土壤重金属迁移转化的分子形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属是农业土壤环境和农产品中的重要污染物,重金属在土壤矿物、生物等界面的迁移和形态转化决定其在土壤圈中的归趋和生态效应。近年来,随着环境分子科学的发展和研究方法的突破,从分子水平深入认识重金属污染物在环境介质中的反应机制成为环境科学新的研究热点。本论文在传统分析方法的基础上,通过引入同步辐射X射线吸收光谱技术(SRXAS),对重金属在粘土矿物、土壤颗粒和植物根-土界面的分子形态进行了一些探讨,主要研究结论如下:
     明确了Cu在蒙脱石和赤铁矿表面结合的分子形态。在蒙脱石和赤铁矿表面,Cu原子赤道平面上的四个水分子被O原子取代,形成Cu-O配位。在蒙脱石表面,Cu除了与片层边缘O原子配位吸附外,还形成多核沉淀;在赤铁矿表面,Cu除与O原子结合外,还存在两种可能的结合形态,分别是形成内层配位和表面沉淀。通过草酸、Cu耐性植物海州香薷(Elsholtzia splendens)根分泌物、Cu耐性微生物(Pseudomonas putida CZ1)对矿物表面Cu结合分子形态影响研究表明,草酸和海州香薷根分泌物将赤铁矿和蒙脱石表面的Cu沉淀转化为有机酸结合态,在矿物表面表现出活化作用;Cu的耐性微生物CZ1促进了Cu在赤铁矿和蒙脱石中的吸附,且形成稳定性更好的Cu沉淀物,在矿物表面表现出固定作用,在CZ1作用下,赤铁矿和蒙脱石表面吸附的部分Cu转化为草酸酸和氨基酸络合态。
     突破了传统的土壤重金属形态分析方法,对Cu在污染土壤中结合的分子形态及其转化过程进行量化。以矿区污染土壤为材料,以硫化物结合态、矿物吸附态、腐殖质结合态的Cu为参比,通过不同分子形态Cu的同步辐射X射线吸收光谱特征分析,证明土壤中Cu含量大小依次为腐殖质结合态、赤铁矿结合态、水铁矿结合态、硅酸盐矿物结合态和硫化物结合态;在根分泌物影响下,土壤溶液中以草酸和根分泌物类似络合态Cu为主,土壤中水合离子态Cu显著下降,表明海州香薷根分泌物对土壤溶液中的Cu具有络合稳定作用;硫处理显著促进了土壤的酸化,硫处理后土壤中水溶态Cu含量显著上升,土壤溶液中85.5%的Cu以有机酸类似络合态存在。
     揭示了土壤中的Cu、Pb、As以胶体颗粒态迁移的规律,并对土壤可移动胶体颗粒中Cu的分子形态进行了探讨。以诸暨矿区和上虞矿区污染土壤中的Cu、Pb、As为研究对象,通过土柱模拟淋溶实验,发现土壤重金属在迁移过程中,逐渐向胶体颗粒富集,并随之迁移,证明土壤中重金属迁移的主要形态是胶体吸附态,而不是水溶态。通过SEM和TEM-EDX分析,发现土壤中可移动颗粒主要由硅酸盐矿物和有机质及铁铝氧化物胶结物组成,在胶体颗粒表面,存在一些含Fe氧化物和重金属硫化物的纳米颗粒;通过同步辐射X射线吸收光谱分析,证实可移动胶体颗粒中有机质、Fe氧化物是重金属的主要运移载体,并对不同分子形态的Cu含量进行了定量。
     揭示了在海州香薷根-土界面Cu的分子形态转化规律。通过同步辐射X射线吸收光谱技术分析,海州香薷根系活动对Cu的分子形态产生了较大的影响,在海州香薷根际区域,根分泌物促进了赤铁矿吸附态Cu的溶解,Cu主要与根分泌物中的羧基基团结合;阐明了硫处理对海州香薷根-土界面Cu分子形态的影响机制,发现硫处理首先促进了土壤中硅酸盐矿物和无定形氧化铁矿物中Cu的溶解,继而转化为与根分泌物络合,并且硫处理促进了海州香薷根表Fe氧化物的溶解和根系对Fe、Cu的吸收,根系吸收的Cu主要累积在根细胞壁中。
Heavy metals show significant influence on quality and safety of soil environment or agricultural products.At the mineral and biological interface,the characters of transportation behavior and speciation play an important role on heavy metal eco-toxicity and their end-result in pedosphere.With the developing of molecular environmental theory and the evolution of new technologies in recent years, a late hotspot in the environmental science is that how to understanding the reaction mechanisms of heavy metals in environment medium at molecular scale.Based on the traditional analysis methods,the synchrotron radiation X-ray absorption spectroscopy (SRXAS) were used in present study.The aim of our study was to clarify the changes of heavy metals molecular speciation and their transportation mechanism at the surface of clay minerals,soil particles and root-soil interface.The main results were as follows:
     The results showed that at the surface of montmorillonite and hematite,the first shell of Cu was bonded to four equatorial O atoms.At the surface of montmorillonite, Cu is adsorbed by edge-sharing O atoms in mineral slice,or adsorbs as binuclear complexes.At the surface of hematite,Cu is adsorbed by O atoms and forms as inner-sphere complexes or binuclear complexes at the mineral surface.The influence of oxalate,root exudates from Elsholtzia splendens and bacteria(Pseudomonas putida CZ1) on molecular speciation of Cu at the surface of minerals were studied.Results showed that at the montmorillonite and hematite surface,the Cu molecular speciation was changed by oxalate and Elsholtzia splendens root exudates,the binuclear complexes were dissolved and complex with organic acid.Studies clarified that oxalate and Elsholtzia splendens root exudates can activate metals on mineral surface. Our studies showed that Pseudomonas putida CZ1 promotes Cu adsorption at the montmorillonite and hematite surface,and more stable deposits were formed at the mineral surface.Studies clarified that Pseudomonas putida CZ1 can stabilize metals on mineral surface by organic acid and amino acid.
     Using Cu sulfide,mineral adsorbed Cu and humus adsorbed Cu as model references,the character of Cu XAFS showed that Cu were mainly bonded by humus, hematite,ferrihydrite,silicate minerals and sulfide in sampling soil collected from Zhuji mine site.In soil solution,Cu is mainly complex with oxalate and root exudates under the influence of Elsholtzia splendens root exudates.The hydrate Cu concentration significantly decreased in soil solution after Elsholtzia splendens root exudates were added into soil,this revealed that the Elsholtzia splendens root exudates can stabilize Cu in soil solution.The soil pH was significantly decreased and dissolved Cu increased after sulfur treatment.In soil solution,85.5%Cu were complex with organic acid.
     Column experiments studies showed that particle-facilitated transport of heavy metals is likely to represent the dominant transport pathway in soil influenced by acid rain.Silicate minerals could be a carrier of heavy metals to facilitate transport in soil, Fe oxide could partially dissolve to increase heavy metals release in soil at more acid pH,or could act as a vector of heavy metals transport in soil.Results from SEM-EDX analysis demonstrated that some nano-particles such as sulfide or Fe oxide are absorbed onto mobile soil particles.We quantitatively analyzed the heavy metal absorbance in mobile soil particles and results from SRXAS analysis demonstrated that the dominant heavy metal vectors are mainly composed with organic matters and Fe oxides.
