硫铁矿烧渣水热法制备云母氧化铁及其基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次以硫铁矿烧渣为原料,采用水热法制备了云母氧化铁(MIO),开展了云母氧化铁的形成机理及其表面改性和防腐性能研究。
     硫铁矿烧渣经硫酸酸浸后,以氨水为沉淀剂,在中性条件下采用水热法制得了云母氧化铁。在反应温度为230℃,n(Fe2+)/n(Fe3+)为0.07~0.1,总铁浓度为1.25mo1.L-’,氧化铁红晶种量为5g.L-1及反应时间为30 min的适宜工艺条件下制得云母氧化铁。所得的云母氧化铁为规则的正六边形单晶a-Fe203片状体,粒径约为0.5μm,径厚比为5左右;云母氧化铁中Fe203含量为98.54%,其产品质量达到涂料用云母氧化铁颜料国际标准(ISO 10601-2007)要求。
     中性条件下,系统研究了Fe2+、Al3+的作用下云母氧化铁的形成机理。Fe2+催化了Fe(OH)3胶体的溶解,促进了α-Fe2O3晶体的生长。随着Fe2+浓度的增加氧化铁粒径逐渐增大,形成的氧化铁粒子为立方体,这是由于SO42-在氧化铁晶体{012}晶面上的吸附所致。A13+存在下,随着Al3+浓度的增加所得氧化铁晶胞参数a和c呈线性减少,其形貌为小片状体,这归功于A13+在氧化铁晶体(0001)晶面的吸附,抑制了氧化铁晶体在z轴方向的生长。模拟硫铁矿烧渣酸浸液制备云母氧化铁实验表明,云母氧化铁的形成归功于A13+在氧化铁晶体(0001)晶面的吸附和SO42-在{012}晶面的吸附而导致受限生长,云母氧化铁形成过程主要以溶解-再结晶机理为主,同时存在固相转化机理。
     高碱性介质下,以硫铁矿烧渣酸浸液为原料,采用水热法制得云母氧化铁。NaOH浓度对云母氧化铁的制备起决定性作用,随着NaOH浓度的增加,氧化铁形貌由球形体变为片状体,其粒径逐渐增加。云母氧化铁适宜的制备工艺条件为:NaOH浓度≥7.0mol.L-1,总铁浓度为0.94~2.2mo1.L-1,反应温度≥200℃,反应时间为0.5h,搅拌速度为200r.min-1及不需加氧化铁红晶种。该条件下所得云母氧化铁颜色为钢灰色,粒子为均匀大小的片状体,粒径和径厚比分别为7μm、7.0;云母氧化铁中Fe203含量达99.34%,达到涂料用云母氧化铁颜料国际标准(ISO 10601-2007)要求。
     高碱介质下研究了Al、Si对云母氧化铁晶体生长的影响。研究表明,Al存在下云母氧化铁片状体厚度变薄,且随着Al含量的增加,云母氧化铁粒子粒径逐渐减小,Al以[Al(OH)4]-形式吸附在氧化铁晶体(0001)晶面上;Si存在下阻碍了Fe(OH)3胶体向Fe203相转化,并随着Si含量的增加阻碍作用越强。
     基于α-Fe203晶体的结晶形态系统地构建了云母氧化铁晶体生长条件,探讨出高碱介质下云母氧化铁的形成归功于OH-在α-Fe203晶体(0001)晶面上的强烈吸附,降低了(0001)面的晶面能,抑制了α-Fe203晶体沿z轴方向的生长,使(0001)面显露。
     系统研究了云母氧化铁表面改性对亲油性和亲水性的影响。当硬脂酸钠用量为5.0%,球料比为8:1,球磨时间为2h时,云母氧化铁的亲油化度为43.5%,云母氧化铁由亲水性变为亲油性;当KH550用量为1.5%,球料比为8:1,球磨时间为1h时,改性云母氧化铁的初始浊度和静置60min后的浊度均达到最大值,其亲水分散性良好。IR和TG-DSC分析表明,硬脂酸钠改性的云母氧化铁,其表面-OH与硬脂酸发生了脂化反应,云母氧化铁表面带上-CH2-基团,表现出亲油憎水性;云母氧化铁经KH550改性,其表面-OH基团与KH550水解生成的硅醇成氢键结合,并脱水形成Si-O-Fe键。偶联剂高分子链通过空间位阻作用使云母氧化铁在水性介质中稳定分散。XRD和TEM分析表明改性后云母氧化铁晶型和形貌没发生改变。
     借助电化学阻抗谱技术及涂层附着力分析研究了环氧MIO涂层的防腐性能,比较了不同形貌粒径的氧化铁环氧涂层的防腐性能。开路电位测量结果表明,MIO用量为50%的环氧涂层在3.5%NaCl溶液中浸泡72h后开路电位最高,其防腐性能最佳。电化学阻抗谱实验表明,MIO含量为50%的环氧涂层浸泡32d后涂层电阻最大,为3.5×106Ω·cm2,达到有机涂层阻抗值>1.0×106Ω.cm2要求,具有较好的防腐性能。Machu实验和沸水浸泡实验表明,MIO含量为40%和50%的环氧涂层表面未出现起皮和鼓泡现象,具有较好的涂层附着力。不同粒径MIO环氧涂层和球形氧化铁环氧涂层在3.5%NaCl溶液浸泡10d后,粒径为7.0μm的MIO环氧涂层高频段的阻抗为6.1 0×106Ω·cm2,粒径为1.0μm的MIO环氧涂层高频段的阻抗为1.89×105Ω.cm2,环氧球形氧化铁涂层高频段阻抗为1.01×105Ω.cm2,其防腐性能依次降低。Machu实验和沸水浸泡实验表明, MIO环氧涂层的附着力强于球形氧化铁环氧涂层的附着力。
In this dissertation, micaceous iron oxide (MIO) particles have been prepared from pyrite cinders by hydrothermal process for the first time. Its formation mechanism, surface modification and corrosion resistance are investigated.
     MIO particles were prepared from sulphuric acid leaching solution of pyrite cinders using ammonia as a precipitant by hydrothermal process in neutral condition. MIO particles can be successfully prepared when the optimal parameters of reaction temperature, n(Fe2+)/n(Fe3+), total iron concentration, the amount of red iron oxide seed, and reaction time are set to be 230℃,0.07~0.1,1.25 mol·L-1,5 g·L-1 and 30 min, respectively. As-synthesized MIO particles show regularα-Fe2O3 hexagonal flakes which are about 0.5μm in diameter and with a diameter-to-thickness ratio of 5.0. Besides, the content of Fe2O3 of the prepared MIO is 98.54% and its quality meets the requirements of MIO pigments for paints (ISO 10601-2007).
