超低碳钢铁素体低温变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属铁素体低温变形技术是一种新的生产工艺,适用于低碳钢和超低碳钢的加工。国外有关超低碳钢铁素体低温变形方面的研究起步较早,研究的范围也比较广泛,涉及的内容较多,研究内容包括变形工艺制度对加工产品组织和性能的影响、变形工艺制度对热加工过程中静态、动态再结晶的影响、变形工艺制度对产品深冲性能的影响、微合金元素对变形金属组织和性能的影响等。与此相应的是国外已经将这种金属加工新技术成功地应用于超薄规格、深冲带钢的生产中。但是国内有关超低碳钢铁素体变形方面的研究起步较晚,研究内容非常少、研究深度不足,目前已经发表的10余篇研究论文大部分是关于超低碳钢铁素体变形时的织构方面的,关于超低碳钢铁素体变形时的一些基本的热变形行为方面的报道很少,比如超低碳钢铁素体变形时的流动应力模型还没有报道;超低碳钢铁素体变形过程中的动态再结晶、静态再结晶报道的也极少。与此相对应的是国内目前还没有将这一具有一系列优点的新的金属加工工艺应用到超薄深冲带钢的生产中。
     低温变形时金属的物理冶金学行为与高温奥氏体变形有较大的不同,变形之前和变形过程中,被加工金属会发生奥氏体→铁素体相变,这种相变对变形过程中和变形后的金属冶金行为都有重要的影响,铁素体的相变和再结晶是低温变形过程中必然的物理冶金学现象。
     本文在查阅大量文献资料的基础上(大部分是英文文献),根据国内外研究现状,确定将“超低碳钢铁素体低温变形行为研究”作为研究方向,研究内容包括:变形工艺参数对超低碳钢铁素体变形时流动应力的影响、变形过程中的动态再结晶、道次间的静态再结晶等,以期为超低碳钢铁素体低温变形在我国钢铁工业生产中的应用、变形工艺参数的合理制定等提供理论依据。同时丰富我国在这一领域的理论研究成果。
     本研究采用理论研究与实验研究相结合的方法,选择武汉钢铁公司实际生产的一种超低碳Ti-IF钢作为研究对象,在理论分析和热模拟实验的基础上,比较系统、全面地研究了该钢种的铁素体低温变形行为,得到了以下几个主要结论。
     (1)超低碳IF钢铁素体低温变形时,变形工艺参数对流动应力的影响呈现出与奥氏体区高温变形不同的特征,在分析影响流动应力因素的基础上,本文经过理论推导,得到适用于超低碳钢铁素体低温变形条件的新的流动应力本构模型,并在热模拟实验的基础上,建立了超低碳IF钢铁素体低温变形条件下的流动应力本构方程。这个研究结果是本文的主要内容之一,也是本研究的创新点之一。
Ferrite deformation of steels at warm temperature is a new production technology, which is suitable to produce low carbon(LC) and ultra low carbon steels(ULC).The researchers in foreign countries began research on the low temperature processing in ferrite region of ULC many years ago and their researches involved many different fields, including influences of deformation technology schedule on product microstructure and properties, dynamic recrysterllization and static recrysterllization during deformation and deep drawing property of products, influences of microalloy elements on microstructure and properties of deformed metals etc. At the same time, this new technology of processing steels has been successfully used in the production of ultra thin strip and deep drawable steels. But the researches in this field in China began very late and research fields are very few. About 10 research papers published so far mainly dealt with the texture of products under the condition of ferrite deformation of ULC at warm temperature. In general, so far there have been few papers about basic deformation behaviors of ULC, such as flow stress model, dynamic recrysterllization and static recrysterllization during ferrite processing of ULC. Corresponding to this situation, this new metal processing technology has not been used in the production of steels in China.
