结构钢的室温蠕变及其对疲劳裂纹扩展的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着测量技术的发展和要求精度的提高,人们发现即使在较低的同系温度(T/T_m<0.2)下,许多工程结构钢如不锈钢、管线钢、高强钢等在承受恒定载荷作用时,变形量也会随着时间的延长而增加,该现象被称为室温蠕变。而且这种时间相关的变形已经引发了一些技术问题,相应的研究工作逐渐被重视起来。尤其是对于存在应力集中的情况,即使在名义应力较低的条件下,在某些严重应力集中区域也可能会累积较大室温蠕变变形,而且室温蠕变的发生势必会改变材料原有的组织状态,进而会对其后的性能产生影响。许多工程结构部件常常处于波动载荷和恒定载荷随机交替的复杂载荷状态下服役,载荷和环境等因素共同作用诱发的裂纹萌生、扩展是最终导致构件失效的主要形式之一。如果在恒定载荷过程中裂纹尖端区域发生时间相关的变形,将会改变该区域内的应力应变状态,从而会对随后波动载荷作用下的疲劳裂纹扩展行为产生影响。研究室温蠕变对疲劳裂纹扩展行为的影响对建立能够处理复杂服役条件的疲劳可靠寿命预测模型具有重要意义。本文选用X70管线钢(体心立方结构)和SUS304不锈钢(面心立方结构)两种工程结构钢,利用光滑试样、缺口试样和紧凑拉伸试样,以液压伺服疲劳试验机为主要设备研究了有无应力集中条件下的室温蠕变现象、影响因素,以及室温蠕变和单峰过载对疲劳裂纹扩展的影响,并结合光学显微镜、扫描电镜、X射线仪和透射电镜的试验结果,对微观机制进行了分析、讨论。
     1.在有无应力集中的条件下,X70管线钢和SUS304不锈钢在各种应力水平下,均存在室温蠕变现象。X70管线钢光滑试样和缺口试样中的室温蠕变呈现出较强的应力敏感性,在远低于抗拉强度的应力水平下只存在减速蠕变阶段,当接近抗拉强度时室温蠕变由减速的第一阶段蠕变逐渐向加速的第三阶段蠕变过渡,并伴随着试样的颈缩,最终导致材料发生断裂。对于SUS304不锈钢光滑试样,在各种应力水平下只存在减速的室温蠕变阶段,且这种时间相关的变形不会导致材料发生断裂。SUS304不锈钢缺口试样与X70管线钢相似,室温蠕变明显地依赖于应力水平,随着应力水平的提高蠕变变形逐渐由减速阶段向加速阶段过渡。对于存在严重应力集中的裂纹尖端区域,X70管线钢和SUS304不锈钢的室温蠕变明显依赖于应力强度因子的大小,且在各种应力强度因子水平下均呈现为速率递减的蠕变特征。
     2.当以材料的抗拉强度作为标准来衡量室温蠕变时,随着应力速率的增加X70管线钢和SUS304不锈钢中的室温蠕变量均明显增大:正火态较轧制态的X70管线钢具有更加明显的室温蠕变现象;SUS304不锈钢的室温蠕变量明显大于X70管线钢,此外室温蠕变也受加载历史条件的影响。由于缺口的存在限制了材料的变形,因此与光滑试样相比,缺口试样的室温蠕变量明显减小,且缺口角度对室温蠕变也有一定的影响,随着缺口角度的增加室温蠕变略有增加,但影响并不十分明显。
     3.X70管线钢和SUS304不锈钢减速阶段的蠕变呈现为典型的低温对数蠕变,变形量与时间的关系可用包含两个回归参数α和β的对数方程ε=αlog(βt+1)来描述。X70管线钢和SUS304不锈钢光滑试样和缺口试样室温蠕变回归参数α与应变硬化系数的倒数呈现相似的变化规律,基于室温蠕变变形的连续性和拉伸试验中应力应变行为分析,建立了能够定量描述室温蠕变的模型。对于紧凑拉伸试样,回归参数α与d(V_g/α)/dK的变化规律相似,仍可用上述模型对裂纹尖端的室温蠕变进行描述。另外,回归参数α主要受应力水平的影响,应力速率对其影响较小,而β则显示出了较强的应力速率敏感性,对应力水平并不十分敏感。
     4.X70管线钢和SUS304不锈钢中的室温蠕变明显提高了屈服后材料的流变应力,并在一定程度上降低了屈服前材料的比例极限。基于已有的可动位错密度理论和应力帮助下的热激活理论,提出了局部可动位错密度理论,并据此解释了上述现象和屈服前的室温蠕变行为以及室温蠕变导致随后应变速率-应力曲线出现的瞬态突变。另外,在各种应力水平下,SUS304不锈钢光滑试样只存在减速阶段的蠕变行为是由于材料中发生了形变诱发马氏体相变。
     5.与单峰过载效应相似,X70管线钢和SUS304不锈钢裂纹尖端室温蠕变也会导致随后疲劳裂纹扩展出现延滞,只是在相同过载比下室温蠕变后的延滞现象更为明显,且提出了分段描述室温蠕变和单峰过载后疲劳裂纹扩展出现延滞的经验公式。通过与单峰过载效应的比较,并结合裂纹闭合效应的测试结果和疲劳裂纹及断口形貌的观察,分析了室温蠕变对疲劳裂纹扩展的影响机理,主要是由于裂纹尖端时间相关的变形加剧了塑性诱发的裂纹闭合所致。
With the development of measuring technique and the improvement of required accuracy, it is found that the deformation under constant load increases with time even at low homologous temperature(T/T_m<0.2) in many structural steels(such as stainless steels, pipeline steels,high strength steels and so on),which is called room temperature creep(RTC). Moreover,such a time dependent deformation has brought about some technical problems and received more attention.Particularly in the case of stress concentration,significant RTC can occur due to stress concentration even under low nominal stress.The occurrence of RTC may influence the original microstructure of materials and hence subsequent properties.Many structural components in service usually experience constant and variable load by turns and may fail due to the crack initiation and growth caused by the combined influence of stress and environment.If the time dependent deformation takes place at crack tips under constant load, it may influence the stress-strain behavior in this region and play an important role on the subsequent fatigue crack growth under variable load.The investigation