     The formation mechanism of MIO has been investigated under the presence of Fe2+ and Al3+ in neutral conditions. Fe2+ could accelerate the dissolution of Fe(OH)3 gels and promote the growth ofα-Fe2O3 crystals. The formedα-Fe2O3 particles are cube in shape, and its particle size increased gradually with higher Fe2+ concentration. The cubic morphology ofα-Fe2O3 particles is attributed to the SO42- adsorption on {012} planes ofα-Fe2O3 crystal. In the presence of Al3+, the cell parameters ofα-Fe2O3 (a and c) decrease linearly with the increasing of Al3+ concentration. And the formedα-Fe2O3 particles are platelet-type, which is attributed to the adsorption of Al3+ ions onto (0001) planes, retarding the crystal growth along z axis. The preparation of MIO from simulated pyrite cinders lixivium, demonstrates that the formation of MIO is ascribed to Al3+ ions adsorption on (0001) planes and SO42-adsorption on {012} planes, which induces growth restriction forα-Fe2O3 crystals. The MIO formation process is dominated by dissolution re-precipitation, though solid-state transformation also happens.
     MIO particles were also prepared from pyrite cinders lixivium by hydrothermal process in highly concentrated alkaline medium. The concentration of NaOH has played a crucial role in the morphologies of MIO particles. The morphology ofα-Fe2O3 changes from spheres into flakes, and its particle size increases with the increasing of NaOH concentration. The optimal conditions for MIO preparation are concluded as follows:CNaOH(?)7.0 mol·L-1; CFe(Ⅲ)=0.94~2.2 mol·L-1; T(?)200℃; t= 0.5~1.0 h; stirring rate should be 200r·min-1 and there is no need to add red iron oxide seeds. As-prepared MIO particles are quite uniform with flake shape of metallic gray color, the mean particle size and aspect ratio of which are~7.0μm and~7.0, respectively. Furthermore, the content of Fe2O3 in the prepared MIO is 99.34%, and its quality fulfills the standards of MIO pigments for paints (ISO 10601-2007).
     Effects of Al and Si on MIO crystals growth in highly concentrated alkaline medium have been investigated. The thickness of MIO decreases in the presence of Al and its particle size gradually reduces with the increasing Al content. Al in this system is in the form of [Al(OH)4]-, which is adsorbed on the (0001) planes ofα-Fe2O3 crystals. Si inhibits the phase transformation of Fe(OH)3 gels into Fe2O3 and the inhibition becomes stronger when the content of Si is increased.
     Based on the crystal habit ofα-Fe2O3, the crystal growth system of MIO was established. It comes to the conclusion that the formation of MIO is due to strong adsorption of OH- on the (0001) planes ofα-Fe2O3 crystal, which reduces surface energy of (0001) planes and retards the crystal growth along z axis, leading to the exposure of (0001) planes.
     Effects of surface modification on the lipophilicity and hydrophilicity of MIO have been systematically studied. The lipophilic degree of MIO is 43.5% when the optimal modification conditions of sodium stearate, ball to powder and milling time were 5.0%,8:1 and 2 h, respectively. And the modified MIO changes from hydrophilic into hydrophobic. Under the optimal modification conditions of KH5501.5%, ball to powder ratio of 8:1,and milling time of 1h, the initial turbidity and turbidity after standing 60min for modified MIO are the largest, which shows an excellent hydrophilic dispersion. According to IR and TG-DSC analysis, when MIO is modified by sodium stearate, the surface hydroxyl groups of MIO are esterified with stearic acid and -CH2- groups are grafted on its surface, showing oil-water-repellent; when MIO is modified by KH550, the surface hydroxyl groups of MIO are held together with silanol groups from silane hydrolysis by hydrogen bond, and further form Si-O-Fe bond by dehydration. The formed polymer chains of silane coupling agents make MIO disperse well in aqueous media because of its steric hindrance. XRD and TEM analysis results show the crystalline phase and morphology of modified MIO have no change compared with that of unmodified MIO.
     Corrosion resistance of MIO epoxy coatings was investigated by electrochemical impedance spectra (EIS) and coating adhesion testing. And comparison of corrosion resistance of different morphology and particle size of iron oxide epoxy coatings was conducted. Open-circuit potential measurements show that epoxy coating with 50% MIO possesses the maximum open-circuit potential when they were immersed in 3.5% NaCl solution for 72 h, exhibiting the best corrosion resistant. EIS results show that the coating resistance are higher than 3.5×106Ω·cm2 when epoxy coating with 50% MIO immersed in 3.5% NaCl solution for 32d, which fulfills the requirements of coating impedance >106Ω·cm2 for common organic coatings, showing a better corrosion resistant. Machu test and boiling water immersion test indicate that no peeling and blistering of epoxy coating with amount of 40% and 50% MIO are observed, showing a fine coating adhesion. When epoxy coating with different particle size of MIO and spherical iron oxide immersed in 3.5% NaCl solution for 10 days, EIS results show the impedance at high frequency of 6.10×106Ω·cm2,1.89×105Ω·cm2 and 1.01×105Ω·cm2 for 7.0μm MIO,1.0μm MIO and spherical iron oxide, respectively. Their corrosion resistant decreased one by one. Machu test and boiling water immersion test indicate that the coating adhesion of MIO epoxy coatings is stronger than that of spherical iron oxide epoxy coatings.
引文
[1]Yang C X, Chen Y H, Peng P A, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry[J]. Journal of Hazardous Materials,2009,167(1-3):835-845.
    [2]朱德庆,李建,李青春,等.硫酸渣复合球团还原蜡烧法制备高品位磁铁精矿[J].中国有色金属学报,2007,17(4):649-656.
    [3]熊斐,华永明,盛昌栋,等.燃烧条件下硫铁矿(FeS2)颗粒的分解特性[J].燃烧科学与技术,2000,6(3):280-283.
    [4]魏祥松.硫铁矿烧渣特性及综合利用[J].化工地质,1994,16(3):206-209.
    [5]Vinals J, Balart M, Roca A. Inertization of pyrite cinders and co-inertization with electric arc furnace flue dusts by pyroconsolidation at solid state[J]. Waste Management,2002,22(7):773-782.
    [6]Giunti M, Baroni D, Bacci E. Hazard assessment to workers of trace metal content in pyrite cinders[J]. Bulletin of Environmental Contamination and Toxicology, 2004,72(2):352-357.
    [7]Corsini A, Cavalca L, Crippa L, et al. Impact of glucose on microbial community of a soil containing pyrite cinders:Role of bacteria in arsenic mobilization under submerged condition[J]. Soil Biology & Biochemistry,2010,42(5):699-707.
    [8]Wang C, Chen Y, Pan J, et al. Speciation analysis of metals (Ti, Cd and Pb) in Ti-containing pyrite and its cinder from Yunfu Mine, China, by ICP-MS with sequential extraction[J]. Chinese Journal of Geochemistry,2010,29(1):113-119.
    [9]Vamerali T, Bandiera M, Coletto L, et al. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy)[J]. Environmental Pollution, 2009,157(3):887-894.
