新颖氮化硼纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硼作为一种重要的Ⅲ-Ⅴ族无机非金属材料,具有一系列优异的物理化学性质,在很多方面具有潜在的应用前景。其主要结构有层状氮化硼(包括六方相和三方相)和立方相氮化硼。其中六方相和三方相氮化硼具有与石墨相似的层状晶体结构,它们具有相似的物理化学性质,如良好的润滑性、耐化学腐蚀性、高热导率等。与石墨不同的是,层状氮化硼是一种宽带隙半导体或者绝缘材料,还能实现n型和p型掺杂,具有中子吸收能力,是很好的耐高温电子器件材料和很有前途的声光电材料。
     具有不同微观形貌结构的氮化硼材料可能会导致更加优良的性能,因此最近二十几年来,氮化硼的合成技术得到大力发展,诸多新颖的氮化硼纳米材料被制备出来。而目前的研究大多集中于一维氮化硼纳米材料的合成和表征,如氮化硼纳米管、纳米纤维等,对于其它形貌和结构的氮化硼纳米材料的研究尚不够深入在本论文我们在低温低压条件下制备了几种新颖形貌的氮化硼纳米材料,并初步探索了它们的热学性质、发光性质等性能。
     (1)近年来,通过化学方法以零维、一维、二维等纳米结构基元构筑更复杂的多维、多级纳米结构材料是有序物质科学的重要进展,由于具有此类结构的材料常常表现出与常规低维度纳米材料不同的电学、热学、光学、磁学、力学及化学方面的性质,这为构筑和集成高级纳米器件提供了崭新的策略。目前,有关氮化硼多级纳米结构的研究尚存空白。在本文中,通过硼粉和氨基钠在500℃下反应,我们成功制备了由纳米薄片组装而成的多级花状氮化硼结构。X-射线衍射和红外分析表明所制备的样品为高结晶性的三方相氮化硼(r-BN)结构。通过电镜观察得知这些氮化硼纳米花直径有几百纳米,而这些纳米薄片的厚度约为15-25nm,并且具有尖锐的边缘的结构。热重测试表明这些氮化硼纳米花可以在空气中抵抗600℃以下的氧化侵蚀。对比试验发现,缩短反应时间只能得到一些小碎片和颗粒,因此可以推断反应初期首先形成氮化硼纳米晶颗粒,然后这些颗粒发生聚集,并在此基础上生长出氮化硼薄片,最后组装而成多级花状氮化硼纳米结构。具有尖端薄片的氮化硼纳米片有望用于场发射电子器件,在微电子学领域发挥应用。
     (2)空心纳米结构材料往往具有较大的比表面积和相对轻质的特点,在催化、药物释放、化学传感器、生物技术、分离以及光电子等诸多领域都有着潜在的应用前景。制备此类结构材料的一般策略是利用各种硬模板或软模板剂对目标结构进行复制。氮化硼作为一种重要的Ⅲ-Ⅴ族材料,具有优异的热传导性能和化学稳定性,其空心结构受到了极大的关注。但传统制备方法存在合成温度过高、合成步骤较繁琐等弊端。在本文中,我们探索了一条制备氮化硼空心颗粒的温和制备路线。通过选择NaNF4和NaN3为反应物,采取反应釜内的一步合成法在较低温度下(450℃)成功制备出氮化硼空心结构材料,所制备的产物由空心球和纳米管组成,空心球直径约为400-700nm,纳米管的直径在150-300nm之间,比表面积达到89.8m2/g,热重测试显示其抗氧化温度达到800℃。对比试验表明在300℃C时也能制备出氮化硼空心球和纳米管,但产量稍低,显示出氮化硼纳米管低温宏量制备的可能性。如此制备的氮化硼空心结构材料有望用于储氢及催化等领域。
     (3)三维有序大孔材料是多孔材料研究的新领域,其孔洞排列规整,分布均匀,可用作理想的光子晶体材料、催化剂或其载体、过滤以及分离材料、热阻材料、电池材料等。制备三维有序大孔材料一般采取胶晶模板法。目前有关氮化硼大孔材料的研究相对较少,有待进一步探索。在本文中,我们通过NH4BF4与铁粉在500℃反应制备了疏松的氮化硼大孔材料,孔隙率达到73.7%,比表面积为122m2/g,不过孔洞直径较大,达到亚微米级,而且孔洞结构也不均一。经过在条件不变的情况下加入适量的硫粉参与反应,同样得到了三维氮化侧大孔材料,但各项织构特征得到明显改善,孔隙率达到85.6%,比表面增大到230m2/g,并且呈现出一定的短程有序特征。对比试验显示在反应温度下硫粉变为硫蒸气,可能促进了氮化硼片层发生卷曲,形成更为丰富的孔洞结构,并且加入硫粉可能使反应物的接触机会增多,从而使反应更加完全,提高了产率。这种不需添加模板、制备过程简便的合成大孔氮化硼材料的路线将为制备其它氮化物或碳化物大孔材料提供参考。另外,这些新颖的具有丰富孔洞特征的三维氮化硼大孔材料有望在催化剂载体、气体吸附、光电子及其它领域发挥巨大的应用。
Boron nitride (BN) is an important III-V inorganic non-metallic material with excellent physical and chemical properties indicating promising applications in many fields. The main phases include layered (hexagonal and rhombohedral boron nitride) and cubic boron nitride. The former has similar layered crystal structure to graphite, so they have similar physical and chemical properties, such as good lubrication, chemical resistance and high thermal conductivity. Unlike graphite, layered boron nitride is a semiconductor with wide band gap or insulator and can be doped for both n-and p-type conductivity. Moreover, layered boron nitride can absorb neutron, thus can be used as excellent high-temperature electronic device materials and promising optoelectronic materials.
     Different microstructure and morphology may induce different properties. During the last two decades, the synthetic techniques of boron nitride have been developed largely and many novel boron nitride nanomaterials have been prepared. Most of the current studies are focused on the synthesis and characterization of one dimensional (ID) boron nitride nanomaterials, such as boron nitride nanotubes, nanofibres, etc. However, investigations on other morphology and structure of boron nitride nanomaterials are limited and need further efforts. In the dissertation, we have successfully prepared several kinds of boron nitride nanomaterials with novel morphology at low temperature and low pressure and have exploited preliminarily their thermal and luminescent properties.