     Changing the deformation temperature from the“hot”to“warm”or“low temperature”regime leads to a considerable change in the physical metallurgy. During, or before, ferrite deformation (warm deformation), the workpiece undergoes a transformation from the austenite phase to the ferrite phase. This change in structure has a significant impact on the product metallurgy both during and after forming. The transformation and recrysterllization of ferrite are therefore an integral part of the physical metallurgy of ferrite (warm) deforamtion.
     According to the research situation in foreign countries and in China,“The Researches on Deformation Behaviors of Ferrite Processing of Ultra Low Carbon Steels at Low Temperature”was selected as the research item on the basis of reading a lot of research literature. The influences of deformation technology parametres on flow stress , dynamic recrysterllization and static recrysterllization during ferrite deformation of ULC etc are included in the research in this dissertation. The purposes of research in the dissertation are to provide the theoretical basis for deciding the suitable
引文
[1] Hiroshi Takechi. Metallurgical Aspects on Interstitial Free Sheet Steel from Industrial Viewpoints, ISIJ International,1994, Vol.34(1), pp.1~8.
    [2] J. Neutjens, J.B.De Ball, Ph.Harlet et al. The Use of Ferritic Rolling for the Production of Soft Steel Grades and Tin Plate Can Body Applications, 41ST MWSP CONF. PROC., ISS, 1999,VOL. XXXVII, pp.963~967.
    [3] 毛新平,薄板坯连铸连轧铁素体轧制工艺,钢铁,2004,Vol.39(5),pp.71~74。
    [4] B. Appell. Feritte Rolling. Journal of Mechanical Working Technology, 1978, (2), pp.197~203.
    [5] C. Hayashi, T.Okamoto. Manufacture of Deep-drawing Sheet by Warm Rolling, Sheet Metal Industries, 1978, (11):pp.1234~1244.
    [6] M.R. Barnert and J.J. Jonas. Influence of Ferrite Ro11ing Temperature on Microstructure and Texture in Deformed Low C and IF Steel.ISIJ International,l 997,37(7), pp.697~705.
    [7] M.R. Barnett and J.J. Jonas. Distinctive Aspects of the Physical Metallurgy of Warm Rolling, ISIJ International,l 999,39(9), pp.856~873.
    [8] A.O. MPHREYS, D.S.LIU, M.R.TOTOGHINEZHAD and J.J. JONAS, Effect of Chromium and Boron Additions on the Warm Rolling Behavior of Low Carbon Steels, ISIJ International, 2002, Vol.42, Supplement, pp.S52~S56.
    [9] P.R.CETLIN, S. YUE and J.J.JONAS, Simulated Rod Rolling of Interstitial Free Steels, ISIJ International, 1993, 38(4), pp.488~497.
    [10] M.R.Barnett. Role of In-grain Shear Bands in the Nucleation of <111>//ND Recrystallization Textures in Warm Rolled Steel, ISIJ International, 1998, 38(1), pp.78~85.
    [11] M.R.Barnett and J.J.Jonas. Influence of Ferrite Rolling Temperature on Microstructure and Texture in Deformed Low C and IF Steels ISIJ International, 1997, 37(7), pp.697~705.
    [12] M.R.Barnett and J.J.Jonas. Influence of Ferrite Rolling Temperature on Grain Size and Texture in Annealed Low C and IF Steels ISIJ International, 1997, 37(7), pp.706~714.
    [13] I. B. Timokhina, A. I. Nosenkov, A. O. Humphreys, J. J. Jonas et al. Effect of alloying elements on the microstructure and texture of warm rolled steels, ISIJ International, 2004, 44(4), pp.717~724.
    [14] D.S. Liu,A. O. Humphreys,R.Mohammad Toroghinezhad,John J. Jonas.The Deformation Microstructure and Recrystallization Behavior of Warm Rolled Steels,ISIJ International, 2002, 42(7), pp.751~759.