     Results from SRXAS analysis showed that a competitive absorption occurred between the Elsholtzia splendens root exudates and soil particles,the hematite adsorbed Cu were dissolved by root exudates and complex with carboxyl.The present studies clarified the mechanisms that how sulfur influence the Cu molecular speciation at root-soil interface.Results showed that sulfur promotes the desorption of Cu from silicate and ferrihydrite,the released Cu were re-adsorbed by Elsholtzia splendens root exudates.It was illustrated that sulfur can promote the uptake of Cu and Fe in Elsholtzia splendens,and Cu is mainly precipitated on cell walls in Elsholtzia splendens root.
引文
Akerblom S, Meili A, Bringmark L, Johansson K, Kleja DB and Bergkvist B. Pardoning of Hg between solid and dissolved organic matter in the humus layer of bored forests. Wat. Air soil Poll. 2008, 189,239-252.
    Alain B. Limits of sequential extraction procedures re-examined with emphasis on the role of H ion reactivity. Anal. Chimica. Ac, 2001, 445, 79-88.
    Ali MA and Dzombak DA. Effects of simple organic acids on sorption of Cu~(2+) and Ca~(2+) on goethite. Geochim. Cosmochim. Ac, 1996, 60, 291-304.
    Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR and Parsons JG. Uptake and reduction of Cr(VI) to Cr(IIl) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environ. Sci. Technol., 2003, 37, 1859-1864.
    Alexander L, Wolfgan B and Harald M. Diversity of bacteria growing in natural mineral water after bottling. Appl. Environ. Microbiol. 2005, 71, 3624-3632.
    Almas AR, McBride MB and Singh BR. Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Sci., 165, 250-259.
    Altin O, Ozbelge HO and Timur D. Use of general purpose adsorption isothems for heavy metal-clay mineral interactions. J. Colloi. Interf. Sci., 1998, 198, 130-140.
    Anderson AJ, Meyer DR, Mayer FK. Heavy metal toxicities: levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust. J. Agric Res., 1973, 24, 557-571.
    Arora HS and Coleman NT. The influence of electrolyte concentration on flocculation of clay suspensions. Soil Sci., 1979, 127, 134-139.
    Atkinson RJ, Posner AM and Quirk P. Adsorption of potential-determining ions at the ferric oxide aqueous electrolyte interface. J. Phys. Chem., 1967, 71, 550-558.
    Aziz HA, Adlan MA and Ariffin KS. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III) removal from water in Malaysia: post treatment by high quality limestone. Bior. Tech. 2008, 1578-1583.
    Babich H and Stotzky G. Cadmium on fungi and on interactions between fungi and bacteria in soil: influence of clay minerals and pH. Appl. Environ. Microbiol., 1977, 33, 1059-1066.
    Bagwell CE and Lovell CR. Persistence of selected spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability. Appl. Environ. Micro., 66,2000, 4625-4633.
    Bais HP, Weir TL, Perry LG, Gilory S and Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol., 2006, 57, 233-266.
    Baranowska-Morek A and Wierzbicka M. Localization of lead in root tip of Dianthus carthusianorum. Acta Biol. Cracov. Bot., 2004,46, 45-56.
    Barrow V and Torrent J. Surface hydroxyl configuration of various crystal faces of hematite and goethite. J. Colloid. Interface Sci., 1996,177,407-410.
    Basta NT. Ryan JA and Chaney RL. Trace element chemistry in residual-treated soil. J. Envrion.Qual. 2005,34, 49-63.
    Baudoin E, Benizri E and Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem., 2003,35, 1183-1192.
    Beniamin C B, Scott F and Bruce AM. Arsenite adsorption on galena (PbS) and sphalerite (ZnS).Geochim. Cosmochim. Ac, 2003, 67, 895-907.
    Benyahya L and Gamier J. Effect of salicylic acid upon trace-metal sorption ( Cd, Zn. Co, and Mn) onto alumina, silica, and kaolinite as a function of pH. Environ Sci Technol., 1999, 33,1398-1407.
    Bernal MP and McGrath SP. Effect of pH and heavy metal concentration in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil, 1994, 166, 83-92.
    Bertin C, Yang XH and Weston LA. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 2003, 256, 67-83.
    Beveridge TJ. The response of cell walls of Bacillus subtilis to metals and electron microscopic strains. Can. J. Microbial., 1978, 24, 89-104.
    Beveridge TJ and Koval SF. Binding of metals to cell envelopes of Escherichia Coli K-12. Appl. Environ. Microbiol., 1981, 42, 325-335.
    Beveridge TJ and Schultze-Lam S. Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable floc and their contribution to mineralization in natural freshwater environments. In Allen HE, Huang CP, Bailey GW and Bowers AR.Metal Speciation and Contamination of Soil. Boca. Raton: CRC Press/ Lewis Publisher. 1995.
    Bini C and Bresolin F. Soil acidification by acid rain in forest ecosystems: A case study in northern Italy. Sci. Total Environ., 1998, 222, 1-15.
    Bochatay L, Persson P, Lovgren L and Brown GE. XAFS study of Cu(II) at the water-goethite (a-FeOOH) interface. J. Phy., 1997, 7, 819-820.
    Boyle M, Fuller HW. Effect of municipal solid waste leachate composition on zinc immigration through soil. J. Environ. Qual., 1987, 16, 357-360.
    Brandy T, Alain M, Samuel MW and Garrison S. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochim. Cosmochim. Ac, 2006, 70, 27-43.
    Branley SL, Lierman L and Bullen TD. Fractionation of Fe isotopes by soil microbes and organic acids. Geology. 2001, 29, 535-538.
    Brown JGE, Foster AL and Ostergren JD. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proc. Nat. Acad. Sci. USA., 1999, 96, 3388-3395.
    Brown SL, Chaney RL and Angle JS. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J. Environ. Qual., 1994, 23,1151-1157.
    