     (1) In the recent years, making more complex multi-dimensional and hierarchical structural materials via chemical methods using zero dimensional (OD), ID, two dimensional (2D) nanostructures as building blocks is the important progress in ordered matter science. The materials with such structures usually exhibit different electronic, thermal, optical, magnetic, mechanical, chemical properties from routine low-dimensional nanomaterials, which provide new strategies for constructing and integrating advanced nanodevices. So far, there are no related reports about hierarchical boron nitride nanostructure as far as we know. Here, we have successfully prepared hierarchical boron nitride nanoflowers (BNNF) constructed by nanosheets using B powders and NaNH4as reactants at500℃. The XRD and FT-IR analysis confirmed the highly crystalline rhombohedral feature of the product. Electron microscopy images showed that the BNNFs have diameters up to hundreds of nanometers and the nanosheets were about15-25nm in thickness with sharp edges. Thermogravimetric analysis (TGA) results showed that the as-obtained BNNFs have high thermal stability below600℃. Contrast experiments showed that shortening reaction time caused the production of little flakes and particles. So we deduced that boron nitride nanocrystalline particles were formed first; then the nanocrystallite congregated together and boron nitride nanosheets began to grow on the congeries leading to formation of hierarchical BNNFs. Such BNNFs particles with novel nanostructures have been envisioned to be used as field emission nanodevice.
     (2) Hollow nanoscale structural materials have large surface area and light-weight feature, which can be used in catalysis, drug release, chemical sensors, biotechnology, separation and optoelectronic fields. Generally the hollow nanomaterials are prepared by using various hard or soft templates. As an important Ⅲ-Ⅴ material, boron nitride nanomaterials with hollow interiors have attracted numerous interests. However, the conventional methods are complicated and high temperature. Here, we develop a mild route to prepare boron nitride hollow particles. By using NaNF4and NaN3as reactants, boron nitride hollow nanomaterials were prepared via a one-pot route in an autoclave at450℃. The product was composed by hollow spheres and nanotubes. The diameters of them were400-700nm and150-300nm, respectively. The surface area of the product was up to89.8m2/g. TGA results showed that the anti-oxidation temperature can reach to800℃. Moreover, boron nitride hollow spheres and nanotubes can be produced even at300℃in this route, indicating the probability of large-scale synthesis of boron nitride nanotubes at low temperature. The as-prepared boron nitride hollow nanomaterials can be applied in hydrogen storage and catalysis.
     (3) Three-dimensional ordered macroporous (3DOM) materials are the research field of porous materials. They possess ordered and uniform pores and can be used as excellent photonic crystal materials, catalyst or its carriers, filtration or separation materials, anti-thermal materials, battery materials, and so on. Generally such3DOM materials are prepared by colloid templating method. However, there are few reports about boron nitride macroporous materials which need further exploits. Here, we prepared floppy boron nitride macroporous materials via the reaction of NH4BF4and Fe powders at500℃. The porosity and surface area are73.7%and122m2/g, respectively. However, the diameters of the pores were relatively large and up to sub-micrometer scale. Moreover, the structures of the pores were not uniform. When S powders were added into the reaction system while keeping other conditions constant, similar boron nitride macroporous materials were obtained with improved textural properties. The porosity and surface area of the new product rised to85.6%and230m2/g, respectively. Moreover, the new product presented short-range order. Contrast experiments showed that the S vapor produced at high temperature provided a transient driving force for rolling of the h-BN layers to form cavities of porous boron nitride materials. Moreover, the addition of sulfur may make the reactants mixed homogeneously and reduce the diffusion barriers, which led to more complete reaction and higher yield. Such template-free and facile route to3D macroporous boron nitride materials can be extended to prepare other macroporous nitride or carbide materials. Besides, the as-prepared macroporous boron nitride materials with rich pore characters will find competitive applications in catalysts support, gas adsorption, optoelectronic materials and other fields.
引文
1.张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    2. P. Ball, L. Garwin, Science at the atomic scale, Nature,1992,355,761.
    3. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature,1985,318,162.
    4. S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354,56.
    5. M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z. L. Wang, Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3:Large-Scale Synthesis, Formation Mechanism, and Properties, Angew. Chem. Int. Ed.,2005,44,4197.
    6. A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed.,2005,44,4391.
    7. L. Ye, C. Wu, W. Guo, Y. Xie, MoS2 hierarchical hollow cubic cages assembled by bilayers:one-step synthesis and their electrochemical hydrogen storage properties, Chem. Commun.,2006,4738.
    8. J. Zhu, H. Peng, C. K. Chan, K. Jarausch, X. F. Zhang, Y. Cui, Hyperbranched Lead Selenide Nanowire Networks, Nano Lett.,2007,7,1095.
    9. J. Zhou, Y Ding, S. Z. Deng, L. Gong, N. S. Xu, Z. L. Wang, Three-Dimensional Tungsten Oxide Nanowire Networks, Adv. Mater.,2005,17,2107.
    10. G. H. Yu, A. Y Cao, C. M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes, Nat. Nanotech.,2007,2,372.
    11. C. Wu, Y. Xie, L. Lei, S. Hu, C. OuYang, Synthesis of New-Phased VOOH Hollow "Dandelions" and Their Application in Lithium-Ion Batteries, Adv. Mater., 2006,18,1727.
    12. B. Zhang, W. Hou, X. Zhu, X. Ye, L. Fei, X. Liu, J. Yang, Y. Xie, Multiarmed Tubular Selenium with Potentially Unique Electrical Properties:Solution-Phase Synthesis and First-Principles Calculation, Small,2007,3,101.
    13. F. Zhang, Y. Wan, T. Yu, F. Zhang, Y Shi, S. Xie, Y. Li, L. Xu, B. Tu, D. Y. Zhao, Uniform Nanostructured Arrays of Sodium Rare-Earth Fluorides for Highly Efficient Multicolor Upconversion Luminescence, Angew. Chem. Int. Ed.,2007,46,7976.
    14. F. T. Moutos, L. E. Freed, F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage, Nat. Mater.,2007,6, 162.
    15. Q. Pang, L. Zhao, Y. Cai, D. P. Nguyen, N. Regnault, N. Wang, S. Yang, W. Ge, R. Ferreira, G. Bastard, J. Wang, CdSe Nano-tetrapods:Controllable Synthesis, Structure Analysis, and Electronic and Optical Properties, Chem. Mater.,2005,17, 5263.
    16. M. J. Hu, Y. Lu, S. Zhang, S. R. Guo, B. Lin, M. Zhang, S. H. Yu, High Yield Synthesis of Bracelet-like Hydrophilic Ni-Co Magnetic Alloy Flux-closure Nanorings, J. Am. Chem. Soc.,2008,130,11606.
