铁矿石烧结过程热状态模型的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁矿石烧结造块是钢铁联合企业重要的一环,随着我国钢铁工业的快速发展,它的各项技术经济指标直接影响整个钢铁工业的效益。而烧结过程热状态是烧结正常进行的重要标志,烧结过程热状态分布合理时能生产出优质的烧结矿。目前国内外有关烧结过程热状态的研究仅能通过烧结终点间接的判断,或者非连续的测量和计算烧结料层的温度和热量。本研究通过连续测量烧结机台车侧板温度,开发烧结过程热状态模型系统软件,对烧结过程热状态进行实时判断与分析,在线指导烧结生产,具有重要的理论意义和实用价值。
     深入剖析了烧结过程气-固相热交换和物理化学变化,将烧结过程热状态分解为竖向、纵向和横向三维空间上的热状态分布。在不考虑横向烧结非均匀性的情况下,将烧结过程热状态描述为料层各带厚度的分布和迁移速度的变化。
     在冶金传热理论的基础上,根据烧结各带的热交换和化学反应的特点,将烧结过程分成三个阶段分别建立了控制方程,并计算了方程的关键参数。通过编制计算机程序采用隐式差分法求解出理想条件下的料层温度,并计算出各带的厚度和迁移速度,分析了它们的热状态特征。
     采用非接触式红外线温度扫描仪测量烧结机台车侧板竖向温度,应用多项式移动平滑算法对采集的原始数据进行滤波处理,利用侧板温度与料层温度对应的变化特性,建立了料层各带的划分模型,采用自动寻优的方法确定模型的带宽系数,通过多次工业试验优化了侧板温度划分的层数。针对料层各带厚度的分布和迁移速度的变化,结合机理模型计算的结果,深入研究了烧结过程热状态特性。并分析了宝钢高配比褐铁矿原料条件下的热状态特性。
     针对模型对数据的要求,设计了SQL Sever 2000平台上的数据库系统SinterDb,采用基于OPC技术的软件通讯接口,编制了高效的数据读取、写入代码,实现了数据的实时采集。同时,采用视图机制简化了数据的查询操作,提高了数据的安全性。
     采用VC程序设计语言开发了烧结过程热状态模型系统软件,结合多线程技术、Matcom与VC混合编程技术和MCI语音技术,实现了竖向热状态分析、纵向热状态分析、横向热状态分析、数据查询、参数设置、系统帮助6大系统功能。系统投入使用后,通过指导生产,烧结过程趋于合理,产质量得到提高,验证了模型的有效性。统计数据显示,生产率提高1.23 t/m~2·d,成品率提高1.04%,转鼓强度提高0.86%。同时系统带来的经济效益明显,据测算,系统实现的直接经济效益可达1700万元/年。基于侧板测温的热状态模型的开发及系统软件的应用为烧结过程热状态的研究提供了一条新的途径,具有广阔的应用前景。
Iron ore sintering is one of the most important links in integrated steelworks. Along with the rapid development of iron & steel industry in China, technical and economic indexes of iron ore sintering have a direct effect on the economic benefit of steel complex. Thermal state is an important indication of normal sintering process, sintering process in normal thermal state will produce sinter with high grade. At present, thermal state of sintering process is only researched by the indirect judgment of burnt through point or uncontinuous measurement and calculation of sinterbed temperature and quantity of heat. In this paper, side-plate temperature is measured continuously, and software system of thermal state model in sintering process is developed. It has a great theoretical significance and practical use on real-time judgment and analysis of thermal state in sintering process and the guidance of production online.
     This paper gives a profound analysis of gas-solid heat transfer and physical and chemical change of sintering process, and then thermal state of sintering process is divided into three-dimensions distribution of vertical thermal state, longitudinal thermal state, and transversal thermal state. Take no account of transversal heterogeneity, thermal state of sintering process is described as the change of the thickness of each zone in bed layer and migration rate.