    Bunn RA, Magelky RD, Ryan JN and Elemelech M. Mobilization of natural colloids from an iron oxide-coated sand aquifer: effect of pH and ionic strength. Environ. Sci. Technol., 2002, 36,314-322.
    
    Byong HJ, Brian D, Willim DB, Mark OB and Erice R. Chemical reduction of U(VI) by Fe(EI) at the solid-water interface using natural and synthetic Fe(III) oxides. Environ. Sci. Technol.,2005, 39,5642-5649.
    
    Camesano TA and Logan BE. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environ. Sci. Technol., 1998, 32, 1699-1708.
    Caroline LP and David MS. Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Ac, 2004, 68,2623-2637.
    Castilho R, Chardon WJ, Oenema O and Vriesema. Organic phosphoros in solutions and dleachates from soils treated with animal slurries. J. Environ., 1997, 26, 372-378.
    Chanmugathas P and Bollag JM. Microbial mobilization of cadmium in soil under aerobic and anaerobic conditions. J. Environ. Quali., 1987,16,161-167.
    Chen XC, Wang YP, Lin Q, Shi JY, Wu WX and Chen YX. Biosorption of copper (II) and zinc (II)from aqueous solution by Pseudomonas putida CZ1. Colloid Surf. B: Biointerfaces., 2005, 46,101-107.
    Chen XC, Shi JY, Chen YX, Xu XH, Xu SY and Wang YP. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soils. Can. J. Microbiol.,2006,52,308-316.
    Chen XC, Shi JY, Chen YX, Xu XJ, Chen LT, Wang H and Hu TD Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and x-ray absorption spectroscopy. Appl. Micro. Biotech., 2007,74, 881-889.
    Chen XC, Wu W, Shi JY, Xu XH, Wang H and Chen YX Adsorption of copper and zinc on Pseudomonas putida CZ1: Particle concentration effect and adsorption reversibility. Colloids And Surfaces B: Biointerfaces, 2007, 54,46-52.
    Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM and Wong MH. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 2003, 50,807-811.
    Chen YX, Wang YP, Lin Q and Luo YM. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ. Intern.,2005,31,861-866.
    Christensen TH. Cadmium soil sorption at low concentration VII: correlation with soil parameters.Wat. Air Soil Poll., 1989,44, 71-82.
    Christopher R, Catherine N and Hubert B. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Total Environ., 2000, 263, 209-219.
    Citeau L, Lamy I, VanOort F and Elsass F. Colloidal facilitated transfer of metals in soils under different land use. Colloids Surf. A: Physiochem. Eng. Asp., 2003, 217,11-19.
    Clemmitt RH and Chase HA. Facilitated downstram processing of a histidine-tagged protein from uncalrified E.coli homogenates using immobilized metal affinity expanded-bed adsorption.Biontechnol. Bioeng., 2000,67, 206-216.
    Cohen CK, Fox TC and Garvin DF. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol., 1998, 116, 1063-1072.
    Compeau GC and Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol., 1985, 50, 498-502.
    Cotter-Howells DJ, Champness PE and Charnock JM. Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Miner. Mag., 1999, 63, 777-789.
    Courchese F, George RG.. Mineralogical variations of bulk and rhizosphere soils from a norway spruce stand. Soil Sci. Soc. Am. J., 1997, 61, 1245-1249.
    Cubin RG and Street JJ. Adsorption of cadmium on soil constitutes in the presence of complexing ligands. J. Envrion. Qual., 1981, 10, 225-228.
    Daniel G and Donald LS. The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J. Colloi. Interf. Sci., 1999, 216, 257-269.
    Darryl RR, Robert GF and Donald LS. Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J. Colloid. Interface Sci., 2003, 263, 364-376.
    Daughney CJ, Siciliano SD, Rencz AN, Lean D and Fortin D. Hg(II) adsorption by bacteria: a surface complexation model and its application to shallow acidic lakes and wetlands in kejimkujik national park, nova scotia, Canada. Environ. Sci. Technol. 2002, 36, 1546-1553.
    Davies, BE. Inter-relationships between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soils by radish (Raphanus sativus L.). Wat. Air Soil Pollu., 1992,63,331-342.
    Davis JA, Coston JA and Kent DB. Application of the surface complexation concept to complex mineral assemblages. Environ. Sci. Technol., 1998, 32, 2820-2828.
    Dessureault-Rompre J, Nowack B, Schulin R, Tercier-Waeber ML and Luster J. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots. Environ. Sci. Technol., 2008,42,7146-7151.
    Ding M, Dejong BHWS, Roosendaal SJ and Vredenberg A. XPS studies on the electronic structure of bonding between solid and solutes: Adsorption of arsenate, chromate, phosphate,Pb~(2+), and Zn~(2+) ions on amorphous black ferric oxyhydroxide. Geochim. Cosmochim. Ac,2000,64, 1209-1219.
    Doyle RJ and Matthews TH. Chemical basis for selectivity of metal ions by the bacillus subtilis cell wall. J. Bacterial, 1980, 143, 471-480.
    