of effect of RTC on fatigue crack growth is of advantage to developing reliable life prediction models which are capable of handling complex service conditions.This paper investigates RTC,its influencing factors and the effect of RTC and single wave overload(SWOL) on fatigue crack growth with and without stress concentration on a servo-hydraulic fatigue machine using smooth,notched and compact tension(CT) specimens of X70 pipeline steel(BCC) and SUS304 stainless steel (FCC).And based on observation by optical microscopy(OM),scanning electron microscopy (SEM),X-ray diffraction(XRD) and transmitted electron microscopy(TEM),the fundamental mechanisms are discussed.
     1.At various stress levels,X70 pipeline steel and SUS304 stainless steel with and without stress concentration show RTC behavior.For the smooth and notched specimens of X70 pipeline steel,RTC is strongly dependent on the stress level.RTC is primary at stress levels far lower than the ultimate strength but becomes tertiary as the ultimate strength is approached,during which the fracture following necking occurs.However,the smooth specimens of SUS304 stainless steel only shows the primary RTC at various stress levels,and RTC alone may not cause facture.Similar to X70 pipeline steel,RTC strongly depends on the stress level in the notched specimens of SUS304 stainless steel,and with increasing stress level,it gradually transits from the primary to the tertiary type.RTC at crack tip is significantly influenced by stress intensity factor and the primary creep is the dominant deformation mode at various stress intensity factor levels.
     2.At the same percentage of the ultimate strength,RTC in both X70 pipeline steel and SUS304 stainless steel becomes significant with increasing loading stress rate,RTC strain in the normalized X70 pipeline steel is larger than that in the as-received X70 pipeline steel and SUS304 stainless steel show more RTC deformation relative to X70 pipeline steel.Moreover, RTC is also dependent on loading history.Since the deformation in the notched specimen is confined in a localized region,RTC strain markedly decreases compared with the case of the smooth specimen.RTC strain slightly increases with increasing the angle of notch.
     3.The primary RTC of X70 pipeline steel and SUS304 stainless steel agrees well with logarithmic creep lawε=αlog(βt +1),which includes two regression parametersαandβ.As to the smooth specimens and the notched specimens of X70 pipeline steel and SUS 304 stainless steel,the regression parameterαmonotonously develops with the inverse strain hardening coefficient.Based on the continuity of RTC deformation and the analysis of stress-strain behavior in the tensile test,a model is developed to quantitatively describe RTC strain.Since the evolution ofαis similar to that of d(V_g/α)/dK,this model can also be applied to the case of the CT specimen.In addition,the regression parameterαis strongly dependent on the stress level and is hardly influenced by the loading stress rate,butβis strongly dependent on the loading stress rate and is hardly influenced by the stress level.