    [10]Thibodeaux LJ. In situ Capping design of a pyrite cinder pile in the St. Lawrence river for metal containment[J]. Remediation,2003,13(1):5-19.
    [11]Alp I, Deveci H, Yazici EY, et al. Potential use of pyrite cinders as raw material in cement production:Results of industrial scale trial operations[J]. Journal of Hazardous Materials,2009,166(1):144-149.
    [12]Fellet G, Marchiol L, Perosa D, et al. The application of phytoremediation technology in a soil contaminated by pyrite cinders[J]. Ecological Engineering, 2007,31(3):207-214.
    [13]纪罗军.硫铁矿烧渣资源的综合利用[J].硫酸工业,2009,(1):1-8.
    [14]田志凌.钢铁材料最新进展[J].焊接,2009,(12):14-18.
    [15]He B B, Tian X K, Sun Y, et al. Recovery of iron oxide concentrate from high-sulfur and low-grade pyrite cinder using an innovative beneficiating process[J]. Hydrometallurgy,2010,104(2):241-246.
    [16]王雪松,李朝祥,付元坤.硫铁矿烧渣磁化焙烧的实验研究[J].钢铁研究学报,2005,17(3):10-14.
    [17]储谦慎,王兴艳.铜陵硫酸渣综合利用[J].河北理工学院学报,2003,(4):17-22.
    [18]胡宾生,王晖.南化硫酸渣综合利用过程中矿物特征变化规律的研究[J].化学通报,2000,(7):40-43.
    [19]李青春,李静.硫酸渣综合利用新工艺试验研究[J].石油与化工设备,2007,10(6):47-49.
    [20]胡宾生,王晖.南化硫酸渣磁化焙烧一磁选工艺的研究[J].环境工程,1999,(4):24-28.
    [21]张泽强,胡文祥,沈上越.微波还原对硫铁矿烧渣磁选的影响[J].金属矿山,2008,(1):131-134.
    [22]Li C, Sun H H, Bai J, et al. Innovative methodology for comprehensive utilization of iron ore tailings Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials,2010,174(1-3):71-77.
    [23]朱德庆,潘建,左惠亮,等.硫酸渣复合球团制取高品位磁铁精矿方法:中国,200510032099.4[P].2008-2-27.
    [24]杨蓓德,金文杰,刘德洪.浮选法脱除硫铁矿烧渣硫[J].矿业研究与开发,2008,26(2):52-54.
    [25]董风芝,宋振柏,马振吉,等.硫铁矿烧渣回收铁精矿浮选工艺研究术[J].金属矿山,2005,(11):68-71.
    [26]文书明,胡天喜,周兴龙.低品位硫铁矿精选试验研究[J].硫酸工业,2009,(1):50-52.
    [27]胡永平,张德海.从黄铁矿烧渣中回收铁的新工艺[J].化工矿山技术,1995,(6):22-25.
    [28]董风芝,孙永峰.硫铁矿烧渣磁选-重选联合工艺回收铁精矿研究[J].金属矿山,2006,(7):80-82.
    [29]杨华明,占寿祥,李建武.硫铁矿烧渣提纯制铁精矿的试验研究[J].化工矿 物与加工,2002,(3):4-6.
    [30]薛立基,马乃洋.硫酸渣的基本特性及其利用[J].环境工程,1992,10(3):42-45.
    [31]唐达高.硫酸烧渣生产球团的技术探讨[J].中国资源综合利用,2006,24(7):5-7.
    [32]Kihlstedt P G. Method for purifying and agglomerating pyrite cinders:US, 38491113849111[P].1974-11-19.
    [33]陈铁军,张一敏.全硫酸渣生产氧化球团试验研究及工业应用[J].钢铁研究,2005,142(1):1-4.
    [34]Tugrul N, Derun E M, Piskin M. Utilization of pyrite ash wastes by pelletization process[J]. Powder Technology,2007,176(2-3):72-76.
    [35]朱德庆,李慧敏,余为,等.铁矿球团中有机复合膨润土的强化机理[J].重庆大学学报(自然科学版),2009,32(5):582-589
    [36]朱骥良,吴申年.颜料工艺学[M].北京:化学工业出版社,2002.
    [37]Guskos N, Papadopoulos G J, Likodimos V, et al. Photoacoustic, EPR and electrical conductivity investigations of three synthetic mineral pigments: hematite, goethite and magnetite[J]. Materials Research Bulletin,2002,37(6): 1051-1061.
    [38]邱春喜,姜继森,赵振杰,等.固相法制备α-Fe203纳米粒子[J].无机材料学报,2001,16(5):957-960.
    [39]Leskela T, Leskela M, Niinisto L. Preparation of red iron oxide pigments by thermal treatment of iron(Ⅱ)sulfate[J]. Thermochimica Acta,1984,72(1-2): 229-223.
    [40]Rockenberger J, Scher E C, Alivisatos A P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J]. Journal of the American Chemical Society,1999,121(49):11595-11596.
    [41]何明兴,徐南南,何安西,等.钢板盐酸酸洗液制取Fe203及应用研究[J].功能材料与器件学报,2002,8(3):276-280.
    [42]牛新书,徐荭.乙二醇甲醚体系中α-Fe203纳米晶制备与结构分析[J].无机材料学报,2001,16(2):243-248.
    [43]Diamandescu L, Mihaila-Tarabasanu D, Popescu-Pogrion N, et al. Hydrothermal synthesis and characterization of some polycrystalline alpha-iron oxides[J]. Ceramics International,1999,25(8):689-692.
    [44]Chen J F, Luo Y, Xu J H, et al. Visualization study on sedimentation of micron iron oxide particles[J]. Journal of Colloid and Interface Science,2006,301(2): 549-553.
    [45]刘青花,陈金芳,张良均.硫铁矿烧渣提取氧化铁红的研究[J].武汉化工学院学报,2005,27(2):1-6.
    [46]郑雅杰,刘昭成.用水热法从硫铁矿烧渣制备氧化铁红[J].金属矿山,2008,(2):139-145.
    [47]邹光中,王国宏,叶继雄,等.用硫铁矿烧渣制取超细氧化铁红及其改性研究[J].无机盐工业,2005,37(1):40-42.
    [48]陈吉春,梁海霞.硫铁矿烧渣制取铁红[J].化工环保,2004,24(3):210-212.
    [49]Wohlfarth EP. Ferromagnetic Materials[M]. New York:North-Holland Publishing Company,1980:406.
    [50]郑晓虹,陈力勤,沈霖霖,等.硫铁矿渣中提取铁及其在纳米a-FeOOH制备中的应用[J].应用化学,2003,20(9):871-874.
    [51]陈吉春,孔磊.硫铁矿烧渣制备纳米铁黄工艺的研究[J].矿业工程,2008,6(1):67-69.
    [52]谭定桥,郑雅杰.硫铁矿烧渣制备铁黄新技术[J].化学工程,2006,34(3):72-75.