    Dopson M, and Lindstrom EB. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol., 1999, 65, 36-40.
    Drake LR, Lin S and Rayson GD. Chemical modifications and metal binding studies of Datura ihnoxia. Environ. Sci. Technol., 1996,30,110-114.
    Duncan KE, Sublette KL, Rider PA, Stepp A, Beitle RR, Conner JA and Kolhatkar R. Analysis of a microbial community oxidizing inorganic sulfide and mercaptans. Biotechnol. Prog, 2001,17, 768-774.
    Dwivedi S, Tripathi, RD, Srivastava S, Mishra S, Shukla MK, Tiwari KK, Singh R and Rai UN.Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere, 2007, 67,140-151.
    Emerson D, Weiss JV and Megonigal JP. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl. Environ. Microbiol.1999,65,2758-2761.
    Entry JA, Rygiewicz PT and Watrud LS. Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv. Environ. Res., 2002, 7,123-138.
    Etelka T, Zsuzsanna L, Erzsebet I, Andera M and Erwin K. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org.Geochem., 2004, 35, 257-267.
    Evanko CR and Dzombak DA. Surface complexation modeling of organic acid sorption to goethite. J. Colloid. Interfa. Sci., 1999, 214,189-206.
    Farquhar ML, Vaughan DJ, Hughes CR, Charnock JM and England KER. Experimental studies of the interaction of aqueous metal cations with mineral substrates: lead, cadmium, and copper with perthitic feldspar, muscovite, and biotite. Geochim. Cosmochim. Ac, 1997, 61,3051-3064.
    Fitz WJ and Wenzel WW. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol., 2002, 99,259-278.
    Fleming CA, Ferris FG and Beveridge TJ. Remobilization of toxic heavy metals adsorbed to bacterial wall clay composites. Appl. Environ. Microbiol., 1990, 56,3191-3203.
    Flemming CA, Ferris FG, Beveridge TJ, Bailey GW. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol., 1990, 56, 3191-3203.
    Flogeac K, Guillon E and Aplincourt M. Surface complexation of copper(II) on soil particles: EPR and XAFS studies. Environ. Sci. Technol., 2004, 38, 3098-3103.
    Flury M, Mathison JB and Harsh JB. In situ mobilization of colloids and transport of cesium in Hanford sediments. Environ. Sci. Technol., 2002, 36, 5335-5341.
    Forbes EA, Posner AM and Quirk JP. The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite. Eur. J. Soil Sci., 2006, 27, 154-166.
    Fouler TA and Crundwell FK. Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no directbacterial mechanism. Appl. Environ.Microbiol., 1998,64,3570-3575.
    Fourest E and Roux JC. Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl. Environ. Microbiol., 1992, 37, 399-403.
    Francis AJ and Dodge CJ. Anaerobic microbial dissolution of transition and heavy metal oxdides.Appl. Environ. Microbiol., 1988, 54, 1009-1014.
    Frenkel H, Levy GJ and Fey MV. Organic and inorganic anion effects on reference and soil clay critical flocculation concentration. Soil Sci. Soc. Am. J., 1992, 56, 1762-1766.
    Gardea TJL, PeraltaVJR, Peralta VGJR and Parsons JG. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord. Chem. Rev., 2005,249, 1797-1810.
    Garrison S and Neal T. Surface geochemistry of the clay minerals. Proc. Nat. Acad. Sci. USA.,1999,96,3358-3364.
    Gervais R, Didier N, Joseph ED and Bruno D. Mobilization of aluminium and magnesium by roots of banana (Musa spp.) from kaolinite and smectite clay minerals. Apll. Geochem., 2004,19,633-643.
    Gier S and Johns W. Heavy metal-adsorption on micas and clay minerals studied by X-ray photoelectron spectroscopy. Appl. Clay Sci. 2000, 16, 289-299.
    Goldberg S and Forster HS. Flocculation of reference clays and arid-zone soil clays. Soil Sci. Soc.Am.J., 1990,54,714-718.
    Gong CR and Donahoe RJ. An experimental study of heavy metal attenuation and mobility in sandy loam soils. Appl. Geochem., 1997, 12, 243-254.
    Grolimund D, Borkovec M, Barmettler K and Sticher H. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ. Sci.Technol., 1996,30, 3118-3123.
    Gustafsson JP and Pechova P. Modeling metal binding to soils: the role of natural organic matter.Environ. Sci. Technol., 2003,37, 2767-2774.
    Hamblin AP and Greenland DJ. Effect of organic constituents and complexed metal ions on aggregates stability of some east anglian soils. Euro. J. Soil Sci., 2006,28,410-416.
    Hartley W, Edwards R and Lepp NW. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut., 2004,131,495-504.
    Haydon MJ and Cobbett CS. Transporters of ligands for essential metal ions in plants. New Phytol., 2007, 174,499-506.
    Hayes JE, Richardsonl AE and Simpson RJ. Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Bio. Ferti. Soil., 2000, 10, 279-286.
    Hayes KF, Redden G, and Ela W. Surface complexation model: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J. Colloid. Interface Sci., 1991,142,449-469.
    Hersman LE, Forsythe JH, Ticknor LO and Maurice PA. Growth of Pseudomonas mendocina on Fe (III) (hydr) oxides. Appl. Environ. Microbiol. 2001, 67, 4448-4453.
    Hiemstra T and Van PWH. A surface structural approach to ion adsorption: the charge distribution model. J. Colloid. Interface Sci., 1996, 179, 488-508.
    Huang JW, Chen J, Berti WR and Cunninghan SD. Phytoremediationn of lead-contaminated soils :Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol., 1997, 31, 800-805.
    Huang QY, Wu JM, Chen WL and Li XY. Adsorption of cadmium by soil colloids and minerals in presence of rhizobia. Pedosphere, 2000,10, 299-307.
    Huang WL and Kelle WD. Dissolution of rock-forming silicate minerals in organic acids: simulated first-stage weathering of fresh mineral surfaces. Am. Mineral., 1970, 55,2076-2094.
    Hynes RJ. Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH. Plant Soil, 1990, 126,247-264.
    
    Isaure MP, Laboudigue A, Manceau A, Sarret G, Tiffreau C, Trocellier P, Lamble G, Hazemann JL and Chateigner D. Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE,μ-SXRF, EXAFS spectroscopy and principal component analysis. Geochim. Cosmochim. Ac,2002, 66, 1549-1567.
    
    Jackson TA, West MM and Leppard G. Accumulation of heavy metals by individually analyzed bacterial cells and associated nonliving material in polluted lake sediments. Environ. Sci.Technol., 1999,33,3795-3801.
    James BR. The challenge of remediating chromium-contaminated soil. Environ. Sci. Technol.,1996,30,248-251.
    Jensen-Spaulding A, Shuler ML and Lion LW. Mobilization of adsorbed copper and lead from naturally aged soil by bacterial extracellular polymers. Wat. Res. 2004, 38,1121-1128.
    Jiang W, Struik PC, Lingna J, van Keulen H, Ming Z and Stomph TJ. Uptake and distribution of root-applied or foliar-applied Zn-65 after flowering in aerobic rice. Ann. Appl. Biol., 2007,150,383-391.
    Karine F, Emmanuel G and Michel A. Surface complexation of copper(II) on soil particles: EPR and XAFS studies. Environ. Sci. Technol., 2004, 38, 3098-3103.
    