     Sintering process is divided into three stages and control equations of each stage is set up according to the characteristics of the heat-exchange and chemical reaction of each zone base on heat transfer metallurgical theory, and then the key parameters of equations are calculated. Ideal bed temperature is solved out by the program of implicit difference method. The thickness of each zone and migration rate are also figured out and their thermal state characteristics are analyzed,
     Non-contact infrared temperature scanner is used in the side-plate vertical temperature measurement of pallet. Filtering process is taken out on raw data using moving-polynomial smoother algorithm. Partition model of each zone is set up by the change characteristics of the curve of side-plate temperature and bed temperature. The bandwidth coefficient of the model is fixed by automatic optimization. The number of side-plate temperature layers is optimized by industrial tests. This research made a deep study of the characteristics of thermal state in sintering process directing at the change of thickness distribution of each zone and migration rate, considering the result of mechanism model. And the thermal state of Bao-Steel under the raw material condition of high limonite proportion is analyzed.
     According to the data demand of model, the database system SinterDb on the platform of SQL Sever 2000 is designed. Real-time acquisition of data is realized by software communication interface based on OPC technology. Efficient read and write code of data is programmed. The operation of data query is simplified by the use of view mechanism and the safety of data is increased.
     Software system of thermal state model in sintering process is developed using programming language of VC. Six system functions of vertical thermal state analysis, transversal thermal state analysis, longitudinal thermal state analysis, data query, parameter setting, and system help are realized by multi-thread technology, mixed programming technology of Matcom and VC, and MCI voice technology. This system is put to use. By the guidance of this system in production, it tends towards a reasonable sintering process, and improvement is made in yield and quality. Therefore, the validity of the model is verified. The statistical data shows that the productivity increases 1.23 t/m~2·d, pan yield increases 1.04%, and tumbler strength increases 0.86%. Meanwhile, the economic efficiency increases significantly. According to calculation, the direct economic benefit of this system can reach to 17,000,000 RMB/year. The development of thermal state model based on side-plate temperature measurement and the application of this software system provide a new way in the research of thermal state of sintering process. And it has a bright prospect of application.