     4.The post-yield RTC markedly increases the flow stress of X70 pipeline steel and SUS304 stainless steel while the pre-yield RTC reduces the elastic limit to some extent. Based on the theory of mobile dislocation density and the theory of stress dependent thermal activation,a theory of localized mobile dislocation density is presented to interpret the aforementioned behaviors,the pre-yield RTC and the transient burst of strain rate-stress curves caused by RTC.In addition,due to strain induced martensite transformation in SUS304 stainless steel,RTC at various stress levels is of primary nature and occurs at continuously falling rate.
     5.Similar to the SOWL effect,RTC at crack tips can retard the subsequent fatigue crack growth in X70 pipeline steel and SUS304 stainless steel except that the retardation following RTC is more significant at the same overload ratio.Some empirical equations are presented to describe different fatigue crack growth behaviors following RTC and SWOL.Compared with the SOWL effect,the retardation mechanism due to RTC is discussed on the basis of measurement of crack closure and observation of fatigue crack and fracture surface.The serious retardation of fatigue crack growth following RTC is attributed to the plasticity-induced crack closure owing to the time dependent deformation at crack tips.
引文
[1]穆霞英.蠕变力学.西安:西安交通大学出版社,1990.
    [2]平修二.金属材料的高温强度理论·设计.郭廷玮,李安定,徐介平译.北京:科学出版社,1983.
    [3]张俊善.材料强度学.哈尔滨:哈尔滨工业大学出版社,2004.
    [4]张俊善.材料的高温变形与断裂.北京:科学出版社,2007.
    [5]冯端.金属物理学一第三卷金属力学性质.北京:科学出版社,1999.
    [6]Neeraj T,Hou D H,Daehn G Set al.Phenomenological and microstructural analysis of room temperature creep in titanium alloys.Acta Materialia,2000,48(6):1225-1238.
    [7]Oehlert A,Atrens A.Room temperature creep and the initiation of stress corrosion cracking in AerMet 100.Materials Forum,1993,17(4):415-429.
    [8]Oehlert A,Atrens A.Room temperature creep of high strength steels.Acta Metallurgica et Materialia,1994,42(5):1493-1508.
    [9]Wang S H,Zhang Y G,Chen W X.Room temperature creep and strain-rate-dependent stress-strain behavior of pipeline steels.Journal of Materials Science,2001,36(8):1931-1938.
    [10]Wang S H,Chen W X.Room temperature creep deformation and its effect on yielding behaviour of a line pipe steel with discontinuous yielding.Materials Science and Engineering A,2001,.301(1):147-153.
    [11]Wang S H,Chen W X.A study on the pre-cyclic-load-induced burst of creep deformation of a pipeline steel under subsequent static load.Materials Science and Engineering A,2002,325(1-2):144-151.
    [12]Alden T n.Load relaxtion in aluminum:I.Theory of plastic deformation.Ⅱ.Plastic equation of state.Metallurgical Transactions A,1977,8(11):1675-1679.
    [13]Alden T H.Plastic and viscous deformation of metals.Metallurgical Transactions A,1985,16(3):375-392.
    [14]Alden T H.Theory of mobile dislocation density:application to the deformation of 304 stainless steel.Metallurgical Transactions A,1987,18(1):51-62.
    [15]Alden T H.Theory of plastic and viscous deformation.Metallurgical Transactions A,1987,18(6):811-825.
    [16]Alden T H.Determination of effective stress and dislocation velocity in the deformation of Ti-doped iron.Metallurgical Transactions A,1989,20(6):1029-1036.
    [17]Jordan E H,Freed A D.Room-temperature post-yield creep.Experimental Mechanics,1982,22(9):354-360.
    [18]Freed A D.Room temperature creep of merchant steel.Res Mech Lett,1981,1:371-375.
    [19]Reimann W H.Room temperature creep in Ti-6A1-4V.Journal of Materials,1971,6(4):926-940.
    [20]Krempl E,Lu n.The rate(time)-dependence of ductile fracture at room temperature.Engineering Fracture Mechanics,1984,20(4):629-632.
    [21]Krempl E,Little M M.Viscoplastic analysis of a compact tension specimen in mode I load.Engineering Fracture Mechanics,1984,20(4):633-653.
    [22]Krempl E.An experimental study of room temperature rate-sensitivity,creep and relaxation of AISI type 304 stainless steel. Journal of Mechanics and Physics of Solids, 1979, 27(5-6): 363-375.
    [23] Kujawski D, Kallianpur V, Krempl E. An experimental study of uniaxial creep cyclic creep and relaxation of AISI type 304 stainless steel. Journal of Mechanics and Physics of Solids, 1980, 28(2): 129-148.