    17. A. Ahniyaz, Y. Sakamoto, L. Bergstrom, Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes, PNAS,2007,104,17570.
    18. S. Park, J. H. Lim, S. W. Chung, C. A. Mirkin, Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles, Science,2004,303,348.
    19. Y. Zheng, J. Wu, F. Duan, Y Xie, Gemini Surfactant Directed Preparation and Photocatalysis of m-BiVO4 Hierarchical Frameworks, Chem. Lett.,2007,36,520.
    20. S. H. Yu, H. Colfen, K. Tauer, M. Antonietti, Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer, Nat. Mater.,2005,4, 51.
    21. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, C. L. Bai, Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles, Angew. Chem. Int. Fd.,2005,44,1269.
    22. Q. R. Zhao, Y. Xie, Z. G. Zhang, X. Bai, Size-selective Synthesis of Zinc Sulfide Hierarchical Structures and Their Photocatalytic Activity, Cryst. Growth Des.,2007,7, 153.
    23. H. L. Xu, W. Z. Wang, Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall, Angew. Chem. Int. Ed.,2007,46,1489.
    24. B. Liu, H. C. Zeng, Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process, J. Am. Chem. Soc.,2004,126,16744.
    25. J. Wu, F. Duan, Y. Zheng, Y. Xie, Synthesis of Bi2WO6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity, J. Phys. Chem. C,2007,111,12866.
    26. B. X. Li, G. X. Rong, Y. Xie, L. F. Huang, C. Q. Feng, Low-Temperature Synthesis of α-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries, Inorg. Chem.,2006,45,6404.
    27. C. Z. Wu, L. Y. Lei, X. Zhu, J. L. Yang, Y. Xie, Large-Scale Synthesis of Titanate and Anatase Tubular Hierarchitectures, Small,2007,3,1518.
    28. Z. Liang, A. Susha, F. Caruso, Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof, Chem. Mater.,2003,15,3176.
    29. J. Liu, A. I. Maaroof, L. Wieczorek, M. B. Cortie, Fabrication of Hollow Metal "Nanocaps" and Their Red-Shifted Optical Absorption Spectra, Adv. Mater.,2005,17, 1276.
    30. D. Wang, C. Song, Z. Hu, X. Fu, Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures, J. Phys. Chem. B, 2005,109,1125.
    31.X. Sun, Y. Li, Ga2O3 and GaN Semiconductor Hollow spheres, Angew. Chem. Int. Ed.,2004,43,3827.
    32. L. Lu, G. Sun, S. Xi, H. Wang, H. Zhang, T. Wang, X. Zhou, A Colloidal Templating Method To Hollow Bimetallic Nanostructures, Langmuir,2003,19,3074.
    33. K. Zhang, X. Zhang, H. Chen, X. Chen, L. Zheng, J. Zhang, B. Yang, Hollow Titania Spheres with Movable Silica Spheres Inside, Langmuir,2004,20,11312.
    34. M. Yang, J. Ma, C. Zhang, Z. Yang, Y. Lu, General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures, Angew. Chem. Int. Ed., 2005,44,6727.
    35. X. Sun, J. Liu, Y. Li, Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres, Chem. Eur. J.,2006,12, 2039.
    36. M. Fujiwara, K. Shiokawa, Y. Tanaka, Y. Nakahara, Preparation and Formation Mechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/Water Interfacial Reaction, Chem. Mater.,2004,16,5420.
    37. J. Hu, Y. Guo, H. Liang, L. Wan, C. Bai, Y. Wang, Interface Assembly Synthesis of Inorganic Composite Hollow Spheres, J. Phys. Chem. B,2004,108,9734.
    38. D. Wu, X. Ge, Z. Zhang, M. Wang, S. Zhang, Novel one-step route for synthesizing Cd/S polystyrene nanocomposite hollow spheres, Langimuir,2004,20, 5192.
    39. J. Bao, Y. Liang, Z. Xu, L. Si, Facile Synthesis of Hollow Nickel Submicrometer Spheres, Adv. Mater.,2003,15,1832.
    40. Y. Vasquez, A. K. Sra, R. E. Schaak, One-Pot Synthesis of Hollow SuperparamagneticCoPt Nanospheres, J. Am. Chem. Soc.,2005,127,12504.
    41. Y. Ma, L. Qi, J. Ma, H. Cheng, Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions, Langmuir,2003,19,4040.
    42. T. Nakashima, N. Kimizuka, Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids,J. Am. Chem. Soc.,2003,125,6386.
    43. J. Zhu, S. Xu, H. Wang, J. Zhu, H. Chen, Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route, Adv. Mater,2003,15, 156.
    44. N. A. Dhas, K. S. Suslick, Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals, J. Am. Chem. Soc.,2005,127,2368.
    45. S. F. Wang, F. Gu, M. K. Lu, Sonochemical Synthesis of Hollow PbS Nanospheres, Langmuir,2006,22,398.
    46. B. Tan, S. E. Rankin, Dual Latex/Surfactant Templating of Hollow Spherical Silica Particles with Ordered Mesoporous Shells, Langmuir,2005,21,8180.
    47. A. Wolosiuk, O. Armagan, P. V. Braun, Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres,J. Am. Chem. Soc.,2005,127,16356.
    48. M. S. Wong, J. N. Cha, K. S. Choi, T. J. Deming, G. D. Stucky, Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides, Nano Lett.,2002,2, 583.
    49. T. He, D. Chen, X. Jiao, Y. Xu, Y. Gu, Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size, Langmuir,2004,20,8404.
    50. X. Li, Y. Li, C. Yang, Y. Li, Liposome Induced Self-Assembly of Gold Nanoparticles into Hollow Spheres, Langmuir,2004,20,3734.
    51. B. Liu, H. C. Zeng, Mesoscale Organization of CuO Nanoribbons:Formation of "Dandelions",J. Am. Chem. Soc.,2004,126,8124.
    52. A. Cao, J. Hu, H. Liang, L. Wan, Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed.,2005,44,4391.
    53. M. Mo, J. C. Yu, L. Zhang, S. A. Li, Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres, Adv. Mater.,2005,17, 756.
    54. A. D. Smigelskas, E. O. Kirkendall, Trans. Am. Inst. Min. Metall. Pet. Eng.,1947, 171,130.
    55. H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gosele, Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect:The basic concept, Nano Lett.,2007,7,993.
    56. R. K. Chiang, R. T. Chiang, Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect, Inorg. Chem.,2007,46,369.
    57. G. Zhang, W. Wang, Q. Yu, X. Li, Facile one-pot synthesis of PbSe and NiSe2 hollow spheres:Kirkendall-effect-induced growth and related properties, Chem. Mater.,2009,21,969.