    [15] M.R.Toroghinejad, A.O.Humphreys, D. Liu, F.Ashrafizadeh, A.Najafizadeh and J.J.Jonas.Effect of Rolling Temperature on the Deformation and Recrystallization Textures of Warm-Rolled Steels, Metallurgical and Materials Transactions A, 2003, 34A, pp.1163~1169.
    [16] A.Tomitz and R.Kaspar. Deep-drawable Sheet of Steel Produced as Hot Strip by Ferritic Rolling. In: EUROMAT 99, Weinheim 2000,Vol. 7, pp.94-99.
    [17] A.Tomitz and R.Kaspar. Deep-drawable Thin-gauge Hot Strip of Steel as a Substitution for Cold Strip. ISIJ Int. 2000, 40(9), pp.927-931.
    [18] A.Tomitz and R.Kaspar. Ferritic Rolling to Produce "Soft" Deep-drawable Thin Hot Strips. steel res. 71, 2000,6+7, pp.233-238.
    [19] R.Kaspar and A. K?the.Gebrauchs- und Verarbeitungseigenschaften eines Neuen Mikrolegierten Schmiedestahls mit Ferrit-Bainit/Martensit-Gefüge. In Schlu?bericht, VDEh- Gesellschaft für F?rderung der Eisenforschung mbH, Düsseldorf 2000, pp.1-64.
    [20] R.Kaspar, L.Tosal-Martinez, J.Richter et al. Eigenschaftspotential von Mikrolegierten St?hlen für Gesenkschmieden. Stahl u. Eisen, 2000, (10), pp.95-102.
    [21] R.Kaspar and A.Tomitz,. Ferritic Rolling in the Thin Slab Direct Rolling Technology. Intern. Conf. on Thermomechanical Processing of Steels, London 2000,Vol. 2, pp.607-614.
    [22] V. LEROY, A. DE PAEPE, J.-C. HERMAN. Ferritic Hot Rolling of Thin Gauge Hot Strips : Processing and Properties, International Symposium Modern LC and ULC Sheet Steels for Cold Forming : Processing and Properties, RWTH, Aachen, Germany, March 30 - April 1, 1998, Proceedings, pp. 51-60.
    [23] J.C. HERMAN, V. LEROY. Ferritic Hot Rolling and the Potential for Hot Rolled and Cold Rolled Products. The Future of Flat Rolled Production, Chicago, June 11-14, 1995, Vol. 2, Section 6.
    [24] G. LANNOO, A. DE PAEPE, J.-C. HERMAN. Ferrite Rolling on a Hot Strip Mill : Deformation Resistance and Microstructural Evolution, Thermomechanical Processing of Steels, May 24-26, 2000, London, UK,Proceedings, Vol. 2, pp. 639-648.
    [25] G.H.AKBARI, C.M.SELLARS and J.A.WHITEMAN. Microstructural Development during Warm Rolling of an IF Steel, Acta mater, 1997, Vol.45(12), pp.5047~5058.
    [26] H.Grossheim, K.Schotten and W.Bleck: Physical simulation of hot rolling in the ferrite range of steels, J. Materials Process. Technol., 1996, Vol.60, pp. 609~614.
    [27] H. Wehage, Ul. Skoda-Dopp,U. Quitmann and W. Sauer. New Trends in Hot Flat Rolling Technologies and Pass Schedule Optimization, MPT International, 1998,(4), pp.60~67.
    [28] M.R.Barnett. Modern LC and ULC Sheet Steels for Cold Forming: Processing and Properties, ed. By W.Bleck. Verlag Mainz, Achen, 1998, Vol.1, pp.61~68.
    [29] P.Messien, J.C.Herman, V.Leory, Ph.et al. Development in the Annealing of Sheet Steels,TMS-AIME, Warrendale, PA, 1992 , 287~295.
    [30] C.Huang,E.B.Hawbolt, X.Chen, T.R.Meadowcroft and D.K.Matlock, Flow Stress Modeling and Warm rolling Simulation Behavior of Two Ti-Nb Interstitial-Free Steels in the Ferrite Gerion, Acta mater. 2001, Vol.49(8), pp.1445~1452.