    [24] Liu C, Liu P, Zhao Z B et al. Room temperature creep of a high strength steel. Materials and Design, 2001, 22(4): 325-328.
    [25] Zhao Z B, Northwood D O, Liu C et al. A new method for improving the resistance of high strength steel wires to room temperature creep and low cycle fatigue. Journal of Materials Processing Technology, 1999, 89-90(1): 569-573.
    [26] Yamada T, Kawabata K, Sato E et al. Presences of primary creep in various phase metals and alloys at ambient temperature. Materials Science and Engineering A, 2004, 387-389(1): 719-722.
    [27] Krempl E, Gleason J M. Isotropic viscoplasticity theory based on overstress (VBO). The influence of the direction of the dynamic recovery term in the growth law of the equilibrium stress. International Journal of Plasticity, 1996, 12(6): 719-735.
    [28] Ho K, Krempl E. Extension of the viscoplasticity theory based on overstress (VBO) to capture non-standard rate dependence in solids. International Journal of Plasticity, 2002, 18(7): 851-872.
    [29] Krempl E, Khan F. Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers. International Journal of Plasticity, 2003, 19(7): 1069-1095.
    [30] Colak O U, Krempl E. Modeling of the monotonic and cyclic Swift effects using an isotropic, finite viscoplasticity theory based on overstress (FVBO). International Journal of Plasticity, 2005, 21(3): 573-588.
    [31] Tendo M, Takeshita T, Nakazawa T et al. Room temperature creep behavior of stainless steel. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 1993, 79(1) : 98-104.
    [32] Oriani R A, Josephic P H. The effect of hydrogen on the room-temperature creep of spheroidized 1040-steel. Acta Metallurgica, 1981, 29(4): 669-674.
    [33] Chandler H D. Kinetics of room temperature primary creep in copper and aluminum. Scripta Metallurgica 1987, 21(5):639-642
    [34] Cimenoglu H, Kayali E S. Yield effects in as-quenched, dual-phase steels. Scripta Metallurgica et Materialia, 1990, 24(12): 2437-2442.
    [35] Lorenzo R, Laird C. Cyclic creep acceleration and retardation in polycrystalline copper tested at ambient temperature. Acta Metallurgica, 1984, 32(5): 681-692.
    [36] Chandler H D, Bee J V. Cell structure in polycrystalline copper undergoing cyclic creep at room temperature. Acta Metallurgica, 1985, 33(6): 1121-1127.
    [37] Miguel MC, Vespignani A, Zapperi S et al. Intermittent dislocation flow in viscoplastic deformation. Letters to Nature, 2001, 410(5): 667-671.
    [38] Sasaki K, Mayama T. Investigation of subsequent viscoplastic deformation of austenitic stainless steel subjected to cyclic preloading. International Journal of Pasticity, 2006, 22(2): 374-390.
    [39] Khan A S, Liang R. Behaviors of three BCC metal over a wide range of strain rates and temperatures experiments and modeling. International Journal of Pasticity, 1999, 15(10): 1089-1109.
    [40]Kloc L,Skienicha V,Ventruda J.Comparison of low stress creep properties of ferritic and austenitic creep resistant steels.Materials Science and Engineering A,2001,319-321(1):774-778.
    [41]Daehn G S.Primary creep transients due to non-uniform obstacle sizes.Materials Science and Engineering A,2001,319-321(1):765-769.
    [42]Neeraj T,Mills M J.Short-range order(SRO) and its effect on the primary creep behavior of a Ti-6wt.%Al alloy.Materials Science and Engineering A,2001,319-321(1):415-419.
    [43]Sundararajan G.The saturation of flow stress in FCC metals.Scripta Metallurgica,1982,16(5):611-614.
    [44]Sato H,Sawada K,Maruyama K et al.Improvement of creep rupture life by high temperature pre-creep in magnesium-aluminum binary solid solutions.Materials Science and Engineering A,2001,319-321(1):746-750.
    [45]Brahmi A,Gerique T,Lieblich M et al.Creep behaviour of a rapidly solidified Al-5Cr-2Zr alloy between room temperature and 823K.Scripta Materialia,1996,35(12):1449-1454.
    [46]Wilshire B,Palmer C J.Strain accumulation during dislocation creep of prestrained copper.Materials Science and Engineering A,2004,387-389(1):716-718.
    [47]Deevi S C,Swindeman R W.Yielding hardening and creep behavior of iron aluminides.Materials Science and Engineering A,1998,258(1-2):203-210.
    [48]Rong T S,Jones I P,Smallman R E.Combination tests on TiA1 involving constant strain-rate deformation annealing and creep.Acta Materialia,1998,46(13):4507-4517.