    58. F. Niu, A. M. Cao, W. G. Song, L. J. Wan, La(OH)3 hollow nanostructures with trapezohedron morphologies using a new Kirkendall diffusion couple, J. Phys. Chem. C,2008,112,17988.
    59. L. Xie, J. Zheng, Y. Liu, Y. Li, X. Li, Synthesis of Li2NH hollow nanospheres with superior hydrogen storage kinetics by plasma metal reaction, Chem. Mater.,2008,20, 282.
    60. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science, 2004,304,711.
    61. R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, H. Nakajima, Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles, Mater. Lett., 2007,61,1060.
    62. X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y. Li, Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect, J. Am. Chem. Soc.,2008,130,2736.
    63. B. Liu, H. C. Zeng, Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process, J. Am. Chem. Soc.,2004,126,16744.
    64. H. Cao, X. Qian, C. Wang, X. Ma, J. Yin, Z. Zhu, High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocage, J. Am. Chem. Soc.,2005, 127,16024.
    65. X. Sun, J. Liu, Y. Li, Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres, Chem. Eur:J.,2006,12, 2039.
    66. Y. Yin, C. Erdonmez, S. Aloni, A. P. Alivisatos, Faceting of nanocrystals during chemical transformation:From solid silver spheres to hollow gold octahedral, J. Am. Chem. Soc.,2006,128,12671.
    67. Y. Sun, Y. Xia, Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction, Nano Lett.,2003,3, 1569.
    68. Y. Kobayashi, M. Horie, D. Nagao, Y Ando, T. Miyazaki, M. Konno, Preparation of silica-coated Co-Pt alloy nanoparticles, Mater. Lett.,2006,60,2046.
    69. W. Ostwald, Z Phys. Chem.,1900,34,495.
    70. B. Liu, H. C. Zeng, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors, Small,2005,1,566. 71. J. Li, H. C. Zeng, Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors, Angew. Chem. Int. Ed.,2005,44,4342.
    72. Y Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres, Langmuir,2005,21,1074.
    73. J. Li, H. C. Zeng, Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening, J. Am. Chem. Soc.,2007,129,15839.
    74. H. G Yang, H. C. Zeng, Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening, J. Phys. Chem. B,2004,108,3492.
    75. A. Imhof, D. J. Pine, Ordered Macroporous Materials by Emulsion Templating, Nature,1997,389,948.
    76. O. D. Velev, T. A. Jede, R. F. Lobo, A. M. Lenhoff, Porous silica via colloidal crystallization, Nature,1997,389,447.
    77. A. Esmanski, G. A. Ozin, Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries, Adv. Funct. Mater.,2009,19,1999.
    78. Christian, M. Mitchell, D.-P. Kim, P. J. A. Kenis, Ceramic microreactors for on-site hydrogen production,J. Catal.,2006,241,235.
    79. T. Y. Ma, X. J. Zhang, G. S. Shao, J. L. Cao, Z. Y. Yuan, Ordered Macroporous Titanium Phosphonate Materials:Synthesis, Photocatalytic Activity, and Heavy Metal Ion Adsorption,J. Phys. Chem. C,2008,112,3090.
    80. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, C. R. Martin, Smart Nanotubes for Bioseparations and Biocatalysis, J. Am. Chem. Soc., 2002,124,11864.
    81. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, M. J. Sailor, Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications, Science,2003,299,2045.
    82. G. Subramanian, V. N. Manoharan, J. D. Thorne, D. J. Pine, Ordered Macroporous Materials by Colloidal Assembly:A Possible Route to Photonic Bandgap Materials, Adv. Mater.,1999,11,1261.
    83. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths, Science,1998,282,897.
    84. B. T. Holland, C. F. Blanford, A. Stein, Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids, Science,1998,281, 538.
    85. P. Jiang, J. Cizeron, J. F. Bertone, V. L. Colvin, Preparation of Macroporous Metal Films from Colloidal Crystals, J. Am. Chem. Soc.,1999,121,7957.
    86. B. T. Holland, C. F. Blanford, T. Do, A. Stein, Synthesis of Highly Ordered Three-Dimensional Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites, Chem. Mater.,1999,11,795.
    87. H. Yan, C. F. Blanford, B. T. Holland, M. Parent, W. H. Smyrl, A. Stein, A Chemical Synthesis of Peiodic Macroporous NiO and Metallic Ni, Adv. Mater.,1999, 12,1003.
    88. O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, A Class of Porous Metallic Nanostructures, Nature,1999,401,548.
    89. H. Yan, C. F. Blanford, W. H. Smyrl, A. Stein, Preparation and Structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating, Chem. Commun., 2000,1477.
    90. H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, A. Stein, General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion, Chem. Mater,2000,12,1134.
    91. Z. Lei, J. Li, Y Zhang, S. Lu, Fabrication and Characterization of Highly-ordered Periodic Macroporous Barium Titanate by the Sol-Gel Method, J. Mater. Chem.,2000, 10,2629.
    92. G. Gundiah, C. N. R. Rao, Macroporous Oxide Materials with Three-Dimensionally interconnect pores, Solid State Science,2000,2,877.
    93. H. Yan, C. F. Blanford, J. C. Lyte, C. B. Carter, W. H. Smyrl, A. Stein, Influence of Processing Conditions on Structures of 3D Ordered Macroporous Metals Prepared by Colloidal Crystal Templating, Chem. Mater.,2001,13,4314.
    94. R. C. Schroden, C. F. Blanford, B. J. Nelde, B. J. S. Johnson, A. Stein, Direct Synthesis of Ordered Macroporous Silica Materials Functionalized with Polyoxometalate Clusters, Chem. Mater.,2001,13,1074.
    95. S. Vaudreuil, M. Bousmina, S. Kaliaguine, L. Bonneviot, Preparation of macrostructured metal oxides by sedimentation-aggregation, Microporous Mesoporous Mater.,2001,44-45,249.
    96. J. E. G. J. Wijnhoven, L. Bechger, W. L. Vos, Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania, Chem. Mater.,2001,13,4486.
    97. G. Zhu, S. Qiu, F. Gao, D. Li, Y. Li, R. Wang, B. Gao, B. Li, Template Assisted Selfassembly of Macro-micro Bifunctional Porous Materials, J. Mater. Chem.,2001, 11,1687.
    98. Z. Lei, Y. Zhang, H. Wang, Y. Ke, J. Li, F. Li, J. Xing, Fabrication of Well Ordered Macroporous Active Carbon with a Microporous Framework, J. Mater. Chem.,2001, 11,1975.