    Karlsson T, Persson P and Skyllberg U. Complexation of copper(II) in organic soils and in dissolved organic matter-EXAFS evidence for chelate ring structures. Environ. Sci. Technol.,2006, 40, 2623-2628.
    Katz LE and Hayes KF. Surface complexation modeling: strategy for modeling monomer complex formation at moderate surface coverage. J. Colloid. Interface Sci., 1995, 170, 491-501.
    Ke WS, Xiong ZT, Chen SJ and Chen JJ. Effects of copper and mineral nutrition on growth,copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ. Exp. Bot., 2007, 59, 59-67.
    Kell JJ and Tatb RL. Effects of heavy metal contamination and remediation on soil microbtal in the vicinity of a zinc smelter. J. Environ. Qua., 1998, 27,609-617.
    
    Kennedy CD and Gonsalves FAN. The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H~+, efflux of excised roots. J. Exp. Bot., 1986, 38,800-817.
    
    Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK and Thompson JL. Migration of plution in groundwater at the Nevada test site. Nature, 1999, 397, 56-59.
    King JK, Kostka JE, Frischer ME and Saunders FM. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl. Environ. Microbiol., 2000, 66,2430-2437.
    Kinniburgh DG, Syer JK and Jackson ML. Specific adsorption of trace amounts of Ca and Sr by hydrous oxides of iron and aluminum. Soil Sci. Soc. Am. J., 1975, 39, 464-470.
    Korcak RF and Fanning DS. Extractability of cadmium, copper, nickel, and zinc by double acid versus DTPA and plant content at excessive soil sevels. J. Environ. Qual., 1978, 7, 506-512.
    Kostka JE, Dalton DD, Skelton H, Dollhopf S and Stucki JW. Growth of iron (III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Micorbol., 2002, 68, 6256-6262.
    Kovalchuk O, Titov V, Hohn B and Kovalchuk I. A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nature Biotechnol. 2001,19, 568-572.
    Kraepiel AML, Keller K and Morel MM. A model for metal adsorption on montmorillonite. J.Colloi. Interf. Sci. 1999,210, 43-54.
    Kramer U, Pickering IJ, Prince RC, Raskin I and Salt DE. Subcellular localization and speculation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol., 2000,122, 1343-1353.
    Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemmer KM, Logan GA,Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD and Banfield JF. Formation of Sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science., 2000, 290,1744-1747.
    
    Lagdsmand M, Villholth KG, Ullum M and Jensen KH. Processes of colloid mobilization and transport in macroporous soil monoliths. Geoderma., 1999, 93, 33-59.
    Langley S, Beveridge TJ. Effect of O-side-chain-Lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol., 1999, 65, 489-498.
    Laperche V, Logan TJ and Gaddam P. Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ. Sci. Technol., 1997, 31, 2745-2753.
    Larssen T, Schnoor JL, Seip HM and Zhao DW. Evaluation of different approaches for modeling effects of acid rain on soils in China. Sci. Total. Environ., 2000,246, 175-193.
    Lasse A and Ollih T. Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Appl. Environ. Microbiol., 1992, 58, 600-606.
    Lebeau T, Bagot D, Jezequel K. and Fabre B. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Sci. Tot. Environ., 2002, 291, 73-83.
    Lee P, Patrick B and Touray J. Geochemical behavior and relative mobility of metals (Mn, Cd, Zn and Pb) in recent sediments of a retention pond along the A-71 motorway in Solonge, France.Environ. Geol., 1997, 32, 142-152.
    Li WC, Ye ZH and Wong MH. Effects of bacteria an enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J. Exp. Bot., 2007, 58, 4173-4182.
    Lidon FC and Henriques FS, Effects of copper toxicity on growth and uptake and translocation of metals in rice plants. J .Plant Nutr., 1993, 16, 1449-1464.
    Linehan DJ, Sinclaair AH and Mitchell MC. Mobilization of Cu, Mn, and Zn in the soil solution of barley rhizosphere. Plant Soil, 1986, 89, 147-149.
    Liu A and Gonzale RD. Adsorption / desorption in a system consisting of humic acid, heavy metals, and clay minerals. J. Colloid. Interfa.Sci., 1999, 218, 225-232.
    Lloyd JR, Sole VA, Praagh CVGV and Lovley DR. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol., 2000, 66, 3743-3749.
    Lock K and Janssen CR. Influence of aging on metal availability in soils. Rev. Environ. Contam.Tocxical. 2003, 178, 1-21.
    Lofts S and Tipping E. Solid-solution metal partitioning in the humber rivers: application of WHAM and SCAMP. Sci. Tot. Environ., 2000, 251-252, 381-399.
    Lowry G.V, Shaw S, Kim CS, Rytuba JJ and Brown GE. Macroscopic and microscopic observations of particle-facilitated maercury transport from new Idria and sulphur bank mercury mine tailings. Environ. Sci. Technol., 2004, 38, 5101-5111.
    Majzlan J and Myneni SCB. Speciation of iron and sulfate in acid waters: aqueous clusters to mineral precipitates. Environ. Sci. Technol., 2005, 39, 188-194.
    Manley EP and Evans LJ. Dissolution of feldspars by low-molecular weight aliphatic and aromatic acids. Soil Sci., 1986, 141, 106-112.
    