    [49]Yin W M,Whang S H,Mirshams R A.Effect of interstitials on tensile strength and creep in nanostructured Ni.Acta Materialia,2005,53(2):383-392.
    [50]Neate G J.Creep crack growth in cold-formed C-M steel at 360℃.Materials Science and Technology,1987,3(1):14-22.
    [51]Wang N,Wang Z R,Aust K T et al.Room temperature creep behavior of nanocrystalline nichel produced by an electrodeposition technique.Materials Science and Engineering A,1997,237(2):150-158.
    [52]Fett T,Thun G.Determination of room temperature tensile creep of PZT.Journal of Materials Science Letters,1998,17(22):1929-1931.
    [53]Gao G Y,Dexter S C.Effect of hydrogen on creep behavior of Ti-6A1-4V alloy at room temperature.Metallurgical Transactions A,1987,18(6):1125-1130.
    [54]Iman M A,Gilmore C M.Room temperature creep of Ti-6A1-4V.Metallurgical Transactions A,1979,10(4):419-425.
    [55]周志敏,孙艳蕊.位错组态演化规律以其在流变应力预测中的应用.科学通报,2004,49(12):1123-1127.
    [56]褚武扬,乔利杰,高克玮.阳极溶解型应力腐蚀.科学通报,2000,45(24):2581-2587.
    [57]张建可.金属材料的低温蠕变机理.真空与低温,1994,13(4):209-213.
    [58]刘柯军,苏瑛.延迟开裂与低温蠕变机理.理化检验-物理分册,1999,35(10):445-446.
    [59]王敏敏,赵永庆,周廉.影响钛合金蠕变行为的因素分析.稀有金属材料工程,2002,31(2):135-139.
    [60]Hossain S,Truman C E,Smith D Jet al.A study of the generation and creep relaxation of triaxial residual stresses in stainless steel.International Journal of Solids and Structures,2007,44(9):3004-3020.
    [61]Oobron P,Bohlen J,Chmelik F et al.Acoustic emission during stress relaxation of pure magnesium and AZ magnesium alloys.Materials Science and Engineering A,2007,462(1-2):307-310.
    [62]Orozd Z,Trojanova Z,Kudela S.Degradation of the mechanical properties of a Mg-Li-Al composite at elevated temperatures studied by the stress relaxation technique.Materials Science and Engineering A,2007,462(1-2):234-238.
    [63]Choudhry M A,Ashraf M.Effect of heat treatment and stress relaxation in 7075 aluminum alloy.Journal of Alloys and Compounds,2007,437(1-2):113-116.
    [64]Juijerm P,Altenberger I.Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminum alloy AA6110.Materials Science and Engineering A,2007,452-453(1):475-482.
    [65]Choi Y C,Hong S I.High-temperature deformation behavior and stress relaxation of Zr-Ti-Cu-Ni-Be bulk metallic glass extracted from commercial golf club heads.Materials Science and Engineering A,2007,449-451(1):130-133.
    [66]Juijerm P,Altenberger I,Scholters B.Influence of ageing on cyclic deformation behavior and residual stress relaxation of deep rolled as-quenched aluminum alloy AA6110.International Journal of Fatigue,2007,29(7):1374-1382.
    [67]Suresh S.材料的疲劳.王中光译.北京:国防工业出版社,1999.
    [68]王仁智,吴培远.疲劳失效分析.北京:机械工业出版社,1987.
    [69]N.E.弗罗斯特,K.J.马什,L.P.普克.金属疲劳.汪一麟,邵本逑译.北京:冶金工业出版社,1984.
    [70]程育仁,缪龙秀,侯炳麟.疲劳强度.北京:中国铁道出版社,1990.
    [71]R.W.赫次伯格.工程材料的变形与断裂力学.王克仁,罗力更,姚蘅等译.北京:机械工业出版社,1982.
    [72]Bache M R.A review of dwell sensitive fatigue in titanium alloys:the role of microstructure,texture and operating conditions.International Journal of Fatigue,2003,25(9-11):1079-1087.
    [73]Santos C G,Laird C.Fractography of induction-hardened steel fractured in fatigue and overload.Materials Charaterization,1997,39(1):25-41.
    [74]Pommier S.Cyclic plasticity and variable amplitude fatigue.International Journal of Fatigue,2003,25(9-11):983-997.
    [75]Zheng X L.On some basic problems of fatigue research in engineering.International Journal of Fatigue,2001,23(9):751-766.