    [31] C.M.Sellars. Basics of Modelling for control of microstructure in thermomechanical. controlled Processing, Ironmaking and Steelmaking, 1995, 22(6), 459-464.
    [32] W. Bleck. Processing, Properties and Fabrication of Ultra-Low-Carbon Steels,ISS Continuing Education. Indianapolis, IN, 1997, pp.3.
    [33] J.M. Cabrara et al. Modelling the flow behavior of a medium carbon microalloged steel under hot working conditions. METALLURGICAL AND MATERIALS TRANSACTIONS PHYSICAL METALLURGY AND MATERIAL , 1997, 28A , pp. 2233-2244.
    [34] A.O.MPHREYS. D.S.LIU, M.R.TOTOGHINEZHAD et al. Effect of Chromium and Boron Additions on the Warm Rolling Behavior of Low Carbon Steels, ISIJ International, 2002, Vol.42, Supplement, pp.S52~S56.
    [35] Najafi-Zadeh, S.Yue and J.J.Jonas. Influence of Hot Strip Rolling Parameters on Austenite Recrystallization in Interstitial Free Steels, ISIJ International,l992,32(2), pp.213~221.
    [36] A.Najafi-Zadeh, J.J.Jonas and S.Yue: Grain Refinement by Dynamic Recrystallization During Simulated Warm-Rolling of Interstitial Free Steels, Metallurgical Transactions A, 1992, Vol. 23A, pp. 2607-2617.
    [37] L.N.Pussegoda and J.J.Jonas. Comparison of Dynamic Recrystallization and Conventional Controlled Rolling Schedules by Laboratory Simulation ISIJ International, 1991, 31(3), pp.278~288.
    [38] P.D.Hodgson,R.E.Gloss and G.L.Dunlop. Mechanical Working and Steel Processing Conference, Iron and Steel Socity of AIME, Warrendale, PA, 1990, pp.570.
    [39] R.Pradhan. Metallurgy of Vacuum-Degassed Steel Products, The Minerals, Metals and Materials Society, Warrenddale, PA, 1990, pp.309.
    [40] Siamak SERAJZADEH. Prediction of Flow Behavior during Warm Working, ISIJ International, 2004, Vol.44(11), pp.1867~1885.
    [41] A.Schmickl, D.Yu, C.Killmore,D.Langley et al. Prediction of Ferrite Grain Size after Warm Deformation of Low Carbon Steel. ISIJ International, 1996, 36(10), pp.1279~1285.
    [42] Takehide SENUMA and Kaoru KAWASAKI Yawata. Texture Formation in Ti-bearing IF Steel Sheets throughout the Rolling and Annealing Processes in Terms of the Influence of Hot Rolling Conditions on Deep Drawability, ISIJ International, 1994, Vol.34(1), pp.51~60.
    [43] H.Kobayashi. Microstructural Development in Ti Bearing Interstitial Free Steel withSimulated Hot Rolling Practice. ISIJ International, 1992,32(7), pp.873~882.
    [44] Y.Matsubara, N.Tsuji and Y.Saito. Dynamic Recrystallization of Ferrite in IF Steel, Proc. of the Int. Conf. on Thermomechanical Processing of Steels and Other Materials (Thermec'97), edited by T.Chandra, TMS, 1998, pp.653-659.
    [45] H.Langner, W.Bleck and C.Greisert. Modern LC and ULC Sheet Steels for Cold Forming: Processing and Properties, ed. By W.Bleck, Verlag Mainz, Achen, 1998, pp.301~309.
    [46] G. H.Akbari, C. M.Sellars and J. A.Whiteman. Static restoration processes in warm rolled interstitial free steel Acta Mater., 1997, 45(12), 5047~5058.