    Mannings S, Smith S and Bell JNB. Effect of acid deposition on soil acidification and metal mobilization. Appl. Geochem., 1996, 11, 139-143.
    Mario V. John B and Garrison S. Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environ. Sci. Technol., 2005, 39, 569-576.
    Mark CT and John P. Ex-Situ Remediation of a Metal-Contaminated Superfund Soil Using Selective Extractants. J. Environ. Engin., 1998,124, 639-645.
    Marschner P. Yang CH and Lieberei R. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem., 2001, 33, 1437-1445.
    Martin A. How toxic are toxic chemicals in soil? Environ. Sci. Technol., 1995, 29,2713-2717.
    Martinez RE, Smith DS, Pedersen K and Ferris FG. surface chemical heterogeneity bacteriogenic iron oxides from subterranean environment. Environ. Sci. Technol., 2003,37, 5671-5677.
    McBride MB. Reactions controlling heavy metal solubility in soils, Adv. soil Sci., 1989, 10, 1-56.
    McCarthy JF and Zachara JM, Subsurface transport of contaminants: mobile colloids in the subsurface environment may alter the transport of contaminants. Environ. Sci. Technol., 1989,23, 496-502.
    McDowell RW and Sharply AN. The effects of soil carbon on phosphorus and sediment loss from soil trays by overland flow. J. Environ. Qual., 2003, 32, 207-214.
    McDowell WH. Dissolved organic matter in soils-future directions and answered questions.Geoderma., 2003, 113, 179-186.
    McGrath SP, Shen ZG and Zhao FJ. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil,1997,188,153-159.
    Meagher RB. Phytoremediation of toxic elemental and organic pollutants. Plant Biol., 2000, 3,153-162.
    Mench M and Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil, 1991, 132,187-196.
    Mench M, Morel JL, Guckert A and Guillet B. Metal binding with root exudates of low molecular weight. Eur. J. Soil Sci., 2006, 39, 521-527.
    Merdy P, Guilloon E, Dumonceau J and Aplincour M. Spectroscopic study of copper(II)-wheat straw cell wall residue surface complexes. Environ. Sci. Technol., 2002,36,1728-1733.
    Miner GS, Gutierrez R and King LD. Soil factors affecting plant concentrations of cadmium, copper, and zinc on sludge-amended soils. J. Environ. Qual., 1997, 26, 989-994.
    Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Waner M, Rittmann BE and Stahl DA. Diversity of Sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 1999,65,4666-4671.
    
    Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A and Morel JL. Identification of nickel chelators in three hyperaccumulating plants: An X-ray spectroscopic study.Phytochem., 2008, 69, 1695-1709.
    Mori S and Nishizawa N. Dynamic state of mugineic acid and endogenous phytosiderophores in Fe-deficient barley. J. Plant.Nutr., 1987, 10, 1003-1011.
    
    Mounicou S, McSheehy S, Szpunar J, Potin-Gautier M and Lobinski R. Analysis of selenized yeast for selenium speciation by size-exclusion chromatography and capillary zone electrophoresis with inductively coupled plasma mass spectrometric detection (SEC-CZE-ICP-MS). J. Anal. At. Spectrom., 2002, 17, 15-20.
    
    Mulligan CN, Yong RN and Giggs BF. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mat., 2001, 85, 145-163.
    
    Munier-Lamy C, Adrian P and Berthelin J. Fate of organo-heavy metal complexes of sludges from domestic wastes in soils: a simplified modelization. Toxicol. Environ. Chem., 1991, 31,527-533.
    Naidu R, Bolan NS and Kookana. Ionic-strength and the surface of soil and pH effect on the adsorption of cadmium. Eur. J. Soil Sci., 1994, 45, 419-429.
    