    [76]Srinivasan V S,Valsan M,Sandhya R et al.High temperature time-dependent low cycle fatigue behavior of a type 316(N) stainless steel.International Journal of Fatigue,1999,21(1):11-21.
    [77]Duquesnay D L,Macdougall C,Dabayeh A.Notch fatigue behavior as influenced by periodic overloads.International Journal of Fatigue,1995(2),17(2):91-99.
    [78]Sadananda K,Vasudevan A K,Holtz R L et al.Analysis of overload effects and related phenomena.International Journal of Fatigue,1999,21(Suppl):S233-S246.
    [79] Kim J K, Shim D S. A statistical approach for predicting the crack retardation due to a single tensile overload. International Journal of Fatigue, 2003, 25(4): 335-342.
    [80] Mansson T, Oberg H, Nilsso F. Closure effects on fatigue crack growth rates at constant and variable amplitude loading. Engineering Fracture Mechanics, 2004, 71(9-10): 1273-1288.
    [81] Wei X J, Li J, Ke W. Crack growth retardation of single overload for A537 steel in a 3.5% NaCl solution under cathodic potential and free corrosion condition. International Journal of Fatigue, 1998, 20(3): 225-231.
    [82] Dabayeh A A, Topper T H. Changes in crack-opening stress after underloads and overloads in 2024-T351 aluminum alloy. Journal of Fatigue, 1995, 17(4): 261-269.
    [83] Domazet Z. Comparison of fatigue crack retardation methods. Engineering Fracture Mechanics, 1996, 3(2): 137-147.
    [84] Kumar R, Kumar A, Kumar S. Delay effects in fatigue crack propagation. Int. J. Pres. & Piping, 1996, 67(1): 1-5.
    [85] Kumai S, Higo Y. Effects of delamination on fatigue crack growth retardation after single tensile overloads in 8090 Al-Li alloy. Materials Science and Engineering A, 1996, 221 (1-2):154-162.
    [86] Borrego L P, Ferreira J M, Pinho J M et al. Evaluation of overload effects on fatigue crack growth and closure. Engineering Fracture Mechanics, 2003, 70(11): 1379-1397.
    [87] Taberning B, Pippan R. Effect of periodic overloads in particle reinforced aluminum alloy: the near threshold behavior. International Journal of Fatigue, 2004, 26(4): 323-330.
    [88] Sadananda K, Vaudevan A K, Kang I W. Effect of superimposed monotonic fracture modes on the ΔK and K_(max) parameters of fatigue crack growth. Acta Materialia, 2003, 51(12): 3399-3414.
    [89] Darvish M, Johansson S. Fatigue crack growth studies under combination of single overload and cyclic condensation environment. Engineering Fracture Mechanics, 1995, 52(2): 295-319.
    [90] Iacoviello F, Boniardi M, Vecchia L. Fatigue crack propagation in austeno-ferritic duplex stainless steel 22Cr5Ni. International Journal of Fatigue, 1999, 21(9): 957-963.
    [91] Mcevily A j, Renauld M, Bao H et al. Fatigue fracture-surface roughness and the K-opening level. International Journal of Fatigue, 1997, 19(8-9): 629-633.
    [92] Sander M, Richard H A. Lifetime prediction for real loading situations-concepts and experimental results of fatigue crack growth. International Journal of Fatigue, 2003, 25(9-11): 999-1005.
    [93] Miler A, Estrin Y, Hu X Z. Magnetic force microscopy of fatigue crack tip region in a 316L austenitic stainless steel. Scripta Materialia, 2002, 47(7): 441-446.
    [94] Hammouda M M, Osman H G, Sallam H E M. Mode I notch fatigue crack growth behavior under constant amplitude loading and due to the application of a single tensile overload. International Journal of Fatigue, 2004, 26(2): 183-192.
    [95] Kalantary M R, Chung T E, Faulkner R G. Mechanism of crack propagation in low cycle fatigue of type 316L stainless steel within the temperature range 20-300℃. Materials Science and Engineering A, 1994, 189(1-2): 85-94.
    [96] Shimojo M, Chujo M, Higo Y et al. Mechanism of the two stage plastic deformation following an overload in fatigue crack growth. International Journal of Fatigue, 1998, 20(5):365-37
    [97]Lawson L,Chen E Y,Meshii M.Near-threshold fatigue:a review.International Journal of Fatigue,1999,21(Suppl):S15-$34.
    [98]Zheng X L,Wang R.Overload effects on corrosion fatigue crack initiation life and life prediction of aluminum notched elements under variable amplitude loading.Engineering Fracture Mechanics,1999,63(5):557-572.