    [47] M.R.Barnett. Role of In-grain Shear Bands in the Nucleation of <111>//ND Recrystallization Textures in Warm Rolled Steel. ISIJ International, 1998, 38(1), 78~85.
    [48] (法)De Paepe 等,可成形热轧薄带钢生产的冶金学问题,世界钢铁,2001 年,第 4 期,p26~30. 陈锐红译自《La Revue Metallurgie》,2000,No.7+8, pp.905~912.
    [49] (德)A.Tomitz 等,可替代冷轧带钢的薄规格深冲热轧带钢,世界钢铁,2001 年第 6 期,p63~66。张宇清译自《JSIJ International》,Vol.40, 2000,No.9, 927~931.
    [50] K-K Um, H-T Jeong, J-K An, D. N. Lee, G. Kim, and O Kwon, Effect of Initial Sheet Thickness on Shear Deformation in Ferritic Rolling of IF-steel Sheets, ISIJ International, 2000, 40(1), pp.58-64,
    [51] KK Um, HT Jeong, JK An, and DN Lee, Effect of Roll Bite Geometry on Shear Deformation in Ferritic Rolling of IF-steel Sheets, NRC Research Press, Vol. 1, pp.779~784。
    [52] J.-F. Willem, P. Harlet, D. Bouquegneau and C. Hugé,Impact of Ferritic Rolling Schedule on Oxide Scale Formation, Pickling Rate and Cost Price, La Revue de Métallurgie, July-August 2001, No.7-8, pp. 709-717.
    [53] 毛新平. 薄板坯连铸连轧铁素体轧制工艺,钢铁,2004,Vol.39(5),pp.71~74。
    [54] 刘正东、杨刚、房昕等. 铁素体区热轧的研究与应用,轧钢,2002,Vol.19(2),pp.37~38。
    [55] 刘正东、董瀚、干勇. 基于 CSP 铁素体轧制的数学模型,2002 年广州连铸连轧国际会议论文集,2002,pp.319~323。
    [56] 陈礼斌、李芬、齐长发. 薄板连铸连轧生产线中铁素体轧制工艺描述,中国冶金,2003, Vol.66 (5),pp.135~137。
    [57] 赵昆、何晓明、吴景晖等. 铁素体轧制力模型的改进,轧钢,2000,Vol.17(2),pp.8~9,16。
    [58] 赵昆、王昭东、吴景晖等. IF 钢铁素体区热变形后的静态软化行为,钢铁研究学报,1999,Vol.11(4),pp.18~21。
    [59] 王昭东、何晓明、赵昆等. Ti-IF 钢铁素体区热变形行为研究和 Zener-Hollomen 参数方程的建立,材料科学与工艺,2000,Vol.8(4),pp.6~10。
    [60] 左军. 超低碳钢热金属变行抗力研究及工业应用,四川冶金,2002,(3),pp.7~9。
    [61] 左训伟、李志杰、赵嘉蓉. IF 钢多道次热变形流变应力的研究,热加工工艺,2005,(3),pp. 17~18,21。
    [62] 李云. 铁素体区热轧工艺对 Ti-IF 钢组织结构影响的研究(硕士),山东,山东大学,2002。
    [63] 李自刚. IF 钢铁素体区轧制的工艺研究(博士后士),上海,上海交通大学,2000。
    [64] Ph.Harlet, F.Beco, P. Cantinieaux et al. Few Soft Grades Produced by Ferrite Rolling at Cockerill Sambre, International Symposia on Low Carbon Steels for the 90’. TMS, 1993. pp.389~396.
    [65] G. J.McManus. Ferrite Rolling of Hot Rolled Sheet: Successful Use of New Technology Could Open Doors. Iron and Steel Engineer, 1995, (8). pp.53~54.
    [66] E.I.Poloak and J.J.Jonas. Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation. ISIJ International, 2003, 43(5), pp.684~691.