引文
[1]华长森.论中国钢铁工业发展趋势[J].宽厚板,2004,10(2):5-9
    [2]李震.我国钢铁工业节能降耗技术的现状和发展趋势[J].鞍钢技术,2005,335(5):1-5
    [3]韩爽,李凯.钢铁工业国际转移问题研究[J].东北大学学报(社会科学版),2005,7(5):334-337
    [4]王国栋,刘相华,朱伏先,等.新一代钢铁材料的研究开发现状和发展趋势[J].鞍钢技术,2005,334(4):1-8
    [5]张立宏,杜涛,蔡九菊.建设生态化钢铁企业的必要性及其措施[J].中国冶金,2005,15(7):49-53
    [6]叶匡吾.面对新的炼铁技术——也谈“炼铁技术”[J].中国冶金,2005,15(2):14-17
    [7]殷瑞钰.中国炼钢技术[J].现代冶金,2004,(3):4-5
    [8]陆卫平.用前沿技术调整我国钢铁工业结构[J].鞍山科技大学学报,2004,27(3):171-176
    [9]袁宇峰.我国钢铁工业自动化的现状和发展[J].钢铁研究,2004,138(3):49-51
    [10]张寿荣.构建可持续发展的高炉炼铁技术是21世纪我国钢铁界的重要任务[J].钢铁,2004,39(9):7-13
    [11]孙彦广.冶金自动化技术现状和发展趋势[J].冶金自动化,2004,(1):1-5
    [12]陈许玲.烧结过程状态集成优化控制指导系统的研究:[博士学位论文].长沙:中南大学,2006
    [13]韩庆虹,金永龙,张军红.人工神经网络在烧结固体燃耗预测中的应用[J].冶金能源,2005,24(3):9
    [14]金永龙.烧结过程综合节能与环保的研究:[博士学位论文].长沙:北京科技大学,2000
    [15]何奥平,朱德庆,潘建,等.浅谈烧结温室气体的减量化排放及节能[J].烧结球团,2004,29(3):26-29
    [16]M.J.Cumming,W.J.Rarkin,J.R.Siemaon,et al.Modeling and Simulation of Iron Ore Sintering[C].In:4th International Symposium on Agglomeration.Toronto,Canada.1985:763-776
    [17]Hideo TODA,Kimio KATO.Theoretical Investigation of Sintering Process[J].Transactions ISIJ.1984,24(3):178-186
    [18]袁熙志,周取定.铁矿石烧结过程基本理论的研究[C].见:徐瑞图,吴胜利,编.中国铁矿石烧结研究—周取定教授论文集.北京:冶金工业出版社,1997.203-221
    [19]袁熙志,周取定.烧结过程的模拟研究[C].见:徐瑞图,吴胜利,编.中国铁矿石烧结研究—周取定教授论文集.北京:冶金工业出版社,1997.228-241
    [20]胡长庆,张玉柱.烧结过程中的传输理论[J].烧结球团,2000,25(3):1-4
    [21]G.S.Upadhyaya.Some issues in sintering science and technology[J].Materials chemistry and physics,2001,67:1-5
    [22]冯宗磊,杨福源,任亮,等.发动机的组合神经网络建模[J].清华大学学报(自然科学版),2005,45(11):1522-1525
    [23]金虎,楼文娟,陈勇.基于自适应BP神经网络的桥梁结构荷载识别[J].浙江大学学报(工学版),2005,39(10):1596-1602
    [24]宋德俊,王冰峰.模糊控制在温室喷灌自动控制中的应用[J].控制工程,2005,12(增刊):70-71
    [25]孙涛,陈大跃,黄震宇,等.一种新型浮筏的模糊减振控制[J].控制理论与应用,2005,22(5):733-738
    [26]Davis L.Handbook of Genetic Algorithms[M].New York:Van Nostrand Reinhold,1991
    [27]陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303
    [28]秦斌,王欣,吴敏,等.基于MAS的分布式棒线材轧制在线生产调度系统[J].钢铁,2005,40(9):49-53
    [29]Cybenko G.Continuous value neural networks with two hidden layers are sufficient[J].Math.Contr.Signal&Sys.1989,(2):330-341
    [30]Funahashi K.on the approximate realization of continuous mappings by neural networks[J].Neural Networks.1989,(2):183-192
    [31]周宇,许玉德.基于遗传算法的轨道综合养护计划模型设计[J].同济大学学报(自然科学版),2005,33(11):1464-1468
    [32]Hamada K,Matoba Y,Murai T,et al.Control system of chemical composition of iron ore sinter[J].Transactions ISIJ,1986,26(11):1008
    [33]Hamada K,Matoba Y,Murai T,et al.Control system of chemical composition of iron ore sinter[J].Journal of the Iron and Steel Institute of Japan,1987,73(2): 21-25
    [34]Hamada K,Matoba Y,Murai T,et al.Systeme de controle de la composition chemique de l'agglomere[J].Revue de Metallurgie,1987,84(5):409-419
    [35]郭文军,王福利,李明忠.基于神经网络的烧结矿化学成分超前预报[J].烧结球团,1997,22(5):7-10