    Nakamura SI, Akiyama C, Sasaki T, Hattori H and Chino M. Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (Brassica napus L.). Soil Sci. Plant Nutr., 2008, 54, 118-127.
    Nannipieri P, Ascher J and Ceccherini MT. Microbial diversity and soil functions. Eur. J. Soil Sci.,2003, 54, 655-670.
    Novozamsky I, Lexmond TM and Houba VJG. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int. J. Environ. Anal., 1993, 51, 47-58.
    Okabe SI, Tsukasa SHS and Watanabe Y. Analyses of Spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 1999, 65, 5107-5116.
    Osttergren JD, Brown GE, Parks GA and Tingle TN. Quantitative lead speciation in selected mine tailings from Leadville. Environ. Sci. Technol., 1999,1627-1636.
    Pakunc D, Foster A, Heald S and Laflamme G. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochim. Cosmochim.Acta., 2004,68, 969-983.
    Parkman RH, Charnock JM, Bryan N, Livens FR and Vaughan DJ. Reactions of copper and cadmium ions in aqueous solution with goethite, lepidocrocite, mackinawite, and pyrite. Am.Mineral., 1999,84,407-419.
    Parsons JG, Aldrich MV and Gardea-Torresdey JL. Environmental and biological extended X-ray absorption fine structure (EXAFS) and X-ray absorption (XANES) spectroscopies. Appl.spectrosc. Rev., 2002, 37, 187-222.
    Parsons JG, Martinez-Martinez A, Peralta-Videa JR and Gardea-Torresdey JL. Speciation and uptake of arsenic accumulated by corn seedlings using XAS and DRC-ICP-MS.Chemosphere, 2008, 70, 2076-2083.
    Patra P and Natarajan KA. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa. J. Colloi.Interf. Sci., 2006, 298, 720-729.
    Pinto AP, Simoes I and Mota AM. Cadmium impact on root exudates of sorghum and maize plants: A speciation study. J. Plant Nutr., 2008, 31, 1746-1755.
    Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ and Arenas J. XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentate (creosote bush). Microchem. J., 1998, 65, 227-236.
    Porovsky OS and Schott J. Surface chemistry and dissolution kinetics of divalent metal carbonates.Environ. Sci. Technol., 2002,36, 426-432.
    Ptitsyn LR, Horneck G, Komova O, Kozubek S and Krasavin EA. A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl.Environ. Microbiol. 1997,63, 4377-4384.
    Puls RW, Powell RM. Transport of inorganic colloids through natural aquifer material: implications for contaminant transport. Environ. Sci. Technol., 1992, 26, 614-621.
    Rauser WE. Structure and function of metal chelators produced by plants-the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem. Biophy., 1999, 31, 19-48.
    Qin F, Shan XQ and Wei B. Effects of low-weight organic acids and residence time on desorption of Cu, Cd and pH from soils. Chemosphere. 2004, 57, 253-263.
    Quantin C, Becquer T, Rouiller JH and Berthelin J. Redistribution of metal in a new Caledonia ferralsol after microbial weathering. Soil. Sci. Soc. Am. J., 2002, 66, 1797-1804.
    Rainer D and Andre M. Neofonnation of Ni phyllosilicate upon Ni uptake on montmorillonite, A kinetics study by powder and polarized extended X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Ac, 2002, 66, 2335-2347.
    Raven KP, Jain A and Loeppert RH. Arsenite and arsenate adsorption on ferrihydrite, kinetics,equilibrium and adsorption envelopes. Environ. Sci. Technol., 1998, 32, 344-349.
    Ren SJ and Frymier PD. Kinetics of the toxicity of metals to luminescent bacteria. Adv. Environ.Res. 2003, 7, 537-547.
    Riddle SG, Tran HH, Dewitt JG and Andrews JC. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths. Environ. Sci. Technol.,2002, 36, 1965-1970.
    Ridley MK, Machesky ML, Wesolowski DJ and Palmer DA. Modeling the surface complexation of calcium at the rutile-water interface to 250°C. Geochim. Cosmochim. Ac, 2005, 68,239-251.
    Robbert DR, Scheinost AC, and Sparks DL. Zinc Speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Environ. Sci. Technol., 2002, 36, 1742-1750.
    Robert M and Berthelin J. Role of biological and biochemical factors in soil minerals weathering. In: Huang P.M and Schnizer M. Interactions of soil minerals with natural organics and microbes. Soil Sci. Soc. Am. J., 1986, 17,453-465.
    Routh J and Ikramuddin M. Trace-element geochemistry of Onion Creek near Van Stone lead-zinc mine (Washington, USA)-chemical analysis and geochemical modeling. Chem. Geol. 1996,133,211-224.
    Rowell DL, Martin MW and Nye PH. The measurement and mechanism of ion diffusion in soils III. The effect of moisture content and soil-solution concentration on the self-diffusion of ions in soils. Euro. J. Soil Sci., 2006, 18, 204-221.
    Ryan JN and Elimelech M. Colloid mobilization and transport in groundwater. Colloid. Surface A.,1996. 107,1-56.
    Ryan JN and Gschwend PM. Effect of solution chemistry on clay colloid release from an iron oxide-coated aquifer sand. Environ. Sci. Technol., 1994, 28,1717-1726.
    Saber NE, Abdel-Moneim AM and Barakat SY. Role of organic acids in sunflower tolerance to heavy metals. Biol. Plantarum, 1999, 42, 65-73.
    Salt DE, Prince RC and Pickering IJ. Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem. J., 2002, 71,255-259.
    Samuel JT and Valerie L. Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. USA., 1999, 96, 3388-3955.
    Sarret G, Manceau A, Spadini L and Roux JC. Structural Determination of Zn and Pb binding sites in Penicillium chrysogenum Cell Walls by EXAFS spectroscopy. Environ. Sci. Technol.,1998,32,1648-1655.
    Sauerbeck DR. Plant element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Wat. Air Soil Poll., 1991, 57-58, 227-237.
    Sauve S, Hendershot W and Allen HE. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol., 2000, 34,1125-1131.
    Scheinost AC and Sparks DL. Formation of layerd single- and double-metal hydroxide precipitates at the mineral/water interface: a multiple-scattering XAFS analysis. J. Colloi.Interf. Sci. 2000,223, 167-178.
    Sen TK and Khilar KC. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interfac. 2006,119, 71-96.
    Senko JM, Campbell BS, Henriksen JR, Elshahed MS, Dewers TD and Krumholz. Barite deposition resulting from phototrophic sulfide-oxidizing bacterial activity. Geochim.Cosmochim. Ac, 2004, 68, 773-780.
    Seuntjens P, Tirez K, Simunek J, Genuchten MT Cornelis C and Geuzens P. Agin effects on cadmium transport in undisturbed contaminated sandy soil columns. J. Environ. Qual. 2001,30, 1040-1050.
    