    [99]Bao H,Mcevily A J.On plane stress-plane strain interaction in fatigue crack growth.International Journal of Fatigue,1998,20(6):441-448.
    [100]Toribio J,Lancha A M.Overload retardation effects on stress corrosion behavior of prestressing steel.Construction and Building Materials,1996,10(7):501-505.
    [101]Shin C S,Hsu S H.On the mechanisms and behavior of overload retardation in AISI 304stainless steel.International Journal of Fatigue,1993,15(3):181-192.
    [102]Tur Y,Vardar O.Periodic tensile overloads in 2024-T3 Al-alloy.Engineering Fracture Mechanics,1996,51(1):69-77.
    [103]Croft M,Zhong Z,Jisrawi N.Strain profiling of fatigue crack overload effects using energy dispersive X-ray diffraction.International Journal of Fatigue,2005,27(9):1408-1419.
    [104]Shuter D M,Geary W.The influence of specimen thickness on fatigue crack growth retardation following an overload.International Journal of Fatigue,1995,17(2):111-119.
    [105]关辉,李劲,魏学军.hISl321不锈钢单周过载疲劳裂纹扩展的延迟效应.金属学报,1999,35(4):403-406.
    [106]关辉,李劲,魏学军等.环境对AISl321不锈钢疲劳裂纹扩展过载效应的影响.金属学报,2003,39(6):613-616.
    [107]魏学军,李劲,柯伟.A537钢疲劳裂纹扩展单次拉伸超载效应及裂尖变形,裂纹闭合行为.材料研究学报,1996,10(6):608-612.
    [108]许淳淳,张新生,胡钢.拉伸变形对304不锈钢应力腐蚀的影响.材料研究学报,2003,17(3):310-314.
    [109]高雅丽,张诗捷,刘绍伦.单峰过载下的疲劳裂纹扩展厚度效应研究.航空学报,1997,18(2):153-156.
    [110]蔡佑星,贺微波.预应变及超载对疲劳裂纹扩展的影响.株洲工学院学报.2002,16(4):128-130.
    [111]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004.
    [112]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004.
    [113]侯增寿,卢光熙.金属学原理.上海:上海科学技术出版社.1998.
    [114]冯端.金属物理学一第一卷结构与缺陷.北京:科学出版社,2000.
    [115]Albert W A J.Uber treibseile am harz.Archive fur Mineralogie,Geoguosie,Bergbau and Huttenkunde,1838,10:215-234.
    [116]Coffin k F.A study of the effects of cyclic thermal stresses on a ductile metal.Transactions of the American Society of Mechanical Engineers,1954,76(6):931-950.
    [117]西田正孝.应力集中.李安定,郭廷玮译.北京:机械工业出版社,1986.
    [118]褚武扬.断裂力学基础.北京:科学出版社,1979.
    [119]赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社,2003.
    [120]Griffith A A.The phenomenon of repture and flow in solids.Philosophical Transactions of the Royal Society,London,1921,A211:163-197.
    [121]Inglis C E.Stress in a plate due to the presence of cracks and sharp corners.Tansactions of the institute of Naval Architects.1913,55:219-241.
    [122]Irwin G R.Analysis of stresses and strains near the end of a crack traversing a plate.Journal of Applied Mechanics,1957,24:361-364.a
    [123]Paris P C,Gomez M P,Anderson W P.A rational analytic theory of fatigue.The Trend in Engineering.1961,13(1):9-14.
    [124]Paris P C,Erdogan F.A critical analysis of crack propagation laws.Journal of Basic Engineering.1963,85(4):528-534.
    [125]Fleck N A,Smith R A.Crack closure-is it just a surface phenomenon.International Journal of Fatigue.1982,4(3):157-160.
    [126]杨政,郭万林,董蕙茹等.X70管线钢冲击韧性实验研究.金属学报,2003,39(2):159-163.
    [127]杨政,郭万林,霍春勇.X70管线钢不同温度下断裂韧性实验研究.金属学报,2003,39(9):908-913.
    [128]郭浩,李光福,蔡殉等.X70管线钢在不同温度近中性pH溶液中的应力腐蚀破裂行为.金属学报,2004,40(9):967-971.
    [129]杨政,郭万林,董蕙茹等.X70管线钢的断裂韧性.材料研究学报,2003,15(5):40-45.
    [130]沙桂英,韩恩厚,徐永波等.针状铁素体的动态应力一应变行为.材料研究学报,2005,19(6):561-566.
    [131]李明星,王荣,白真权.X70管线钢在模拟近中性土壤介质中的电化学特性.腐蚀科学与防护技术,2004,16(1):17-20.