    [36]范晓慧,杨世农.烧结矿化学成分的超前预报模型[J].烧结球团,1993,18(4):1-4
    [37]范晓慧,黄天正,尹蒂,等.自适应预报在烧结中的应用[J].钢铁,1996,31(7):5-8
    [38]Fan Xiao hui,Wang Hai dong,Chen Jin,et al.Expert System for Sinter Chemical Composition Control Based on Adaptive Prediction[J].Transactions of Nonferrous Metal Society of China,1996,6(1):47-50
    [39]范晓慧,王海东,黄天正,等.以碱度为中心的烧结矿化学成分控制专家系统[J].烧结球团,1997,22(4):1-3
    [40]申炳昕.基于神经网络的烧结矿化学成分预报模型的研究:[硕士学位论文].长沙:中南大学,2002
    [41]Sasaki Y,Watanabe M,Oiyama T,et al.Automatic sintering operation with operation guide system[J].Transactions ISIJ,1984,24(8):B-242
    [42]Watanabe M,Sasaki Y,Sugawara M,et al.Development of Operation Guide System and Its Application to Chiba No.4 Sintering Plant[C].In:4th International Symposium on Agglomeration.Tornto,Canada.1985:147-152
    [43]Nakashima K.用“操作指导系统”进行烧结过程控制[J].烧结球团,1987,12(6):41-48
    [44]Makashima K,Lyama S,Niqo S,et al.Reglage de l'operation d'agglomeration par guide-operateur[J].Revue de Metallurgie,1986,83(5):421-431
    [45]Kasai E,Rankin W J,Gannon J F.The effect of raw mixture properties on bed permeability during sintering[J].ISIJ International,1989,29(1):33-42
    [46]Rankin W J,Roller P W.Influence of water condensation on the permeability of sinter beds[J].Transactions ISIJ,1987,27(3):190-196
    [47]Shibata J,Wajima M,Souma H,et al.Analysis of permeability and characteristic suction gas volume in sintering process[J].Journal of the Iron and Steel Institute of Japan,1984,70(2):28-35
    [48]Venkataramana R,Gupta S S,Kapur P C.A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process[J].Int.J.Miner.Process,1999,57(1):43-58
    [49]Gupta S S,Venkataramana R.Mathematical model of air flow during iron ore sintering process[J].Ironmaking Conference Proceedings,2000,59:35-41
    [50]Waters A G,Litster J D,Nicol S K.A mathematical model for the prediction of granule size distribution for multi-component sinter feed[J].ISIJ International,1989,29(4):274-283
    [51]Lister J D,Waters A G,Nicol S K.A model for predicting the size distribution of product from a granulating drum[J].Transactions ISIJ,1986,26(12):1036-1044
    [52]姜波.烧结过程透气性的多级模糊综合评判和操作指导系统的研究:[硕士学位论文].长沙:中南工业大学,2000
    [53]佐佐木丰等.烧结能耗控制系统的开发[J].川崎制铁技报,1987,19(2):21-25
    [54]孟建忠,党荣富.烧结热平衡与节能降耗[J].烧结球团,1998,23(1):18-22
    [55]谢安国,陆钟武.神经网络BP模型在烧结工序能耗分析中的应用[J].冶金能源,1998,17(5):8-10
    [56]Munetake IWAMOTO,Koukichi HASHIMOTO,et al.Application of fuzzy control for iron ore sintering process[J].Transactions of Iron and Steel Institute,1988,28(5):341-344
    [57]吴为民.烧结混合料水份检测及智能控制系统[J].烧结球团,1997,22(4):38-40
    [58]姜宏州,张学东,张鸿勋.基于模糊逻辑推理的烧结机尾断面图像平滑处理[J].烧结球团,1999,24(5):1-4
    [59]冯建生,王秀芝.一个基于神经网络的配矿专家系统[J].冶金自动化,1999,23(4):7
    [60]唐建军,李长荣,洪新.钢铁企业信息化和CIMS/ERP系统建设[J].上海金属,2003,25(3):24-27
    [61]王冬生.大型钢铁企业信息化的认识和实践[J].江苏冶金,2005,33(2):71-74