    [67] A.Kirihata, F.Siciliano, T.M.Maccagno and J.J.Jonas. Mathematical Modelling of Mean Flow Stress during the Hot Strip Rolling of Multiply-alloyed Medium Carbon Steels. ISIJ International, 1998, 38(2), pp.187~195.
    [68] 赵志业主编. 金属塑性加工力学. 北京. 冶金工业出版社. 2003. pp.81.
    [69] 许永顺、柳建韬、聂明等. 金属热变形应力-应变曲线数学模型的研究与应用. 应用科学学报,1997,15(4),pp.379~384.
    [70] 周纪华、管克智、刘 等. 热轧碳钢流动应力的数学模型. 北京科技大学学报,1991,13(1),pp.20~25。
    [71] LIU Fang, SHAN DE-bin, LV Yan et al. Prediction of 2A70 aluminum alloy flow stress based on BP artifical neural network, Journal of Harbin Institute of Technology, 2004, Vol.11(4), pp. 369~371.
    [72] 魏岩、王昭东、韩冰等. NbTi 微合金钢奥氏体高温变形行为,东北大学学报(自然科学版),1997,Vol.18(2),pp.165~168。
    [73] 许树勤. 20CrH 钢热变形流动应力的研究,塑性工程学报,2003,Vol.10(1),pp.17~19。
    [74] 熊爱明、陈胜辉、黄维超等. TC6 合金高温变形力学行为研究,锻压技术,2003, (2), pp.41~43。
    [75] 曾卫东、周义刚、俞汉清. Ti-17 合金的本构关系研究,热加工工艺,1996,(1),pp.3~5。
    [76] 樊百林、严国安、管克智等. 不锈钢热变形流动应力数学模型,北京科技大学学报,2002,Vol.23(3),pp.280~283。
    [77] Samak Serajzadeh. Development of Constitutive Equations for a High Carbon Steel Using Additivity Rule, ISIJ International, 2003, 43(7), pp.1050~1055.
    [78] 黄光胜、汪凌云、黄光杰等. AZ31 镁合金高温本构方程,金属成型工艺,2004,Vol.22(2),pp.41~44。
    [79] F.Siciliano Jr., K.Minami, T.M.Maccagno et al. Mathematical Modelling of the Mean Flow Stress, Fractional Softening and Grain Size during the Hot Strip Rolling of C-Mn Steels, ISIJ International, 1996, 36(12), pp.1500~1506.
    [80] C.Zener, J. H. Hollomon. Effect of Strain Rate Upon Plastic Flow of Steel, Journal of Applied Physics, 1944, (15), pp. 22-32.
    [81] A. Najafi-Zadeh, JJ Jonas, and S. Yue. Grain Refinement by Dynamic Recrystallization During Simulated Warm-Rolling of Interstitial Free Steels, Metallurgical Transactions A, 1992, Vol. 23A, pp. 2607-2617.
    [82] 余琨、黎文献、王日初等. Mg-5.6Zn-0.7Zr-0.8Nd 合金高温塑性变形的热/力模拟研究,金属学报,2003,Vol.39(5),pp.492~498。
    [83] M.J. Luton and C.M. Sellars. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metallurgica (pre 1990), 1969. (17), pp. 1033~1039.
