
    
    [224] Fenimore.C.P.Reactions of Fuel Nitrogen in Rich Flame Gases[J].Combustion and Flame, 1976,26:249-260.
    
    [225] Miller.J.A, Bowan.C.T. Mechanism An Modelling of Nitrogen Chemistry in Combustion[A] .Progress in Energy and Combustion Science[C],15:287-338.
    
    [226] DeSoete.G.G.Combustion Related Heterogeneous Reactions Involving N_2O[A].5th International Workshop on Nitrous Oxide Emissions[C],Tsukuba,Japan,1992.
    
    [227]周浩生,陆继东,周琥.燃煤流化床燃烧过程Fe及其氧化物在CO作用下对N_2O/NO转 化成N_2的机理[J].中国电机工程学报,2001,21(1):44-47.
    
    [228] Olanders.B, Strombergd. A.Fixed Bed Study of Formation and Reduction of Nitric??Oxide over Different Sand Materials at Fluidized Bed Temperatures and Concentrations [A]. 13~(th) International Conferenceon Fluidized Bed Combustion[C]. New York:ASME,1995.
    
    [229] Hayhurst.A.N, Lawrence. A.D.the Reduction of the Nitrogen Oxides NO and N_2O to Molecular Nitrogen in the Presence of Iron,Its Oxides ,and Carbon Monoxide in A Hot Fluidized Bed[J].Combustion and Flame, 1997,(110):351 -365.
    
    [230]唐贤容,王笃阳,张青岑.烧结理论与工艺[M].长沙:中南工业大学出版社,1992: 107-125.
    
    [231] Shengli.WU, Sugiyama.T, Morioka.K, et.al. Elimination Reaction of NO GasGenerated from Coke Combustion in Iron Ore Sinter Bed[J].Tetsu-to-Hagane, 1994,80 :276.
    
    [232] Chaigneau.R. Complex Calcium Ferrites in the Blast Furnace Process [M]. Delft: Delft University Press, 1994:120.
    
    [233]张克诚,朱德庆,李建,等.高铁低硅高料层烧结研究[J].烧结球团,2003,28(2):1-5.
    
    [234]郭兴敏,戴群.烧结过程铁酸钙生成及其矿物学[M].北京:冶金工业出版社,1999.
    
    [235]陈英红,刘育,李树本,等.一氧化碳催化还原消除氮氧化物的研究进展[J].分子催 化,2000,14(5):392-398.
    
    [236]徐春保,吴胜利,苍大强,等.NO-CO-CO_2-N_2体系中若干金属氧化物对NO去除反应的 催化作用[J].中国环境科学,1998,18(3):236-239.
    
    [237] #12
    
    [238] #12
    
    [239]李作骏.多相催化反应动力学基础[M].北京:北京大学出版社,1990:102-128.
    
    [240]邓景发,范康年.物理化学[M].北京:高等教育出版社,1993.
    
    [241] Chan.L. K, Sarofim.A. F, Beer.J.M. Kinetics of the NO-Carbon Reaction at FluidizedBed Combustor Conditions[J].Combust.Flame,1983,52(1):37-45.
    
    [242]赵宗彬,李保庆.煤中矿物质对NO-半焦还原反应的影响[J].燃料化学学报,2001, 29(2):129-134.
    
    [243] Shelef.M,Graham.G.W.Why Rhodium in Automotive Three Way Catalysts[J].CatalRevSci Eng,1994,36(3):433.
    
    [244] Lo rimer.D, Bella.T. Reduction of NO by CO over A Silica - Supported PlatinumCatalyst: Infrared and Kinetic Studies[J]. J Catal. 1979, 59: 223.
    
    [245] Klein.R. L, Schwartz.S, Schmidt X.D. Kinetics of the NO + CO Reaction on Clean??Pt:Steady-state Rates[J]. J Phys Chem ,1985,89:4908.
    
    [246] Liang.J, Wang.H.P, Spicer.L.D.FT-IR Study of Nitric Oxide Chemisorbed on Rh/ Al_2O_3 [J].J Phys Chem,1985,89:5840.
    
    [247]陈秀敏,涂学炎.三效催化剂作用下的NO+CO催化反应机理[J].化学通报,2002, (1):19-23.
    
    [248] Voorhoeve.R. J. H. Perovskite-Related Oxides as Oxidation-Reduction Catalysts. Burton.J.J, Garten.R.L.,eds.Advanced Materials in Catalysis[M]. New York: Academic Press, 1977,129-181.
    
    [249] Stegenger.S,Soest.R.V,Kapteijn.F,et.al.Nitric Oxide Reduction and Carbon MonoxideOxidation over Carbon-Supported Copper-Chromium Catalysts[J]. Appl Catal B, 1993,2:257.
    