    [62]毕英杰.钢铁企业MES的技术特点与发展趋势[J].中国制造业信息化,2005,34(4):40-42
    [63]#12
    [64]范晓慧,王海东,黄天正,等.以透气性为中心的烧结过程状态控制专家系统[J].烧结球团,1998,23(20):13-15
    [65]李桃.烧结过程智能实时操作指导系统的研究:[博士学位论文].长沙:中南大学,2000
    [66]Tamura N,Konishi M,Morita T,et al.Mathematical approach for the optimization of the sintering process operation[C].In:IFAC Automation in Mining,Mineral and Metal Processing.Tokyo,Japan.1986:203-208
    [67]Unaki H,Miki K,Sakimura,et al.New Control System of Sinter Plants at Chiba Works[C].In:IFAC Automation in Mining,Mineral and Metal Processing.Tokyo,Japan.1986:209-216
    [68]Saito T.Application of artificial intelligence in the Japanese iron and steel industry[C].In:IFAC Automation in Mining,Mineral and Metal Processing.Buenos Aires,Argentina,1989:31-35
    [69]Hamada K,Murai T,Jyoko T,et al.An advanced total control system for sintering process[J].Sumitoma Metals,1992,44(1):151-160
    [70]Fisher D J,Coulston B.Process improvements at Redcar Sinter Plant[J].Ironmaking Conference Proceedings,1997,56:383-389
    [71]Mitterlehner J,Loeffier G,Winter F,et al.Modeling and simulation of heat front propagation in the iron ore sintering process[J].International ISIJ,2004,44(1):11-20
    [72]Yang W,Ryu C,Choi S,et al.Modeling of combustion and heat transfer in an iron ore sintering bed with considerations of multiple solid phases[J].International ISIJ,2004,44(3):492-499
    [73]范晓慧,王海东.烧结过程数学模型与人工智能[M].长沙:中南大学出版社,2002
    [74]刘玉长,桂卫华,周孑民.基于软测量技术的模糊烧结终点控制研究[J].烧结球团,2002,27(2):27-30
    [75]赵德宽,王京,王海,等.基于专家系统的烧结生产质量监督和操作指导控制系统[J].冶金自动化,2004,28(2):26-29
    [76]Cho B K,Ri D W,Kim R D,等.利用在线测量数据分析烧结过程[C].见:周取定,张济中,张志刚,等译.第六届国际造块会议论文选.北京:中国金属学会,1994.441-453
    [77]周芳,岑豫皖,杜培明.在线判断烧结矿烧结终点的模糊识别法[J].仪器仪表用户,2003,10(5):48-49
    [78]王全才,杨瑞霞,时佩君.烧结机尾红外热成像计算机视觉及信息处理系统[J].山东冶金,2002,24(5):38-40
    [79]张学东,姜宏洲,张宏勋.基于模糊逻辑推理的烧结机尾断面图象补偿[J].烧结球团,1999,24(5):7-10
    [80]Beghdadi A,Khellaf A.A noise-filtering method using a local information measure[J].IEEE Transactions on Image processing,1997,6(6):879-882
    [81]M.E.H.沙拉比.烧结废气中的CO_2/CO、压降和烧结终点之间的关系[J].国外烧结球团,1989,8(2):26-27,29
    [82]Straka G Process Control Model for Sinter Machine Speed[J].Metallurgical Plant and Technology International,1992,15(5):78-80
    [83]张苹,韩大平,郝晓静,等.BP算法的模糊神经网络及烧结终点辅助预测模型[J].材料与冶金学报,2004,3(2):157-160
    [84]程武山,刘长青.基于神经网络烧结终点(BTP)预测系统[J].计算机应用与软件,2003,20(7):39-40,94
    [85]王亦文,桂卫华,王雅琳.基于最优组合算法的烧结终点集成预测模型[J].中国有色金属学报,2002,12(1):191-195
    [86]Nakajima R,Kurosawa S,Fukuyo H,et al.Development of a heat pattern control system for a sintering bed[J].Ironmaking Conference Proceedings,1991,50:563-568
    [87]申燕,郭文军,王福利,等.模糊控制在烧结终点控制中的应用[J].冶金自动化,1998,22(2):24-27
    [88]陈仕红.厚料层烧结与能耗的关系[J].四川冶金,1999,(2):40-41
    [89]Hideo TODA,Kimio KATO.Theoretical Investigation of Sintering Process[J].Translation ISIJ.1984,24:178-186
    [90]#12