    [84] J.J.Jonas, C.M.Sellars and Tegart. Strength and Structure Under Hot Working conditions, Metallurgy Reviews, 1969 ( 130), pp.1~24。
    [85] I. Weiss, T. Sakai and J. J. Jonas. Effect of Test Method on the Transition from Multiple to Single Peak Recrystallization, Metal Science, 1984, (18), pp.77-84。
    [86] 窦晓峰、鹿守理、赵辉. Q235 钢动态再结晶模型的建立,北京科技大学学报,1998,20(5),pp:467~470。
    [87] 高珊、王国侗、张强. D2 钢高温变形动态再结晶软化率数学模型的建立,轧钢,1998,(1),pp:10~12。
    [88] 程晓茹、李虎兴、葛懋琦等. 管线钢 X65 高温变形动态再结晶研究,金属学报,1997,33(12),pp.1275~1281。
    [89] 张斌、张鸿斌. 35CrMo 结构钢的热变形行为,金属学报,2004,40(10),pp.1109~1114。
    [90] A.Laasraoui and J.J.Jonas. Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A, 1991, 22A, pp.1545-1558。
    [91] P. Fabregue. Advances in Hot Deformation Texture and Microstructure. New York, The Materials Metals & Materials Society,1994, pp.75~81。
    [92] 吴瑞恒、朱洪涛、张鸿冰等. 0.95C-18W-4Cr-1V 高速钢动态再结晶的数学模型,上海交通大学学报,2001,35(3),pp:339~341。
    [93] 张鸿冰、张斌、柳建韬. 钢中动态再结晶力学测定及其数学模型,上海交通大学学报,2003,37(7),pp:1053~1056。
    [94] E.I.Poloak and J.J.Jonas. Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation. ISIJ International, 2003, 43(5), pp.692~700.
    [95] Sang-Hyun CHO, K-Bong Kang and J.J.Jonas. The Dynamic, Static and MetadynamicRecrystallization of a Nb-microalloyed Steel. ISIJ International, 2001, 41(1), pp.63~69.
    [96] S.F.Medina and V.Lopez. Static Recrystallization in Austenite and Its Influence on Microstructure Changes in C-Mn Steel and Vanadium Microalloyed Steel at the Hot Strip Mill. ISIJ International, 1993, 33(5), pp.605~614.
    [97] T.M.Maccagno and J.J.Jonas. Correcting for the Effects of Static and Metadynamic Recrystallization during the Laboratory Simulation of Rod Rolling. ISIJ International, 1994, 34(7), pp.607~614.
    [98] D.Q.Bai, S.Yue, T.Maccagno et al. Static Recrystallization of Nb and Nb-B Steels under Continuous Cooling Conditions, ISIJ International, 1996, 36(8), pp.1084~1093.
    [99] G.Li, T.M.Maccagno, D.Q.Bai et al. Effect of Initial Grain Size on the Static Recrystallization Kinetics of Nb Microalloyed Steels, ISIJ International, 1996, 36(12), pp.1479~1485.
    [100] S. AKTA, G. J. RICHARDSON and C. M. SELLARS. Hot Deformation and Recrystallization of 3% Silicon SteelPart 4: Effect of Recovery and Partial Recrystallization between Passes on Subsequent Recrystallization Behaviour, ISIJ International, 2005, 45(11), pp.1696~1775.
    [101] S. AKTA, G. J. RICHARDSON and C. M. SELLARS. Hot Deformation and Recrystallization of 3 % Silicon Steel Part 3: Effect of Hot Deformation Variables on Static Recrystallization , ISIJ International, 2005, 45(11), pp.1686~1695.
    [102] S. AKTA, G. J. RICHARDSON and C. M. SELLARS. Hot Deformation and Recrystallization of 3% Silicon Steel Part 2: Effect of Microstructural Variables on Static Recrystallization, ISIJ International, 2005, 45(11), pp.1676~1685.
    [103] S. AKTA, G. J. RICHARDSON and C. M. SELLARS. I.Hot Deformation and Recrystallization of 3% Silicon Steel Part 1: Microstructure, Flow Stress and Recrystallization Characteristics, ISIJ International, 2005, 45(11), pp.1666~1675.
    [104] S.F.Medina and A.Quispe. Improved Model for Static Recrystallization Kinetics of Hot Deformed Austenite in Low Alloy and Nb/V Microalloyed Steels, ISIJ International, 2001, 41(7), pp.774~781.
    [105] M.Gomez, S.F.Medina, A. Quispe et al. Static Recrystallization and Induced Precipitation in a Low Nb Microalloyed Steel, ISIJ International, 2002, 42(4), pp.423~431.