    [53]张顺利,马同森,吴志申,等.硫铁矿烧渣制备氧化铁黄和氧化铁红[J].化学研究,1999,10(1):47-50.
    [54]Correa J R, Canetti D, Castillo R, et al. Influence of the precipitation pH of magnetite in the oxidation process to maghemite[J]. Materials Research Bulletin, 2006,41(4):703-713.
    [55]Zou Z, Xuan A G, Yan Z G, et al. Preparation of Fe3O4 particles from copper/iron ore cinder and their microwave absorption properties[J]. Chemical Engineering Science,2010,65(1):160-164.
    [56]焦华,杨合情,宋玉哲,等.Fe304八面体微晶的水热法制备与表征[J].化学学报,2007,65(20):2336-2342.
    [57]Wang S B, Min Y L, Yu S H. Synthesis and magnetic properties of uniform hematite nanocubes[J]. Journal of Physical Chemistry C,2007,111(9): 3551-3554.
    [58]Sakthivel R, Vasumathi N, Sahu D, et al. Synthesis of magnetite powder from iron ore tailings[J]. Powder Technology,2010,201(2):187-190.
    [59]杨喜云,龚竹青,郑雅杰,等.硫铁矿烧渣制备静电复印显影剂用Fe304[J].功能材料,2005,36(5):667-670.
    [60]杨喜云,龚竹青,彭长宏,等.空气氧化法制备Fe3O4的反应机理[J].中南大学学报(自然科学版),2008,39(3):454-458.
    [61]Yang X Y, Gong Z Q, Liu F L. Kinetics of Fe3O4 formation by air oxidation[J]. Journal of Central South University of Technology,2004,11(2):152-155.
    [62]苏莉.用硫铁矿烧渣制取四氧化三铁超细粉体的研究[J].贵州工业大学学报(自然科学版),2003,32(6):75-77.
    [63]Yan M F, Johnson Jr DW. Impurity-induced exaggerated grain growth in Mn-Zn ferrites[J]. Journal of the American Ceramic Society,1978,61(7-8):342-349.
    [64]Hirai N, Murase T, Okutani K, et al. Method for producing powdered iron oxide:US,50323675032367[P].1991-07-16
    [65]Zaspalis V, Kolenbrander M. Design principles for spray-roasted iron oxides for the manufacturing of ferrites[J]. Powder Technology,2006,161(3):169-174.
    [66]龚竹青,黄坚.用硫铁矿烧渣制备的硫酸亚铁研制软磁用α-Fe2O3[J]环境工程,2003,21(2):48-51.
    [67]孙文婷.以硫铁矿烧渣提纯的α-Fe2O3为原料制备高品质Mn-Zn铁氧体磁性材料的研究[硕士学位论文].武汉:华中师范大学,2009.
    [68]郑雅杰,符丽纯.硫铁矿烧渣水热法制备氧化铁[J].中南大学学报(自然科学版),2007,38(4):674-680.
    [69]郑雅杰,刘兴瑜,符丽纯,等.含铁废渣制备氧化铁的方法:中国,200610031979.4[P].2009-4-15.
    [70]Lenchev A, Donchev I, Zhelyazkova B G. Behaviour of copper, zinc, sulphur and arsenic in the sulphatizing roasting of pyrite cinders [J]. Scandinavian Journal of Metallurgy,1983,12(3):133-136.
    [71]Vinalsa J, Nuneza C, Carrascoa J. Leaching of gold, silver and lead from plumbojarosite-containing hematite tailings in HCl-CaCl2 media[J]. Hydrometallurgy,1991,26(2):179-199.
    [72]房裕生,张华.硫铁矿烧渣湿法脱硫及伴生有价金属的提炼方法:中国,92100708.6[P].1993-08-04.
    [73]Bocckino H G, Pepper T W. Recovery of silver, copper, zinc and lead from partially roasted pyrite concentrate by acid chloride leaching:US,4168969[P]. 1979-09-25.
    [74]Mora C, Aleta R, Delgado H, et al. Process for the recovery of non ferrous metal value from pyrite cinders EP,92500073.90835168A1[P].1992-04-21.
    [75]Wei J, Yan G, Guo B, et al. Extracting gold from pyrite roster cinder by ultra-fine grinding and resin in pulp[J]. Journal of Central South University of Technology, 2003,10(1):27-31.
    [76]Nunez C, Vinals J. Study of Spanish pyrite cinders:Cl2-HCl leaching of fluidized-bed arsenical cinders[J]. Transactions of the Institution of Mining and Metallurgy (Section C-Mineral),1984,93(1):162-172.
    [77]徐光泽.硫铁矿烧渣回收铜金属的工艺研究[J].硫酸工业,2009,(5):48-52.
    [78]Tsakiridis P E, Papadimitriou G D, Tsivilis S, et al. Utilization of steel slag for Portland cement clinker production[J]. Journal of Hazardous Materials, 2008,152(2):805-811.
    [79]Lizarazo-Marriaga J, Claisse P, Ganjian E. Effect of Steel Slag and Portland Cement in the Rate of Hydration and Strength of Blast Furnace Slag Pastes[J]. Journal of Materials in Civil Engineering,2011,23(2):153-160.
    [80]Monshi A, Asgarani MK. Producing Portland cement from iron and steel slags and limestone[J]. Cement and Concrete Research,1999,29(9):1373-1377.
    [81]程绪想,杨全兵.钢渣的综合利用[J].粉煤灰综合利用,2010,(5):45-49.
    [82]Kumar S, Kumar R, Bandopadhyay A. Innovative methodologies for the utilisation of wastes from metallurgical and allied industries[J]. Resources Conservation and Recycling,2006,48(4):301-314.
    [83]Li C, Sun H H, Yi Z L, et al. Innovative methodology for comprehensive utilization of iron ore tailings Part 2:The residues after iron recovery from iron ore tailings to prepare cementitious material[J]. Journal of Hazardous Materials, 2010,174(1-3):78-83.
    [84]Alp I, Deveci H, Sungun H. Utilization of flotation wastes of copper slag as raw material in cement production[J]. Journal of Hazardous Materials, 2008,159(2-3):390-395.
    [85]Shi C J, Qian J S. High performance cementing materials from industrial slags-a review[J]. Resources Conservation and Recycling,2000,29(3):195-207.
    [86]Singh M, Garg M. Cementitious binder from fly ash and other industrial wastes[J]. Cement and Concrete Research,1999,29(3):309-314.
    [87]严波,徐志.硫酸渣作混合材生产水泥[J].水泥,1996,(6):32-34.
    [88]Chen Y, Zhang Y, Chen T, et al. Preparation of eco-friendly construction bricks from hematite tailings[J]. Construction and Building Materials,2011,25(4): 2107-2111.
    [89]Das S K, Kumar S, Ramachandrarao P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Management,2000,20(8):725-729.