    [91]汪智德,石军,陈列希,等.攀钢6~#烧结机系统热平衡测试结果分析与降低能耗措施[J].四川冶金,1999,(2):19-24
    [92]江源.铁矿石烧结中燃料合理分布的研究:[硕士学位论文].长沙:中南大学,2006
    [93]Muchi I,Higichi J.Theoretical Analysis of sintering operation[J].Trans Iron Steel Inst Japan,1972,12:54
    [94]Young R W.Dynamic mathematical model of sintering process[J].Ironmaking and Steelmaking,1977,4(6):321
    [95]Kawaguchi T.Development and application of an integrated simulation model for iron ore sintering[J].Ironmaking Proceedings,1987,46:99
    [96]Cumming M J.Development in modeling and simulation of iron ore sintering[J].Ironmaking and Steelmaking,1990,17(4):245
    [97]Patisson F,Bellot J P.Mathematical modeling of iron ore sintering process[J].Ironmaking and Steelmaking,1991,18(2):89
    [98]徐瑞图,周取定.烧结过程床层结构变化的数学模拟[C].第一届中澳双边技术交流会论文集,1987,134
    [99]龚一波,黄典冰,杨天钧.烧结料层温度分布模型解析解及其统一形式[J].北京科技大学学报,2002,24(4):395-399
    [100]S.Wuiuame.烧结机上竖向与横向烧结过程非均匀性的定量分析[J].烧结球团,1991(4):26-31
    [101]梅炽.冶金传递过程原理[M].长沙:中南工业大学出版社,1987
    [102]G.H.,D.R.Transport Phenomena in Metallurgy[M].USA:Addisonwesley Press,1973
    [103]唐贤容,王笃阳,张清岑.烧结理论与工艺[M].长沙:中南工业大学出版社,1992
    [104]N.K.Nath,K.Mitra.Optimisation of suction pressure for iron ore sintering by genetic algorithm[J].Ironmaking and Steelmaking,2004,31(3):199-206
    [105]张玉柱,艾立群.钢铁冶金过程的数学解析与模拟[M].北京:冶金工业出版社,1997
    [106]周筠清.传热学[M].北京:冶金工业出版社,1999
    [107]周筠清.冶金过程热物理[M].北京:北京科技大学出版社,1995
    [108]李华成,侯拥和.MgO含量对褐铁矿烧结的影响[J].烧结球团,1994(6),29-32
    [109]陶文铨.数值传热学[M].西安:西安交通大学出版社,1986
    [110]习乃文,黄天正,谢良贤.烧结技术[M].昆明:云南人民出版社,1992
    [111]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996
    [112]Hampel F R,Ronchetti E M,Rousseeuw P J,et al.Robust statistics-the approach based on influence[M].New York:Johu wiley & Sons Press,1986
    [113]施妙根,顾丽珍.科学和工程计算基础[M].北京:清华大学出版社,1999
    [114]Buttenfield B P.Treatment of the Cartograpic Line.Cartographica.1985,22(2):1-6
    [115]Visvalingam M.Herbert S.A Computer Science Perspective on the Bendsimplification Algorithm.Cartography and Geographic Information Science.1999,26(4):253-270
    [116]Maling D H.Measurements from Maps:Principles and Methods of Cartometry.Oxford:Pergamon Press,1989
    [117]Plazanet C.Measurements,Characterization,Classification for Automated Line Feature Generalization.ACSM ASPRS,1995,4:59-68
    [118]Plazanet C.Affholder J G.Fritsch E.The Importance of Geometric Modeling in Linear Feature Generalization.Cartography and Geographic Information System.1995,22(4):291-305
    [119]赵鸿儒,孙进忠,唐文榜,等.全波震相分析[M].北京:地震出版社,1996,77-110
    [120]刘钦圣,张晓丹,王兵团.数值计算方法教程[M].北京:冶金工业出版社,1999,229-231
    [121]谢义,岑豫皖,方庆倌,等.OPC技术在圆盘自动配料系统中的应用[J].烧结球团,2005,30(6):27-29
    [122]卢珞先,杨谨,刘汉峰.基于OPC技术的多现场总线控制系统[J].工业控制计算机,2006,19(6):7-9
    [123]胡锦丽.基于OPC技术的工业监控系统的体系结构[J].机电技术,2006(2):15-17
    [124]马国华.监控组态技术及其应用[M].北京:清华大学出版社,2001:101-106
    [125]郑红燕,吴敏,向婕.烧结过程优化控制中的OPC同步通信机制[J].冶金自动化,2006,14(6):771-772