    [132]李明星,王荣,李鹏亮.X70管线钢在模拟土壤介质中裂纹扩展量化模型.中国腐蚀与防护学报,2004,24(3):163-167.
    [133]李明星,王荣,李鹏亮.X70管线钢在模拟土壤介质中裂纹扩展特性研究.石油机械.2002,30(7):1-5.
    [134]李明星,王荣,白真权.X70管线钢在模拟高pH值介质中裂纹断口分析.石油机械.2003,31(12):4-8.
    [135]李明星,闰风霞,路民旭.X70管线钢在模拟土壤介质中的裂纹扩展行为研究.机械强度,2004,26(3):313-316.
    [136]贾普荣,李年,朱维斗.反向加载时X70钢的力学性能.机械强度.2005,27(1):82-84.
    [137]李年,朱维斗,李小波.试制X80输油气管线钢的包申格效应.机械强度.2005,27(1):78-81.
    [138]Parkins R N,Belhimer E,Blanchard W K.Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solutions.Corrosion,1993,49(12):951-966.
    [139]宋满堂,王会忠,于华财等.X70超低硫管线钢中有害元素的控制.炼钢,2004,20(1):26-29.
    [140]王晓敏.工程材料学.北京:机械工业出版社,1999.
    [141]Kocks U F,Mecking H.Physics and phenomenology of strain hardening:the FCC case.Progress in Materials Science,2003,48(3):171-273.
    [142]Feaugas X,Gaudin C.Ratchetting process in the stainless steel AISI316L at 300K:an experimental investigation.International Journal of Fatigue,2004,20(6):643-662.
    [143]Tanaka H,Murata M,Abe F et al Microstructural evolution and change in hardness in type 304H stainless steel during long-term creep.Materials Science and Engineering A,2001,319-321(1):788-791.
    [144]Belyakov A,Sakai T,Miura H.Microstructure and deformation behavior of submicrocrystalline 304 stainless steel produced by severe plastic deformation.Materials Science and Engineering A,2001,319-321(1):867-871.
    [145]Smith Y E,Coldren h P,Cryderman.Toward improved ductility and toughness.Tokyo:Climax Molybdenum Company Ltd,1972.
    [146]GB/T228-2002.金属材料室温拉伸试验方法.
    [147]GB3075-82.金属轴向疲劳试验方法.
    [148]GB/T6398-2000.金属材料疲劳裂纹扩展试验方法.
    [149]Shin H C,Ha T K,Chang Y W.Kinetics of deformation induced martensitic transformation in a 304 stainless steel.Scripta Materialia,2001,45(7):823-829.
    [150]Tavares S S M,Gunderov D,Stolyarov V et al.Phase transformation induced by severe plastic deformation in the AISI 304L stainless steel.Materials Science and Engineering A,2003,358(1-2):32-36.
    [151]Ishigaki H,Konishi Y,Kondo K et al.Possibility as a magnetic recording media of austenitic stainless steel using stress-induced phase transformation.Journal of Magnetism and Magnetic Materials,1999,193(1-3):466-469.
    [152]De A K,Murdoch D C,Mataya M C et al.Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction.Scripta Materialia,2004,50(12):1445-1449.
    [153]Topic M,Tait R B,AllenC.The fatigue behaviour of metastable(AISI-304) austenitic stainless steel wires.International Journal of Fatigue,2007,29(4):656-665.
    [154]Tourki Z,Bargui H,Sidhom n.The kinetic of induced martensitic formation and its effect on forming limit curves in the AISI 304 stainless steel.Journal of Materials Processing Technology,2005,166(3):330-336.
    [155]李刚,朱蕊花.形变诱发马氏体相变的位向分析.稀有金属材料与工程.1991.20(5):18-22.
    [156]徐惠彬,谭树松.应力诱发马氏体相变滞后的研究.金属学报.1991.27(1):68-71.
    [157]杨卓越,王建,苏杰等.Cu对304奥氏体不锈钢应该诱发马氏体相变的影响.特殊钢,2007,28(1):38-40.
    [158]GB4146-84.金属材料平面应变断裂韧度K_(IC)试验方法.
    [159]莫涛.SUS304不锈钢裂纹尖端的室温蠕变现象及其对疲劳裂纹扩展行为的影响:(硕士学位论文).大连:大连理工大学,2005.
    [160]GB/T13305-91.奥氏体不锈钢中α-相面积含量金相测定法.
    [161]Honeycombe R W K.The deformation of metals.London:Edward Arnold,1984.
    [162]GB2038-91.金属材料延性断裂韧度J_(IC)试验方法.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700