    [90]燕启社,李明玉,马同森,等.硫铁矿烧渣生产固体复合混凝剂及在废水处理中的应用[J].河南大学学报(自然科学版),2003,33(1):44-47.
    [91]任爱玲,郭斌,周保华,等.以工业废物制备高效氧化铁系脱硫剂的研究[J].环境工程,2000,18(4):40-43.
    [92]任爱玲,郭斌,杨景亮,等.SW型脱硫剂脱除沼气中H2S的研究[J].河北化工,1994,(3):59-62.
    [93]郭斌,温运堂,任爱玲.SW型脱硫剂的研制及应用[J].煤气与热力,1996,16(5):8-10.
    [94]郑雅杰,龚竹青,陈白珍,等.硫铁矿烧渣湿法制备铁系产品的原理和途径分析[J].环境污染治理技术与设备,2001,2(1):48-54.
    [95]郑雅杰,陈白珍,龚竹青,等.硫铁矿烧渣的熟化及机理[J].中国有色金属学报,2001,11(1):144-147.
    [96]龚竹青,郑雅杰,陈白珍,等.硫铁矿烧渣制备硫酸亚铁及效益估算[J].环境保护,2000,(8):44-46.
    [97]吴玢,郝丽萍.聚合硫酸铁生产方法:中国,1049487A[P].1991-02-27.
    [98]周华,易德莲,李忠勇.利用硫铁矿烧渣生产聚合硫酸铁的工艺与应用研究[J].硫酸工业,1996,(2):40-46.
    [99]郑雅杰,龚竹青,陈白珍.以硫铁矿烧渣为原料氯酸钠氧化法制备PFS研究[J].化学世界,2003,44(1):5-7,20.
    [100]郑雅杰,陈白珍,龚竹青,et a1.硫铁矿烧渣制备聚合硫酸铁新工艺[J].中南工业大学学报(自然科学版),2001,32(2):142-145.
    [101]郑雅杰,龚竹青,刘兴渝,等.部分氧化法制备聚合硫酸铁的方法:中国,02147656.X[P].2005-12-28.
    [102]郑雅杰.硫酸铁溶液制备聚合硫酸铁的方法:中国,200410023330.9[P].2007-9-26.
    [103]郑雅杰,彭超.膨化法制备固体聚合硫酸铁技术[J].环境科学学报,2009,29(9):1939-1943.
    [104]Zheng Y J, Gong Z Q, Chen B Z, et al. Preparation of solid polyferric sulfate from pyrite cinders and its structure feature[J]. Transactions of Nonferrous Metals Society of China,2003,13(3):690-694.
    [105]郑雅杰,黄国庆,彭超,等.膨化固化法制备固体聚合硫酸铁的方法:中国,200810030878.4[P].2008-03-24.
    [106]Cornell R M, Schwertmann U. The iron oxides:Structure, Properties, Reactions, Occurences and uses[M]. New York:Wiley-VCH,2003.
    [107]Carter E. Synthetic lamellar iron oxide:a new pigment for anticorrosive primers[J]. Pigment and Resin Technology,1988,17 (12):4-12.
    [108]Peng D F, Beysen S, Li Q A, et al. Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets[J]. Particuology,2010,8(4):386-389.
    [109]Ado K, Nobuoka S, Asai T. Method for manufacture of iron oxide flaks:US,4233283[P].1980-11-11.
    [110]Sorensen P A, Kiil S, Dam-Johansen K, et al. Anticorrosive coatings:a review[J]. Journal of Coatings Technology and Research,2009,6(2):135-176.
    [111]吴宗汉,段志新.鳞片防腐涂料的性能及应用[J].现代涂料与涂装,2010,13(7):21-24.
    [112]蒋德强,卢向东,马想生.聚氨酯涂料体系在石化钢结构防腐中的应用[J].现代涂料与涂装,2007,10(7):8-9.
    [113]Nikravesh B, Ramezanzadeh B, Sarabi A A, et al. Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments[J]. Corrosion Science,2011,53(4): 1592-1603.
    [114]Ruvolo A, Magaton M. Evaluating barrier properties of acrylic polyurethane and aliphatic polyurethane coatings loaded with micaceous iron oxide or red iron oxide[J]. Polymer-Plastics Technology and Engineering,2009,48(7): 682-695.
    [115]林治华.防腐性能优良的防锈颜料-云母氧化铁,[J].上海涂料,1999,(4):17-21.
    [116]Moggridge G D, Lape N K, Yang C F, et al. Barrier films using flakes and reactive additives[J]. Progress in Organic Coatings,2003,46(4):231-240.
    [117]付建生,彭义霆,田晓辉,等.新一代高性能效应颜料—随角异色颜料[J].涂料工业,2003,33(7):41-43.
    [118]李功军,李振民,刘跃进.云母氧化铁珠光颜料的研究[J].湖南工程学院学报,2004,14(2):70-73.
    [119]Suzuki M, Tachibana M, Moriai T. Iron oxide pigments and process for the production thereof:US,3987156[P].1976-03-04.
    [120]Du H Y, Liu C X, Sun J Y, et al. An investigation of angle-dependent optical properties of multi-layer structure pigments formed by metal-oxide-coated mica[J]. Powder Technology,2008,185(3):291-296.
    [121]Tohidifar M R, Taheri-Nassaj E, Alizadeh P. Precursor content assessment and its influence on the optical interference of a nano-sized mica-hematite pearlescent pigment[J]. Powder Technology,2010,204(2-3):194-197.
    [122]Mirhabibi A, Esfidari M, Aghababazadeh R. Synthesis of gold pearlescent pigment via heat treatment of mica[J]. Journal of Coatings Technology and Research,2008,5(1):73-76.
    [123]张景峰,向卫东,梁晓娟.金红石型云母钛珠光颜料的合成及表征[J].稀有金属材料与工程,2008,37(suppl.2):652-654.
    [124]杜海燕,陈启荣,孙家跃,等.湿化学法制备铁-钛系列随角异色功能颜料[J].硅酸盐通报,2006,25(4):32-35.
    [125]叶红齐,苏周,周永华,等.片状氧化物粉体在珠光颜料中应用[J].涂料工业,2004,34(1):59-61.
    [126]王英富.用镜铁矿生产云母氧化铁的研究[J].国外金属矿选矿,1999,(4):11-12,16.
    [127]殷德木.一种云母氧化铁颜料的生产方法:中国,1583887A[P].2005-6-5.
    [128]李振民,刘跃进,熊双喜.云母氧化铁的制备与应用[J].无机盐工业,2002,34(6):29-30.
    [129]Carter E V, Laundon R D. Synthetic micaceous iron oxide:a new anticorrosive pigment[J]. Journal of Oil and Colour Chemists Association,1990,1:7-15.
    [130]袁晰,叶红齐,刘辉.片状α-Fe2O3的制备及其生长机理[J].中南大学学报(自然科学版),2010,41(5):1718-1723.