    [106] S.F.Medina and J.E.Mancilla. Determination of Static Recrystallization Critical Temperature of Austenite in Microalloyed Steels, ISIJ International, 1993, 33(12), pp.1257~1264.
    [107] A. Quispe, S.F.Medina and P.Valles. Recrystallization-induced Precipitation Interaction in a Medium Carbon Vanadium Microalloyed Steel, ISIJ International, 1997, 37(8), pp.783~788.
    [108] S.F.Medina and J.E.Mancilla. Static Recrystallization Modelling of Hot Deformed Steels Containing Several Alloying Elements, ISIJ International, 1996, 33(8), pp.1070~1076.
    [109] S.F.Medina and J.E.Mancilla. Static Recrystallization Modelling of Hot Deformed Microalloyed at Temperature below the Critical Temperature, ISIJ International, 1996, 33(8), pp.1077~1083.
    [110] S.F.Medina, J.E.Mancilla and C.A. Hernandez. Static Recrystallization of Hot Deformed Austenite and Induced Precipitation Kinetics in Vanadium Microalloyed Steels, ISIJ International, 1994, 33(8), pp.689~696.
    [111] 李治华、许云波、吴迪等. C—Mn 钢高温变形过程再结晶及位错密度的研究,钢铁研究,2004,(4),pp:35~38.
    [112] 李智、王宙、郭丽环等. 贝氏体型非调质钢热变形奥氏体的静态再结晶, 钢铁研究,2002,(1),pp:26~28.
    [113] 窦晓峰、鹿守理、赵辉. 钢静态再结晶的蒙特卡洛模拟,钢铁研究,1997,(5),pp:18~21,26。
    [114] C.Devadas, I.V.Samarasekera, and E.B.Hawbolt. The Thermal and Metallurgical State of Steel Strip during Hot Rolling: Part Ⅲ. Microstructural Evolution. Metallurgical Tramsactions A, 1991, 22A,pp:335~348.
    [115] A.M.Elwazri, P.Wanjara and S.Yue. Metadynamic and Static Recrystallization of Hypereutectoid Steel, ISIJ International, 2003, 43(7), pp.1080~1088.
    [116] H.J.Andrade, M.G.Akben, and J.J.Jonas. Effect of Molybdenum, Niobium, and Vanadium on Static Recrystallization and on Solute Strengthening in Microalloyed Steels, Metallurgical Transactions A, 1983, 14(10), pp:1967~1977.
    [117] B.Dutta and C.M.Sellars. Effect of Composition and Process Variables on Nb(C,N) Precipitation in Niobium Microalloyed Austenite, Materials Science and Technology, 1987, 3 ,pp: 197~206.
    [118] A Smith, H. Luo, D. N. Hanlon et al. Recovery Processes in the Ferrite Phase in C-Mn Steel, ISIJ International, 2004, 44(7), pp.1188~1194.
    [119] S.F.Medina and J.E.Mancilla. Influence of Alloying Elements in Solution on Static Recrystallization Kinetics of Hot Deformed Steels, ISIJ International, 1996, 33(8), pp.1063~1069.
    [120] 何建中、刘雅政、史秉华. Q345 含 Nb 低碳钢 CSP 轧制时动态再结晶的研究, 特殊钢,2005,26(3),pp: 9~11。
    [121] 唐永革、李壮. 热轧带钢奥氏体再结晶的预测模型,热加工工艺,2004,(3),pp:41~42。
    [122] 林高用、张辉、彭大署. 7075 铝合金热压缩变形道次间软化规律研究,轻合金加工技术,2001,29(2),pp:22~24。
    [123] 林高用、张辉、孟力平等. 道次间隔时间对 7075 铝合金热压缩变形组织和性能的影响,热加工工艺,2001,(2),pp:7~9。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700