    [126]David J,Kruglinski.Visual C++技术内幕[M】,北京:清华大学出版社,1999
    [127]李宁,李友荣.OPC技术在风机在线检测系统中的应用[J].武汉科技大学学报(自然科学版),2006,29(4):380-382
    [128]Lv Y,Wang T R,Yu H B,et al.Application of OPC technology in realizing fieldbus interoperation[J].Instrument Techniques and Sensor,2004,(3):39-40
    [129]Fang X G,Wang Z,Sun Y X,et al.OPC based on Ethernet control and management[J].Information and Control,2003,5(2):113-117
    [130]耿新青,迟呈英.ORACLE与SQL SERVER语言的比较[J].鞍山钢铁学院学报,2002,25(1):36-39
    [131]郭敏,郭靖.Oracle 10G数据库性能优化的研究[J].武汉理工大学学报,2005,27(10):103-106
    [132]管鸿,钟秋海,程春.Oracle数据库管理系统在PowerBuilde下的实现[J].计算机工程,2006,31(1):87-89
    [133]蒋凤珍.Oracle数据库性能优化技术[J].计算机工程,2004,30(增刊):94-96
    [134]何月顺,丁秋林.调整优化Oracle9i数据库的性能[J].计算机应用与软件,2004,21(6):9-11
    [135]陆静平,何玉林.基于SQL Server视图的数据库安全模型的研究[J].计算机工程,2002,(9):188-190
    [136]谷震离.SQL Server数据库应用程序性能优化方法[J].计算机工程与设计,2006,27(15):2884-2886
    [137]王振辉,吴广茂.SOL查询语句优化研究[J].计算机应用,2005,25(12):207-208
    [138]于红博,陈钟荣,查书平.提高SQL Server查询速度的方法[J].计算机应用与软件,2004,21(6):25-27
    [139]艾文国,王衍华,王福胜.基于大型数据库的通用报表生成系统设计[J].哈尔滨工业大学学报,1999,31(6):133-136
    [140]毕大园,李秋艳,敖凯军.飞机电缆连接关系数据库的设计与实现[J].计算机工程与设计,2006,27(7):1224-1227
    [141]刘显荣.用VC++实现数据库中图片的存取与显示[J].计算机应用研究,2006,(5):163-165
    [142]鲍占阔,杨玉珍,赵晓华,等.基于VB、VC的交通控制仿真软件的设计[J].计算机仿真,2006,23(4):253-257
    [143]张建军.VC实现汽车牌照识别仪和ORACLE数据库接口[J].工业控制计算机,2006,19(2):26-28
    [144]刘爽,贾传荧,陈鹏.基于C/S结构的车辆监控系统设计与实现[J].计算机工程与设计,2005,26(12):3320-3323
    [145]费巧玲,徐向阳.VC中用ADO实现大数据的存取[J].计算机工程与应用,2005,(24):182-184
    [146]谢君,胡容兵.一种层次数据表的设计与统计方法分析[J].海军工程大学学报,2005,17(6):66-71
    [147]Liu D T,Xu X W.A review of web-based product data management systems[J].Computers in Industry,2001,44(3):251-262
    [148]Yen D C,Chou D C,Chang J.A synergic analysis for web-based enterprise resources planning systems[J].Computer Standard & Interfaces,2002,2(6):254-262
    [149]官章全,唐晓卫.Visual C++6.0编程实例详解[M].北京:电子工业出版社,1999
    [150]杨晓鹏,宗明,唐凡等.Visam C++7.0实用编程技术[M].北京:中国水利水电出版社,2002
    [151]齐舒.Visua]C++6.0开发技巧及实例剖析[M].北京:清华大学出版社,1999
    [152]胡吉全,李明星.基于VC多线程技术的优化设计方法[J].交通与计算机,2005,23(2):111-113
    [153]范宝德,刘惊累.基于VC的多线程编程技术及其实现[J].微型机与应用,2002,(7):10-12
    [154]汤彬,李培耀.Windows下多线程编程技术[J].上海工程技术大学学报,2002,16(4):310-313
    [155]张凤梅,洪运国.Windows98下多线程编程方法研究[J].辽宁师范大学学报(自然科学版),2003,26(3):254-256
    [156]罗蛟龙,张鹏,张维竞.Visual C++下强大的科学运算函数库——MATCOM 之Matrix[J].计算机工程,2000,26(12):152-154
    [157]陶红,袁金荣.MATLAB与C/Visual C++混合编程的实现[J].计算机工程与应用,2000,36(10):100-104
    [158]杨玲,来五星,史铁林.VC与Matlab混合编程方法在轧机扭矩检测中的应用[J].计算机工程与应用,2003,39(10):226-227
    [159]张友兵,田漫柳.基于Matcom与VC混合编程的数字图像处理方法研究[J].湖北汽车工业学院学报,2005,19(1):38-41
    [160]时念云,王国会.多路评标专家语音通知系统的设计与实现[J].计算机工程与设计,2006,27(14):2635-2637
    [161]刘占军.计算机语言系统软件的研究和开发[J].计算机应用,2001,21(5):67-68
    [162]薛平,王志坤,潘安俊.烧结控制系统可靠性设计[J].冶金设备,2005,6:42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700