    [131]袁晰,叶红齐,刘辉,等.珠光颜料用片状氧化铁的助熔剂法合成研究[J].涂料工业,2009,39(8):34-37.
    [132]Tze C. Process for manufacture of α-Fe2O3 platelets:US,3864463[P]. 1975-02-04.
    [133]Morey G W, Niggli P. The hydrothermal formation of silicates, A review[J]. Journal of the American Chemical Society,1913,35(9):1086-1130.
    [134]施尔畏,陈之战,元如林,et al.水热结晶学[M].北京:科学出版社,2004.
    [135]Nobuoka S. Method for manufacture of micaceous a-iron oxide:US, 3987156[P].1976-10-19.
    [136]Tomas H, Alois N, Jan S, et al. Method of micaceous iron oxide (mio) pigment production:EP,0416648A2[P].1991-03-13.
    [137]李振民,刘跃进,熊双喜.钛白副产硫酸亚铁制取云母氧化铁颜料的研究[J].湘潭大学自然科学学报,2003,25(1):46-49.
    [138]刘跃进,李振民,李功军,等.水热法合成云母氧化铁结晶条件[J].化工学报,2004,55(5):846-849.
    [139]Kazuki A, Soichio N, Takashi A. Method for manufacture of iron oxide flakes:US,4233283[P].1980-11-11.
    [140]刘跃进,危自燕,李振民,等.一种水热反应结晶制备云母氧化铁的方法:中国,1944274A[P].2007-04-11.
    [141]Gerhard F, Lothar S, Heinrich H. Lamellar iron oxide pigments, a process for the production thereof and the use thereof:US,4676838[P].1987-06-30.
    [142]Hayakawa M, Nishimura S. Process for preparation of micaceous iron oxide:US, 4289746[P].1981-09-15.
    [143]Frand G, Hund F. Prodution of lamellar iron oxide pigments:US,4404254[P]. 1983-09-13.
    [144]Werner O. Platelet-shaped substituted iron oxide pigments:EP,265820[P]. 1988-05-04.
    [145]Werner O. Lamellar pigments of the general formula MnXAlYFe2-(X+Y)O3:US, 4826537[P].1989-05-02.
    [146]Kandori K, Yamamoto N, Yasukawa A, et al. Preparation and characterization of disk-shaped hematite particles by a forced hydrolysis reaction in the presence of polyvinyl alcohol[J]. Physical Chemistry Chemical Physics,2002,4(24): 6116-6122.
    [147]Chen DL, Gao L. A facile route for high-throughput formation of single-crystal α-Fe2O3 nanodisks in aqueous solutions of Tween 80 and triblock copolymer[J]. Chemical Physics Letters,2004,395(4-6):316-320.
    [148]曹付玲,吴育飞,刘辉,等.掺铝铁饼状α-Fe2O3微粒的制备及性能[J].化学学报,2008,66(12):1405-1410.
    [149]Liu H, Cao FL, Li P, et al. The formation of discoid hematite particles from Al-doped ferrihydrite:The effect of trace Fe(Ⅱ) and the introduction procedures of Al(Ⅲ)[J]. Chemical Engineering Journal,2010,157(1):254-262.
    [150]吕宝亮,徐耀,吴东,等.多孔氧化铁纳米盘的制备与表征[J].无机化学学报,2008,24(10):1690-1694.
    [151]Jing Z H, Wu S H. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach[J]. Materials Letters,2004,58(27-28):3637-3640.
    [152]郑静,王国宏,王志刚.纳米Fe203的有机表面改性及表征[J].涂料工业, 2007,37(7):22-25.
    [153]马振叶,李凤生,叶明泉,等.Fe2O3/油酸纳米复合粒子的结构及性能表征[J].南京理工大学学报,2004,28(4):436-439.
    [154]Takami S, Sato T, Mousavand T, et al. Hydrothermal synthesis of surface-modified iron oxide nanoparticles[J]. Materials Letters,2007,61(26): 4769-4772.
    [155]Xu C B, Teja A S. Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles[J]. Journal of Supercritical Fluids, 2008,44(1):85-91.
    [156]Zheng S, Zhang Q. Surface-modification of fine red iron oxide pigment[J]. China Particuology,2003,1(4,):176-180.
    [157]郑水林,张清辉,李杨.超细氧化铁红颜料的表面改性研究[J].矿冶,2003,12(2):70-73.
    [158]Shentu B Q, Gan T F, Weng Z X. Modification of Fe2O3 and its effect on the heat-resistance of silicone rubber[J]. Journal of Applied Polymer Science, 2009,113(5):3202-3206.
    [159]徐阳,张璐滢,李成威,等.超细氧化铁红粉体表面改性的研究[J].表面技术,2007,36(4):37-38.
    [160]周宏建,高延敏,刘坤鹏,等.纳米二氧化硅包覆云母氧化铁以及其对UV固化涂料防腐性能的影响[C]:第一届纳米技术及纳米材料改型涂料应用技术研讨会论文集.上海:2010.29-32.
    [161]刘瑞辉,张存满,马建新.具有良好热稳定性的Al2O3改性Fe2O3基金催化剂[J].物理化学学报,2009,25(11):2261-2269.
    [162]Liu H, Wei Y, Sun Y. The formation of hematite from ferrihydrite using Fe(Ⅱ) as a catalyst[J]. Journal of Molecular Catalysis A-Chemical,2005,226(1): 135-140.
    [163]Liu H, Guo H, Li P, et al. The transformation of ferrihydrite in the presence of trace Fe(Ⅱ):The effect of the anionic media[J]. Journal of Solid State Chemistry,2008,181(10):2666-2671.
    [164]Liu H, Wei Y, Li P, et al. Catalytic synthesis of nanosized hematite particles in solution[J]. Materials Chemistry and Physics,2007,102(1):1-6.
    [165]Liu H, Li P, Lu B, et al. Transformation of ferrihydrite in the presence or absence of trace Fe(Ⅱ):The effect of preparation procedures of ferrihydrite[J]. Journal of Solid State Chemistry,2009,182(7):1767-1771.
    [166]Sugimoto T, Sakata K, Muramatsu A. Formation mechanism of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel [J]. Journal of Colloid and Interface Science,1993,159(2):372-382.
    [167]Sugimoto T, Sakataa K. Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel [J]. Journal of Colloid and Interface Science,1992,152(2):587-590.
    [168]Goni-Elizaldea S, Garcia-Clavel M E, Tejedor-Tejedor MI. Mechanism of akaganeite-hematite transformation via solution [J]. Reactivity of Solids, 1987,3(1-2):139-154.
    [169]Schwertmann U, Murad E. Effect of pH on the formation of goethite and hematite from ferrihydrite[J]. Clays and Clay Minerals,1983,31(4):277-284.
    [170]Das S, Hendry M J, Essilfie-Dughan J. Transformation of Two-Line Ferrihydrite to Goethite and Hematite as a Function of pH and Temperature[J]. Environmental Science & Technology,2011,45(1):268-275.