    [250] Shelef.M, Otto.K, Gandhi.H. the Oxidation of CO by O_2 and by NO on Supported Chromium Oxide and Other Metal Oxide Catalysts[J].J Catal,1968,12:361.
    
    [251]周浩生,陆继东,周琥,等.一氧化碳作用下铁对一氧化氮的催化还原实验与动力 学过程分析[J].热能动力工程,2002,17(1):86-89.
    
    [252]胡小吐,金应培.铁矿石催化剂催化氧化CO性能的研究[J].环境保护科学,1994,20 (2):12-15.
    
    [253] Hayhurst.A.N, Lawrence.A.D. the Reduction of the Nitrogen Oxides NO and N_2O to Molecular Nitrogen in the Presence of Iron, Its Oxides, and Carbon Monoxide in A Hot Fluidized Bed[J].Combustion and Flame,1997,l 10:351-365.
    
    [254] HayhurstA.N, Lawrence.A.D. the Amounts of NO_x and N_2O Formed in A FluidizedBed Combustor during the Burning of Coal Volatiles and Also of Char[J]. Combustion & Flame, 1996,105: 341-357.
    
    [255] El-Geassy.A .A. Gaseous Reduction of MgO-Doped Fe_2O_3 Compacts with Carbon Monoxide at 1173-1473K [J]. ISIJ International, 1996,36(11): 1328-1337.
    
    [256] El-Geassy.A.A.Reduction of CaO and/or MgO-Doped Fe_2O_3 Compacts with CarbonMonoxide at 1173-1473K[J].ISIJ International,1996,36(11): 1344-1353.
    
    [257]刘建华,张家芸,周土平.CO及CO-H_2气体还原铁氧化物反应表观活化能的评估 [J].钢铁研究学报,2000,12(1):5-9.
    
    [258]许传智.烧结矿中铁酸钙的反射率与其组成结构、冶金性能的关系[J].武钢技 术,1998,36(1):40-43.
    
    [259] Mehandjiv.D, Panayotov.D, Khristova.M. Catalytic Reduction of NO with CO over Cu_xCo_(3-x)O_4 Spinels[J]. React Kinet Catal Lett, 1987,33(2):273.
    
    [260]葛欣,陈见强,张惠良.铁酸盐的制备、表征及其催化性能的研究[J].无机化学学??报,1999,15(6):727-731.
    
    [261]张春雷,李爽,王力军,等.铁酸盐的程序升温还原研究[J].化学物理学报,1999,12 (2):244-249.
    
    [262]张汉泉.分流制粒强化高铁低硅烧结工艺及机理研究.[硕士学位论文].长沙:中 南大学,2001:21-24.
    
    [263]周取定,孔令坛.铁矿石造块理论与工艺[M].北京:冶金工业出版社,1989.
    
    [264]曾汉才.燃烧与污染[M].武汉:华中理工大学出版社,1992.
    
    [265] Arthor.J.A.Reactions between Carbon and Oxygen[J].Trans,Faraday Soc, 1951 ,(47) :164-178.
    
    [266]韩昭沧.燃料及燃烧[M].北京:冶金工业出版社,1994.
    
    [267] Dell.M, Fung.P, Lovel.R,et.al.Green Iron Ore Sintering[A]."The 2nd International Conference on the Sustainable Processing of Minerals"Green Processing [C]. Australia,2004: 73-80.
    
    [268]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002:354-416.
    
    [269]Smoot.L.D.煤的燃烧与气化[M].北京:科学出版社,1992.
    
    [270] Mckee.D.W.Mechanisms of the Alkali Metal Catalyzed Gasification of Carbon[J]. Fuel.1983,62(2):170-175.
    
    [271] Rssenhigh.K.H.Chemistry of Coal Volatization[M].New York:Ed Elliot M A, 1981: 11-52.
    
    [272] Eiki Kasai,Shengli WU,SUGIYAMA Takeshi, et.al. Combustion Rate and NO Emissionduring Combustion of Coke Granules in Packed Beds [J].Tetsu-to-Hagane ,1992, 78(7): 1005-1009.
    
    [273]朱德庆,吴浩方.梅山烧结矿冷却废气热风烧结工艺的研究[J].烧结球团,1997,22 (5):13-16.
    
    [274]胡宾生,杜鹤桂,吕德富.热风烧结研究[J].烧结球团,1989,(6):1-7.
    
    [275]张同山,唐博.烧结矿余热回收新工艺设计及生产效果[J].烧结球团,2000,25(6): 36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700