    99. D. Wang, F. Caruso, Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies, Adv. Mater,2001,13,350.
    100. M. C. Carbajo, A. Gomez, M. J. Toralvo, E. Enciso, Macroporous Silica and Titania Obtained Using Poly[styrene-co-(22-hydroxyethyl methacrylate)] as Template., J. Mater. Chem.,2002,12,2740.
    101. I. K. Sung, S. B. Yoon, J. S. Yu, D. P. Kim, Fabrication of Macroporous SiC from Templated preceramic polymers, Chem. Commun.,2002,1480.
    102. J. Brian, A. Stein, Periodic Macroporous Hydroxyapatite-Containing Calcium Phosphates, Chem. Mater.,2002,14,3326.
    103. M. C. Carbajo, C. Lopez, A. Comez, E. Ensio, M. J. Torralvo, Micro/Nano-Structural Properties of Imprinted Macroporous Titania and Zirconia, J. Mater. Chem.,2003,13,2311.
    104. D. Wang, F. Caruso, Lithium Niobate Inverse Opals Prepared by Templating Colloid Crystals of Polyeletrolyte-Coated Spheres, Adv. Mater.,2003,15,205.
    105. E. O. Chi, Y. N. Kim, J. C. Kim, N. H. Hur, A Macroporous Perovskite Manganite from Colloidal Templates with a Curie Temperature of 320 K, Chem. Mater.,2003,15,1929.
    106. S. Kuai, S. Badilescu, G. Bader, R. Bruning, X. F. Hu, V. Trong, Preparation of Large-Area 3D Ordered Macroporous Titania Films by Silica Colloidal Crystal Templating, Adv. Mater.,2003,15,73.
    107. M. A. Mclachlan, N. P. Johnson, R. M. D. Rue, D. W. McComb, Thin Film Photonic Crystals:Synthesis and Characterization,J. Mater. Chem.,2004,14,144.
    108. K. Busch, S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E,1998,58,3896.
    109. M. Doosje, B. J. Hoenders, J. Knoester, Photonic bandgap optimization in inverted fee photonic crystals, J. Opt. Soc. Am. B,2000,17,600.
    110. W. Dong, F. Marlow, Tuning of ordered porous skeleton structures, Microporous Mesoporous Mater.,2007,99,236.
    111. D. Hung, Z. Liu, N. Shah, Y. Hao, P. C. Searson, Finite Size Effects in Ordered Macroporous Electrodes Fabricated by Electrodeposition into Colloidal Crystal Templates,J. Phys. Chem. C,2007,111,3308.
    112. A. E. Aliev, S. B. Lee, A. A. Zakhidov, R. H. Baughman, Superconductivity in Pb inverse opal, Physica C,2007,453,15.
    113. B. Liu, Z. J. Jin, X. Z. Qu, Z. Z. Yang, A General Approach toward Opal-Inverse Opal Interlocked Materials, Macromol. Rapid Commun.,2007,28,322.
    114. W. Dong, H. Bongard, B. Tesche, F. Marlow, Inverse Opals with a Skeleton Structure:Photonic Crystals with Two Complete Bandgaps, Adv. Mater.,2002,14, 1457.
    115. W. Dong, H. Bongard, F. Marlow, New Type of Inverse Opals:Titania With Skeleton Structure, Chem. Mater,2003,15,568.
    116. J. S. King, D. P. G. E. Graugnard, C. J. Summers, Conformally Back-Filled, Non-close-packed Inverse-Opal Photonic Crystals, Adv. Mater,2006,18,1063.
    117. F. Li, Z. Wang, N. S. Ergang, C. A. Fyfe, A. Stein, Controlling the Shape and Alignment of Mesopores by Confinement in Colloidal Crystals:Designer Pathways to Silica Monoliths with Hierarchical Porosity, Langmuir,2007,23,3996.
    118. S. W. Woo, K. Dokko, K. Sasajima, T. Takei, K. Kanamura, Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres, Chem. Commun.,2006,4099.
    119. J. Wang, Q. Li, W. Knoll, U. Jonas, Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals, J. Am. Chem. Soc.,2006,128,15606.
    120. Z. Wang, F. Li, N. S. Ergang, A. Stein, Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon-Carbon Nanocomposites, Chem. Mater.,2006,18,5543.
    121. Z. Wang, A. Stein, Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites:From 3D Ordered Macro/Mesoporous Monoliths to Shaped Mesoporous Particles, Chem. Mater.,2008,20,1029.
    122. Y. Deng, C. Liu, T. Yu, F. Liu, F. Zhang, Y. Wan, L. Zhang, C. Wang, B. Tu, P. A. Webley, H. Wang, D. Y. Zhao, Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach, Chem. Mater., 2007,19,3271.
    123. S. Larach, R. E. Shrader, Electroluminescence from Boron Nitride, Phys. Rev., 1956,102,582.
    124. S. Larach, R. E. Shrader, Multiband Luminescence in Boron Nitride, Phys. Rev., 1956,104,68.
    125. L. Kleinman, J. C. Phillips, Self-Consistent Calculations for Cubic Boron Nitride, Phys. Rev.,1960,117,460.
    126. P. J. Giellisse, S. S. Mitra, J. N. Plerdl, R. D. Griffis, Lattice Infrared Spectra of Boron Nitride and Boron Monophosphide, Phys. Rev.,1967,155,1039.
    127. R. T. Paine, C. K. Narula, Synthetic Routes to Boron Nitride, Chem. Rev.,1990, 90,73.
    128. G. Lian, X. Zhang, L. Zhu, M. Tan, D. Cui, Q. Wang, A facile solid state reaction route towards nearly monodisperse hexagonal boron nitride nanoparticles, J. Mater. Chem.,2010,20,3736.
    129. C. Tang, Y. Bando, D. Golberg, Large-scale synthesis and structure of boron nitride sub-micron spherical particles, Chem. Commun.,2002,2826.
    130. X. Wang, Y. Xie, Q. Guo, Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route, Chem. Commun.,2003,2688.
    131. Y. C. Zhu, Y. Bando, L. W. Yin, D. Golberg, Hollow Boron Nitride (BN) Nanocages and BN-Nanocage-Encapsulated Nanocrystals, Chem. Eur.J.,2004,10, 3667.
    132. C. Y. Zhi, Y Bando, C. C. Tang, D. Golberg, Effective precursor for high yield synthesis of pure BN nanotubes, Solid State Commim.,2005,135,67.