    [171]De Blanco E K, Blesam M A, Liberman S J. Comments on the mechanism of the akaganeite-hematite phase transformation in hydrothermal solutions[J]. Reactivity of Solids,2008,1(2):189-194.
    [172]Fischer W R, Schwertmann U. The formation of hematite from amorphous iron (III) hydroxide[J]. Clays and Clay Minerals,1975,23(1):33-37.
    [173]Kandori K, Kawashima Y, Ishikawa T. Characterization of monodispersed haematite particles by gas adsorption and Fourier-transform infrared spectroscopy[J]. Journal of the Chemical Society, Faraday Transactions, 1991,87(14):2241-2246.
    [174]Cabanas M V, Vallet-Regi M, Labeau M, et al. Spherical iron oxide particles synthesized by an aerosol technique[J]. Journal of Materials Research,, 1993,8(10):2694-2701
    [175]Li Z M, Lai X Y, Wang H, et al. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine[J]. Nanotechnology,2009,20(24):245603-245611.
    [176]Jia B P, Gao L. Growth of well-defined cubic hematite single crystals:Oriented aggregation and Ostwald ripening[J]. Crystal Growth & Design,2008,8(4): 1372-1376.
    [177]Jia C J, Sun L D, Luo F, et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings[J]. Journal of the American Chemical Society, 2008,130(50):16968-16977.
    [178]Lv B L, Liu Z Y, Tian H, et al. Single-crystalline dodecahedral and octodecahedral α-Fe2O3 particles synthesized by a fluoride anion-assisted hydrothermal method[J]. Advanced Functional Materials,2010,20(22): 3987-3996.
    [179]Wang L L, Gao L. Morphology-controlled synthesis and magnetic property of pseudocubic iron oxide nanoparticles[J]. Journal of Physical Chemistry C, 2009,113(36):15914-15920.
    [180]袁晓卫,杨骞,刘琦,等.α-Fe2O3空心球的水热法制备及其对苯酚的吸附性能[J].无机化学学报,2010,26(2):285-282.
    [181]Jiao F, Jumas J C, Womes M, et al. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation[J]. Journal of the American Chemical Society,2006,128(39):12905-12909.
    [182]International Organization for Standardization. ISO 787-2. General methods of test for pigments and extenders-Part 2:Determination of matter volatile at 105℃[S]. Switzerland:1981.
    [183]International Organization for Standardization. ISO 787-3. General methods of test for pigments and extenders-Part 3:Determination of matter soluble in water-Hot extraction method[S]. Switzerland:2000.
    [184]International Organization for Standardization. ISO 787-5. General methods of test for pigments and extenders-Part 5:Determination of oil absorption value[S]. Switzerland:1980.
    [185]International Organization for Standardization. ISO 787-9. General methods of test for pigments and extenders-Part 9:Determination of pH value of an aqueous suspension[S]. Switzerland:1995.
    [186]European Committee for Standardization. EN ISO 3549. Zinc dust pigments for paints-Specifications and test methods[S]. Brussels:2002
    [187]Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides[J]. Science,2008,319(5870):1635-1638.
    [188]Lemine O M. Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR[J]. Superlattices and Microstructures,2009,45(6):576-582.
    [189]Kloprogge J T, Schuiling R D, Ding Z, et al. Vibrational spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuric acid[J]. Vibrational Spectroscopy,2002,28(2):209-221.
    [190]Sugimoto T, Wang Y. Mechanism of the shape and structure control of monodispersed α-Fe2O3 particles by sulfate ions [J]. Journal of Colloid and Interface Science,1998,207(1):137-149.
    [191]Wang Y, Muramatsu A, Sugimoto T. FTIR analysis of well-defined α-Fe2O3 particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,134(3):281-297.
    [192]Serna C J, Ocana M, Iglesias J E. Optical properties of α-Fe2O3 microcrystals in the infrared[J]. Journal of Physics C:Solid State Physics,1987,20(2):473-484.
    [193]McDevitt N T, Baun W L. Infrared absorption study of metal oxides in the low frequency region (700-240 cm-1)[J]. Spectrochimica Acta,1964,20(5):799-808.
    [194]迪安JA.兰氏化学手册[M].魏俊发,译.北京:科学出版社,2003.
    [195]Diakonov I I, Schott J, Martin F, et al. Iron(Ⅲ) solubility and speciation in aqueous solutions. Experimental study and modelling:Part 1. Hematite solubility from 60 to 300℃ in NaOH-NaCl solutions and thermodynamic properties of Fe(OH)4-(aq)[J]. Geochimica Et Cosmochimica Acta, 1999,63(15):2247-2261.
    [196]Schwertmann U, Fitzpatrick R W, Taylor R M, et al. The influence of aluminum on iron oxides:Ⅱ. Preparation and properties of aluminum-substituted hematites[J]. Clays and Clay Minerals,1979,27(2):105-112.
    [197]International Organization for Standardization. ISO 10601-2007. Micaceous iron oxide pigments for paints-specifications and test methods[S]. Switzerland: 2007.
    [198]Sugimoto T, Muramatsu A, Sakata K, et al. Characterization of hematite particles of different shapes [J]. Journal of Colloid and Interface Science, 1993,158(25):420-428.
    [199]Zheng Y H, Cheng Y, Wang Y S, et al. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance[J]. Journal of Physical Chemistry B, 2006,110(7):3093-3097.
    [200]Sugimoto T, Wang Y. Mechanism of the shape and structure control of monodispersed α-Fe2O3 particles by sulfate ions[J]. Journal of Colloid and Interface Science,1998,207(1):137-149.
    [201]Barron V, Torrent J. Surface hydroxyl configuration of various crystal faces of hematite and goethite[J]. Journal of Colloid and Interface Science,1996,177(2): 407-410.
    [202]Hug S J. In situ. Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions[J]. Journal of Colloid and Interface Science, 1997,188(2):415-422.
    [203]Bondietti G, Sinniger J, Stumm W. The reactivity of Fe(Ⅲ) (hydr)oxides: Effects of ligands in inhibiting the dissolution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,79(2-3):157-167.
    [204]Wehrli B, Sulzberger B, Stumm W. Redox processes catalyzed by hydrous oxide surfaces[J]. Chemical Geology,1989,79(3-4):167-179.
    [205]Kremer E, Chai G, Morkevicius M, et al. Electron-transfer reactions of ion pairs: reduction of various (carboxylato)pentaamminecobalt(Ⅲ) complexes by hexacyanoferrate(Ⅱ)[J]. Inorganic Chemistry,1984,23(19):3028-3030.
    [206]Liu Q Y, Osseo-Asare K. Synthesis of monodisperse Al-substituted hematite particles from highly condensed metal hydroxide gels[J]. Journal of Colloid and Interface Science,2000,231(2):401-403.