    133. Y. J. Chen, H. Z. Zhang, Y. Chen, Pure boron nitride nanowires produced from boron triiodide, Nanotechnology,2006,17,786.
    134. Z. G. Chen, J. Zou, G. Liu, F. Li, Y. Wang, L. Z. Wang, X. L. Yuan, T. Sekiguchi, H. M. Cheng, G. Q. Lu, Novel Boron Nitride Hollow Nanoribbons, ACS Nano,2008, 2,2183.
    135. Y. Qiu, J. Yu, J. Yin, C. Tan, X. Zhou, X. Bai, E. Wang, Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers, Nanotechnology,2009,20,345603.
    136. H. Zhang, J. Yu, Y. Chen, J. F. Gerald, Conical Boron Nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method,J. Am. Ceram. Soc.,2006, 89,675.
    137. R. Gao, L. Yin, C. Wang, Y. Qi, N. Lun, L. Zhang, Y. X. Liu, L. Kang, X. Wang, High-Yield Synthesis of Boron Nitride Nanosheets with Strong Ultraviolet Cathodoluminescence Emission, J. Phys. Chem. C,2009,113,15160.
    138. K. Bao, F. Yu, L. Shi, S. Liu, X. Hu, J. Cao, Y T. Qian, Synthesis of highly crystalline rhombohedral BN triangular nanoplates via a convenient solid state reaction, J. Solid State Chem.,2009,182,925.
    139. M. Corso, W. Auwarter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder, Boron Nitride Nanomesh, Science,2004,303,217.
    1. Korchev A S, Bozack M J, Slaten B L, et al. Polymer-Initiated Photogeneration of Silver Nanoparticles in SPEEK/PVA Films:Direct Metal Photopatterning. Journal of the American Chemical Society,2004,126(1):10-11.
    2. Huynh W U, Dittmer J J, Alivisators A P. Hybrid Nanorod-Polymer Solar Cells. Science,2002,295(5564):2425-2427.
    3. Maclachlan M J, Ginzburg M, Coombs N, et al. Shaped Ceramics with Tunable Magnetic Properties from Metal-Containing Polymers. Science,2000,287(5457): 1460-1463.
    4. Zhu Y Q, Jin Y Z, Kroto H W, et al. Co-catalysed VLS growth of novel ceramic nanostructures. Journal of Materials Chemistry,2004,14(4):685-689.
    5. Schuffenhauer C, Biro R P, Tenne R. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). Journal of Materials Chemistry,2002,12(5): 1587-1591.
    6. Pauli T K, Bhattacharya P, Bose D N. Characterization of pulsed laser deposited boron nitride thin films on InP. Applied Physics Letters,1990,56(26):2648-2650.
    7. Suh H W, Kim G Y, Jung Y S, et al. Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. Journal of Applied Physics,2005,97(4): 044305.
    8. Li Y B, Bando Y, Golberg D. MoS2 nanoflowers and their field-emission properties. Applied Physics Letters,2003,82(12):1962-1964.
    9. Dana S S. The Properties of Low Pressure Chemical Vapor Deposited Boron Nitride Thin Films. Materials Science Forum,1990,54-55:229-260.
    10. Miyoshi K, Buckley D H, Pouch J J, et al. Mechanical strength and tribological behavior of ion-beam-deposited boron nitride films on non-metallic substrates. Surface and Coatings Technology,1987,33:221-233.
    11. Condon J B, Holcombe C E, Tohnson D H, et al. The kinetics of the boron plus nitrogen reaction. Inorganic Chemistry,1976,15(9):2173-2179.
    12. Schwetz K A, Lipp A. Ulmann's Encylopedia of Industrial Chemistry. Weinheim: VCH,1985.
    13. Economy J, Anderson R. A New Route to Boron Nitride. Inorganic Chemistry, 1966,5(6):989-992.
    14. Tang C, Bando Y, Golberg D. Large-scale synthesis and structure of boron nitride sub-micron spherical particles. Chemical Communications,2002,23:2826-2827.
    15. Deepak F L, Vinod C P, Mukhopadhyay K, et al. Boron nitride nanotubes and nanowires. Chemical Physics Letters,2002,353(5-6):345-352.
    16. Zhang H Z, Gerald J F, Yu J, et al. Conical Boron Nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method. Journal of the American Ceramic Society, 2006,89(2):675-679.
    17. Chen X, Wang X, Liu J, et al. A reduction-nitridation route to boron nitride nanotubes. Applied Physics A,2005,81(5):1035-1037.
    18. Chen L Y, Gu Y L, Shi L, et al. A room-temperature approach to boron nitride hollow spheres. Solid State Communications,2004,130(8):537-540.
    19. Chen L Y, Gu Y L, Shi L, et al. A Low-temperature Coreduction Route to Boron Nitride Flakes and Hollow Spheres. Chemistry Letters,2004,33(2):144-145.
    20. Yu H M, Huang X X, Wen G W, et al. Synthesis of rose-like boron nitride particles with a high specific surface area. Materials Research Bulletin,2010,45(8): 1013-1016.
    21. Caicedo J M, Bejarano G, Zambrano Q et al. Cubic and hexagonal boron-nitride (c-BN/h-BN) thin films deposited in situ by r.f. magnetron sputtering. Physica Status Solidi B,2005,242(9):1920-1923.
    22. Wu J M, Qi B. Low-Temperature Growth of a Nitrogen-Doped Titania Nanoflower Film and Its Ability To Assist Photodegradation of Rhodamine B in Water. The Journal of Physical Chemistry C,2007,111(2):666-673.
    1. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions, J. Am. Chem. Soc.2002,124,7642.
    2. H. N. Wang, Y. H. Wang, X. F. Zhou, L. Zhou, J. W. Tang, J. Lei, C. Z. Yu, Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating, Adv. Funct. Mater.2007,17,613.
    3. X. L. Li, T. J. Lou, X. M. Sun, Y. D. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors, Inorg. Chem.2004,43,5442.
    4. D. G. Shchukin, A. A. Patel, G. B. Sukhorukov, Y. M. Lvov, Nanoassembly of Biodegradable Microcapsules for DNA Encasing, J. Am. Chem. Soc.2004,126,3374.
    5. D. Golberg, Y. Bando, C. C. Tang, C. Y. Zhi, Boron Nitride Nanotubes, Adv. Mater. 2007,19,2413.
    6. K. P. Velikov, A. van Blaaderen, Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica, Langmuir.2001,17,4779.
    7. J. Goldberger, R. He, Y. F. Zhang, S. Lee, H. Q. Yan, H. J. Choi, P. D. Yang, Single-crystal gallium nitride nanotubes, Nature 2003,422,599.
    8. L. Q. Xu, Y. Y. Peng, Z. Y Meng, W. C. Yu, S. Y Zhang, X. M. Liu, Y. T. Qian, A Co-pyrolysis Method to Boron Nitride Nanotubes at Relative Low Temperature, Chem. Mater.2003,15,2675.
    9. R. Tenne, M. Remskar, A. Enyashin, G. Seifert, Inorganic Nanotubes and Fullerene-Like Structures (IF), Top. Appl. Phys.2008,111,631.
    10. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Boron Nitride Nanotubes, Science 1995,269,966.
    11. D. Golberg, Y Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Nanotubes in boron nitride laser heated at high pressure, Appl. Phys. Lett.1996,69, 2045.
    12. O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, W. E. Buhro, CVD Growth of Boron Nitride Nanotubes, Chem. Mater.2000,12,1808.
    13. W. Q. Han, Y. Bando, K. Kurashima, T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Appl. Phys. Lett.1998, 73,3085.
    14. Y. Chen, J. Fitz Gerald, J. S. Williams, S. Bulcock, Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling, Chem. Phys. Lett.1999, 299,260.
    15. Z. H. Yang, L. Shi, L. Y. Chen, Y. L. Gu, P. J. Cai, A. W. Zhao, Y T. Qian, Synthesis, characterization and properties of novel BN nanocages from a single-source precursor, Chem. Phys. Lett.2005,405,229.
    16. M. Kruk, M. Jaroniec, Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials, Chem. Mater.2001,13,3169.
    17. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Structure and Electronic Properties of Carbon Nanotubes, J. Phys. Chem. B 2000,104,2794.
    18. M. Chhowalla, G. A. J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature 2000,407,164.
    19. J. Dai, L. Q. Xu, Z. L. Fang, D. P. Sheng, Q. F. Guo, Z. Y Ren, K. Wang, Y. T. Qian, A convenient catalytic approach to synthesize straight boron nitride nanotubes using synergic nitrogen sources, Chem. Phys. Lett.2007,440,253.
    20. R. Z. Ma, Y. Bando, H. W. Zhu, T. Sato, C. L. Xu, D. H. Wu, Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature,J. Am. Chem. Soc.2002,124,7672.
    21. J. C. S. Wu, W. C. Chen, A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde, Appl. Catal. A 2005,289,179.
    22. L. Hou, F. M. Gao, G. F. Sun, H. Y. Gou, M. Tian, Synthesis of High-Purity Boron Nitride Nanocrystal at Low Temperatures, Cryst. Growth Des.2007,7,535.
    23. J. G. Speight, Lange's Handbook of Chemistry,16th ed., McGraw-Hill, New York, 2004.
    24. J. H. Ma, J. Li, G. X. Li, Y. G Tian, J. Zhang, J. F. Wu, J. Y. Zheng, H. M. Zhuang, T. H. Pan, One simple synthesis route to whisker-like nanocrystalline boron nitride by the reaction of NaBH4 and NaN3, Mater. Res. Bull.2007,42,982.
    25. L. Q. Xu, Y. Y Peng, Z. Y. Meng, D. B. Wang, W. Q. Zhang, Y T Qian, Fabrication and characterization of hollow spherical boron nitride powders, Chem. Phys. Lett.2003,381,74.
    26. L. W. Yin, Y Bando, M. S. Li, D. Golberg, Growth of Semiconductoring GaN Hollow Spheres and Nanotubes with Very Thin Shells via a Controllable Liquid-Gallium-Gas Interface Chemical Reaction, Small.2005,1,1094.
    1. B. T. Holland, C. F. Blanford and A. Stein, Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids, Science,1998,281, 538.
    2. C. F. Blanford, H. W. Yan, R. C. Schroden, M. A-Daous and A. Stein, Gems of Chemistry and Physics:Macroporous Metal Oxides with 3D Order, Adv. Mater.,2001, 13,401.
    3. Z. Y. Yuan and B. L. Su, Insights into hierarchically meso-macroporous structured materials,J. Mater. Chem.,2006,16,663.
    4. G. Subramanian, V. N. Manoharan, J. D. Thorne and D. J. Pine, Ordered Macroporous Materials by Colloidal Assembly:A Possible Route to Photonic Bandgap Materials, Adv. Mater:,1999,11,1261.
    5. A. Esmanski and G. A. Ozin, Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries, Adv. Fund. Mater.,2009,19,1999.
    6. Christian, M. Mitchell, D.-P. Kim and P. J. A. Kenis, Ceramic microreactors for on-site hydrogen production,J. Catal.,2006,241,235.
    7. T. Y. Ma, X. J. Zhang, G S. Shao, J. L. Cao and Z. Y. Yuan, Ordered Macroporous Titanium Phosphonate Materials:Synthesis, Photocatalytic Activity, and Heavy Metal Ion Adsorption, J. Phys. Chem. C,2008,112,3090.
    8. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund and C. R. Martin, Smart Nanotubes for Bioseparations and Biocatalysis, J. Am. Chem. Soc., 2002,124,11864.
    9. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia and M. J. Sailor, Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications, Science,2003,299,2045.
    10. W. Gao, X. H. Xia, J. J. Xu and H. Y Chen, Three-Dimensionally Ordered Macroporous Gold Structure as an Efficient Matrix for Solid-State Electrochemiluminescence of Ru(bpy)32+TPA System with High Sensitivity, J. Phys. Chem. C,2007,111,12213.
    11. H. N. Li, L. Zhang, H. X. Dai and H. He, Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls, Inorg. Chem.,2009,48,4421.
    12. H. Wang, X. D. Li, J. S. Yu and D. P. Kim, Fabrication and characterization of ordered macroporous PMS-derived SiC from a sacrificial template method, J. Mater. Chem.,2004,14,1383.
    13. C. H. Sun, H. X. Yu, L. Q. Xu, Q. Ma and Y T. Qian, Recent Development of the Synthesis and Engineering Applications of One-Dimensional Boron Nitride Nanomaterials, J. Nanomater.,2010,163561.
    14. J. F. Janik, W. C. Ackerman, R. T. Paine, D. W. Hua, A. Maskara and D. M. Smith, Boron Nitride as a Selective Gas Adsorbent, Langmuir,1994,10,514.
    15. P. Dibandjo, L. Bois, F. Chassagneux, D. Cornu, J. M. Letoffe, B. Toury, F. Babonneau and P. Miele, Syntheis of Boron Nitride with ordered Mesostructure, Adv. Mater.,2005,17,571.