    [207]Stanjek H, Schwertmann U. The influence of aluminum on iron oxides; Part XVI, Hydroxyl and aluminum substitution in synthetic hematites[J]. Clays and Clay Minerals,1992,40(3):347-354.
    [208]Sugimoto T, Waki S, Itoh H, et al. Preparation of monodisperse platelet-type hematite particles from a highly condensed β-FeOOH suspension[J]. Colloids ang Surface A,1996,109(1):155-165.
    [209]Uchida S, Sato T, Okuwaki A. Synthesis of monodispersed micaceous iron oxide by the oxidation of iron with oxygen under hydrothermal conditions[J]. Journal of Chemical Technology and Biotechnology,1993,57(3):211-277.
    [210]Fierro J L F. Spectroscopic Characterization of Heterogeneous Catalysts, Part:B [M]. Amsterdam; Elsevier.1990.
    [211]Zhong S L, Song J M, Zhang S, et al. Template-free hydrothermal synthesis and formation mechanism of hematite microrings[J]. Journal of Physical Chemistry C,2008,112(50):19916-19921.
    [212]王步国,施尔畏,仲维卓,等.晶体的习性机制与实际形态控制[J].人工晶体学报,1997,26(3):198.
    [213]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999.
    [214]Shindo D, Lee B-T, Waseda Y, et al. Crystallpgraphy of platelet-type hematite pariticles by electron microscopy[J]. Materials Transactions,1993,34(7): 580-585.
    [215]Chen L, Yang X, Chen J, et al. Continuous Shape-and Spectroscopy-Tuning of Hematite Nanocrystals[J]. Inorganic Chemistry,2010:8411-8420.
    [216]Zhang X L, Sui C H, Gong J, et al. Preparation and formation mechanism of different α-Fe2O3 morphologies from snowflake to paired microplates, dumbbell, and spindle microstructures[J]. Journal of Physical Chemistry C, 2007,111(26):9049-9054.
    [217]冯怡,马天翼,刘蕾,等.无机纳米晶的形貌调控及生长机理研究[J].中国科学B辑:化学,2009,39(9):864-886.
    [218]Frandsen C, Bahl C R H, Lebech B, et al. Oriented attachment and exchange coupling of α-Fe2O3 nanoparticles[J]. Physical Review B,2005,72(21): 214406.
    [219]Kandori K, Uchida S, Kataoka S, et al. Effects of silicate and phosphate ions on the formation of ferric oxide hydroxide particles[J]. Journal of Materials Science,1992,27(3):719-728.
    [220]Popovici M, Gich M, Roig A, et al. Ultraporous single phase iron oxide-silica nanostructured aerogels from ferrous precursors[J]. Langmuir,2004,20(4): 1425-1429.
    [221]Campbell A S, Schwertmann U, Stanjek H, et al. Si incorporation into hematite by heating Si-ferrihydrite[J]. Langmuir,2002,18(21):7804-7809.
    [222]Hong R Y, Pan T T, Qian J Z, et al. Synthesis and surface modification of ZnO nanoparticles[J]. Chemical Engineering Journal,2006,119(2-3):71-81.
    [223]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [224]唐艳军,李友明,李滨.CTAB在纳米CaC03表面吸附引起的界面性质变化[J].华南理工大学学报(自然科学版),2007,35(11):95-99.
    [225]刘立华,宋云华,陈建铭,等.硬脂酸钠改性纳米氢氧化镁效果研究[J].北京化工大学学报(自然科学版),2004,31(3):31-34.
    [226]冯拉俊,徐大鹏,雷阿利.表面改性剂对铜锌粉末表面润湿性和漂浮性的影响[J].中国有色金属学报,2008,18(8):1566-1570.
    [227]李群,姜万超,陈水林.低聚丙烯酸钠用于纳米氧化锌表面改性的研究[J].青岛大学学报,2003,16(1):1-4.
    [228]解小玲,郭睿劫,贾虎生,等.KH-550改性纳米二氧化硅的研究[J].太原理工大学学报,2008,39(1):26-28.
    [229]刘甲,张林进,叶旭初.纳米氧化锌的分散与表面改性研究[J].无机盐工业,2010,42(8):28-30.
    [230]刘国杰.纳米材料改性涂料[M].北京:化学工业出版社,2008.
    [231]曲岩涛,李继山,王宗礼.CTAB改变固体表面润湿性的机理探讨[J].大庆石油地质与开发,2006,25(2):52-53.
    [232]付芳,杨卫华,王鸿辉.聚乙二醇改性钛基PbO2电极的制备及性质研究[J].无机材料学报,2010,25(6):653-658.
    [233]赵国玺.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [234]Jiang C Z, Wu W, He Q G. Magnetic iron oxide nanoparticles:synthesis and surface functionalization strategies[J]. Nanoscale Research Letters,2008,3(11): 397-415.
    [235]姚超,高国生,林西平,等.硅烷偶联剂对纳米二氧化钛表面改性的研究[J].无机材料学报,2006,21(2):315-321.
    [236]路学斌,郭照辉,黄荣,等.紫铜表面3-巯丙基三乙氧基硅烷薄膜的制备与耐蚀性能[J].物理化学学报,2011,27(1):108-112.
    [237]巩志坚,田原宇,李文华,等.铁氧化物的热特性研究[J].洁净煤技术,2006,(3):95-97.
    [238]刘科伟,陈天朗.硫酸铵的热分解[J].化学研究与应用,2002,14(6):737-738.
    [239]McIntyre J M, Pham H Q. Electrochemical impedance spectroscopy; a tool for organic coatings optimizations[J]. Progress in Organic Coatings,1996,27(1-4): 201-207.
    [240]Zhu D Q, van Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane[J]. Progress in Organic Coatings,2004,49(1):42-53.
    [241]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [242]贾铮,戴长松,陈玲.电化学测量技术[M].北京:化学工业出版社,2006:157-168.
    [243]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1995:91-99.
    [244]胡吉明,张鉴清,谢德明,等.环氧树脂涂覆LY12铝合金在NaCl溶液中的阻抗模型[J].物理化学学报,2003,19(2):144-149.
    [245]Oliveira C G, Ferreira M G S. Ranking high-quality paint systems using EIS. Part II:defective coatings[J]. Corrosion Science,2003,45(1):139-147.
    [246]Zhang J T, Hu J M, Zhang J Q, et al. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS[J]. Progress in Organic Coatings,2004,51(2):145-151.
    [247]曹京宜,张寒露,左禹,等.便携式阻抗测量仪的研制与应用[J].现代仪器,2010,(4):42-44.
    [248]陈中华,唐英,余飞,等.颜填料体积浓度对水性环氧导静电防腐蚀涂层性能的影响[J].化工学报,2008,59(10):2568-2572.
    [249]刘惊,胡吉明,张鉴清,等.基于高频电化学阻抗谱测试的涂层防护性能评价方法[J].腐蚀科学与防护技术,2010,22(4):325-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700