    16. P. Dibandjo, F. Chassagneux, L. Bois, C. Sigala and P. Miele, Synthesis of boron nitride with a cubic mesostructure, Microporous Mesoporous Mater.,2006,92,286.
    17. B. Rushton and R. Mokaya, Mesoporous boron nitride and boron-nitride-carbon materials from mesoporous silica templates. J. Mater. Chem.,2008,18,235.
    18. A. Vinu, M. Terrones, D. Golberg, S. Hishita, K. Ariga and T. Mori, Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods, Chem. Mater.,2005,17,5887.
    19. I. K. Sung, T. S. Kim, S. B. Yoon, J. S. Yu and D. P. Kim, Fabrication of nanostructured SiC and BN from templated preceramic Polymers, Stud. Surf. Sci. Catal.,2003,146,547.
    20. X. L. Meng, N. Lun, Y. Q. Qi, J. Q. Bi, Y. X. Qi, H. L. Zhu, F. D. Han, Y. J. Bai, L. W. Yin and R. H. Fan, Low-Temperature Synthesis of Meshy Boron Nitride with a Large Surface Area, Eur. J. Inorg, Chem.,2010,3174.
    21. L. X. Lin, Z. H. Li, Y. Zheng and K. M. Wei, Synthesis and Application in the CO Oxidation Conversion Reaction of Hexagonal Boron Nitride with High Surface Area, J. Am. Ceram. Soc.,2009,92,1347.
    22. C. H. Sun, C. L. Guo, X. J. Ma, L. Q Xu and Y T. Qian, A facile route to prepare boron nitride hollow particles at 450 ℃,J. Cryst. Growth,2009,311,3682.
    23. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota,1979.
    24. D. Y. Wang, R. A. Caruso and F. Caruso, Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres -- A Novel Route to Tune Pore Morphology, Chem. Mater.,2001,13,364.
    25. G. Gundiah, A. Govindaraj and C. N. R. Rao, Macroporous carbons prepared by templating silica spheres, Mater. Res. Bull.,2001,36,1751.
    26. W. C. Li, A. H. Lu, C. Weidenthaler and F. Schuth, Hard-Templating Pathway To Create Mesoporous Magnesium Oxide, Chem. Mater.,2004,16,5676.
    27. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London,1982.
    28. M. Sadakane, C. Takahashi, N. Kato, H. Ogihara, Y. Nodasaka, Y. Doi, Y. Hinatsu and W. Ueda, Three-Dimensionally Ordered Macroporous (3D0M) Materials of Spinel-Type Mixed Iron Oxides. Synthesis, Structural Characterization, and Formation Mechanism of Inverse Opals with a Skeleton Structure, Bull. Chem. Soc. Jpn.,2007,80,677.
    29. V. L. Solozhenko, A. G. Lazarenko, J.-P. Petitet and A. V. Kanaev, Bandgap energy of graphite-like hexagonal boron nitride, J. Phys. Chem. Solids,2001,62, 1331.
    30. C. H. Lee, M. Xie, V. Kayastha, J. S. Wang and Y. K. Yap, Patterned Growth of Boron Nitride Nanotubes by Catalytic Chemical Vapor Deposition, Chem. Mater., 2010,22,1782.
    31. Y. Huang, Y. Bando, C. C. Tang, C. Y. Zhi, T. Terao, B. Dierre, T. Sekiguchi and D. Golberg, Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature, Nanotechnology,2009,20,085705.
    32. Z. G. Chen, J. Zou, G. Liu, F. Li, Y. Wang, L. Z. Wang, X. L. Yuan, T. Sekiguchi, H. M. Cheng and G. Q. Lu, Novel Boron Nitride Hollow Nanoribbons, ACS Nano, 2008,2,2183.
    33. R. Gao, L. W. Yin, C. X. Wang, Y. X. Qi, N. Lun, L. Y. Zhang, Y X. Liu, L. Kang and X. F. Wang, High-Yield Synthesis of Boron Nitride Nanosheets with Strong Ultraviolet Cathodoluminescence Emission, J. Phys. Chem. C,2009,113,15160.
    34. Y. C. Zhu, Y. Bando, D. F. Xue, T. Sekiguchi, D. Golberg, F. F. Xu and Q. L. Liu, New Boron Nitride Whiskers:Showing Strong Ultraviolet and Visible Light Luminescence,J. Phys. Chem. B,2004,108,6193.
    35. L. Q. Xu, Y. Y. Peng, Z. Y. Meng, W. C. Yu, S. Y. Zhang, X. M. Liu and Y. T. Qian, A Co-pyrolysis Method to Boron Nitride Nanotubes at Relative Low Temperature, Chem. Mater.,2003,15,2675.
    36. J. G. Speight, Lange's Handbook of Chemistry,16th ed., McGraw-Hill, New York, 2004.
    37. L. S. Yang, H. X. Yu, L. Q. Xu, Q. Ma and Y T. Qiang, Sulfur-assisted synthesis of nitride nanocrystals, Dalton Trans.,2010,39,2855.
    38. Z. C. Ju, Z. Xing, C. L. Guo, L. S. Yang, L. Q. Xu and Y. T. Qian, Sulfur-Assisted Approach for the Low-Temperature Synthesis of β-SiC Nanowires, Eur:J. Inorg. Chem.,2008,24,3883.
    39. X. P. Hao, Y. Z. Wu, J. Zhan, J. X. Yang, X. G Xu and M. H. Jiang, A Facile Sulfur Vapor Assisted Reaction Method To Grow Boron Nitride Nanorings at Relative Low Temperature, J. Phys. Chem. B,2005,109,19188.
    40. G Lian, X. Zhang, L. L. Zhu, M. Tan, D. L. Cui and Q. L. Wang, A facile solid state reaction route towards nearly monodisperse hexagonal boron nitride nanoparticles, J. Mater. Chem.,2010,20,37-36.
    41. Y. J. Xiong, Y. Xie, Z. Q. Li, X. X. Li and R. Zhang, Aqueous synthesis of group IIIA nitrides at low temperature, New J. Chem.,2004,28,214.
    42. F. Xu, Y. Xie, X. Zhang, S. Y. Zhang and L. Shi, A benzene-thermal metathesis route to pure metastable rocksalt GaN, New J. Chem.,2003,27,565.
    43. J. Q. Hu, B. Deng, W. X. Zhang, K. B. Tang and Y. T. Qian, Gallium nitride synthesis from sodium azide using iodine as a heat sink and diluent, Chem. Phys. Lett., 2002,351,229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700