    Shanker AK and Pathmanabhan G Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L) Moench cv CO 27) under Cr(III) and Cr(VI) stress.Plant Soil, 2004, 265, 141-151.
    Shi JY, Chen YX, Huang YY and He W. SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron., 2004, 35, 557 - 564.
    Shuman LM. Screening wheat and sorghum cultivars for aluminum sensitivity at low aluminum levedls. J. Pla. Nur., 16, 2383-2395.
    Singh BK, Millard P, Whiteley AS and Murrell JC. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trend. Micro., 2004, 12, 313-331.
    Sitaula Bk , Almas A and Baken LR. Assessment of heavy metals associated with bacteria in soil. Soil Biol. Microbiol., 1999, 65, 489-498.
    Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H. and Berg G Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ Micro., 2001,67,4742-4751.
    Smith T, Jeffery KP, Mcgarvey A and Summers AO. Bacterial oxidation of mercury metal vapor,Hg(0).Appl. Environ. Microbioi., 1998,64, 1328-1332.
    Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE and Schichnes D. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian Mustard. Plant Physiol., 1991, 119,565-573.
    Sposito G, Skipper NT, Sutton R, Park S, Soper AK and Greathouse JA. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci., 1999, 30, 3358-3364.
    Sposito G. The chemical forms of trace metals in soil. In: Thornton L. ed. Applied Environmental Geochemistry. London. Academic Press., 1983, 123-131.
    Stacey SP, McLaughlin MJ, Cakmak I, Hetitiarachchi GM, Scheckel KG and Karkkainen M. Root uptake of lipophilic zinc-rhamnolipid complexes. J. Agr. Food Chem., 2008, 56, 2112-2117.
    Stewart MA, Jarine PM, Barnett MO, Mehlorn TL, Hyder LK and McKay LD. Influence of soil geochmical and physical properties on the sorption and bioaccessibility of chromium(III). J.Environ. Qual., 2003, 32,129-137.
    Strawn DG, Scheidegger AM and Sparks DL. Kinetics and mechanisms of Pb(II) sorption and desorption at the aluminum oxide-water interface. Environ. Sci. Technol., 1998, 32, 2596-2601.
    Stumm W, Werhli B and Wieland E. Surface complexation and its impact on geochemical kinetics. Croat. Chem. Ac, 1987, 60,429-456.
    Sverdrup H, Warfvinge P and Nihlgard B. Assessment of soil acidification effects on forest growth in sweden. Wat. Air Soil Poll., 1994, 78,1-36.
    Swartz CH, Ulery AL and Gschwend PM. An AEM-TEM study of nanometer-scale mineral associations in an aquifer sand: Implications for colloid mobilization. Geochim. Cosmochim.Ac, 1997,61,707-718.
    Swartz CH and Gschwend PM. Mechanisms controllings release of colloids to groundwater in a southeastern coastal plain aquifer sand. Environ. Sci. Technol., 1998, 32, 1779-1785.
    Swrkrisky DA, Saha N. Theoretical prediction of single site surface-protonation equilibrium constants for oxides and silicates in water. Geochim. Cosmochim. Ac, 1996, 60, 3773-3797.
    Szpunar J. Bio-inorganic speciation analysis by hyphenated techniques. Analyst., 2000, 125,963-988.
    Szpunar J, Lobinski R and Prange A. Hyphenated Techniques for elemental speciation in biological system. Appl. Spectrosc, 2003, 57,102-112.
    Su HL, Hsiang CK, Chieng HC and Ruey SJ. An EXAFS study of the structures of copper and phosphate sorbed onto goethite. Colloids Surf. A., 2004, 234, 71-75.
    Suhadolc M, Schroll R, Gatting A, Schloter M, Munch JC and Lestan D. Effects of modified Pb-,Zn-, and Cd- availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Soil Biol. Biochem. 2004, 36, 1943-1954.
    Tessier A, Campbell PGC and Bisson M. Sequential extractionprocedure for the speciation of particulate trace metals. Anal. Chem., 1979, 7, 844-851.
    Thomas RAP, Lawlor K and Bailey M. Biodegradation of metal-EDTA complexes by enriched microbial pollution. Appl. Environ. Microbiol., 1998, 64,1009-1014.
    Toner B, Fakra S, Villalobos M, Warwick T and Sposito G. Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl. Environ. Microbiol.,2005,71,1300-1310.
    Vali H, Weiss B, Li YL, Sears SK, Kim SS, Kirschvink JL and Zhang CL. Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc. Nat. Acad. Sci. USA., 2004,101, 16121-16126.
    Van CP, Charlet L and Stumn W. A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim. Cosmochim. Ac, 1993, 57, 3505-3518.
    Visser SA and Caillier M. Observations on the dispersion and aggregation of clays by humic substances I: dispersive effects of humic acids. Geoderma., 1988,42, 331-337.
    Walna B, Drzymala S and Siepak J. The impact of acid rain on calcium and magnesium status in typical soils of the Wielkopolski National Park. Sci. Total Environ., 1998, 220, 115-120.
    Wang BJ, Yang HF and Li WZ. The optimum conditions and effectors of Cr~(6+) reduction in Penicillium sp. BS-1. Chin. J. Appl. Environ. Bioi., 1997, 3, 355-360.
    Wang CL, Maratukulam PM, Lum AM, Clark DS and Deasling JD. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface. Appl. Environ. Microbiol. 2000, 66, 4497-4502.
    Watson JHP, Ellwood DC, Deng Q, Mikhalovsky S, Hayter CE and Evans J. Heavy metal adsorption on bacterially produced FeS. Miner. Engin., 1995, 8, 1097-1108.
    Wendling LA, Harsh JB, Ward TE, Palmer CD, Hamilton MA, Boyle JS and Flury M. Cesium desorption from illite as affected by exudates from rhizosphere bacteria. Environ. Sci.Technol. 2005, 39,4505-4512.
    Wielan E and Stumn W. Dissolution kinetics of kaolinite in acidic aqueous solution at 25℃.Geochim. Cosmochim. Ac, 1992, 56, 3339-3355.
    Wightman PG and Fein JB. The effect of bacterial cell wall adsorption on mineral solubilities.Chem. Geol., 2004, 212, 247-254.
    Wilson MJ and Bell N. Acid deposition and heavy metal mobilization. Appl. Geochem., 1996. 11,133-137.
    Woolfolk CA, and Whiteley HR. Reduction of inorganic compounds with molecular hydrogen by micrococcus lactilyticus. J. Bacterial., 1962, 84, 647-658.
    Yates DE, and Healy TM. The structure of the silica/electrolyte interface. J. Colloid. Interface Sci.,1976,55,9-19.
    Yee N, Benning LG, Phoenix VR and Ferris FG. Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci.Technol. 2004, 38, 775-782.
    陈涛,吴燕玉,张学询等.张土灌区镉土改良和水稻镉污染防治研究.环境科学,1980,1,7-11.
    陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制.环境科学学报,2002,22,150-177.
    陈新才.重金属在土壤.微生物界面相互作用的分子机制.[浙江大学博士学位论文],杭州,浙江大学,2006.
    陈英旭,朱祖祥.土壤中铬的化学行为研究Ⅵ:氧化锰对Cr(Ⅲ)的氧化机理.环境科学学报,1993,13,43-49.
    陈英旭,林琦,陆芳等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,4,467-472.
    陈英旭,林琦,陆芳等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,4,467-472.
    陈素华,孙铁珩,周启星,吴国平.微生物与重金属间的相互作用及其应用研究.应用生态学报.2002,13,239-242.
    何春娥,刘学军,张福锁.植物根表铁膜的形成及其营养与生态环境效应.应用生态学报,2004,15,1069-1073.
    贺永华,沈东升,朱荫湄.根系分泌物及其根际效应.科技通报,2006,22,761-766.
    马礼敦,杨福家主编.同步辐射应用概论.上海,复旦大学出版社.2001.
    姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系.浙江林学院学报,2003,20.8-11
    林琦,陈英旭,陈怀满等.有机酸对铅、镉的土壤化学行为和植株效应的影响.应用生态学报,2001,5,619-622.
    林琦,陈英旭,陈怀满等.小麦根际铅、镉、的生态效应.生态学报,2000,634-638.
    林琦.重金属污染土壤植物修复的根际机理.[浙江大学博士学位论文],杭州,浙江大学,2002.
    刘廷志,田胜艳,商平,李学明,刘维华.蒙脱石吸附Cr~(3+)、Cd~(2+)、Cu、Pb、Zn的研究:pH值和有机酸的影响.生态环境,2005,14,353-356.
    刘艳菊,朱永官,丁辉等.水稻根表铁膜对水稻根吸收铅的影响.环境化学,2007,26,327-330.
    刘芷宇,李良谟,施卫明.根际研究法.南京,江苏省科学技术出版社,1997.
    鲁如坤等.土壤农业化学分析方法.北京,中国农业科技出版社,2000.
    荣兴民,黄巧云,陈雯莉等.土壤矿物与微生物相互作用的机理及其环境效应.生态学报,2008,28,376-387.
    单孝全,王仲文.形态分析与生物可给性.分析试验室,2001,20,103-108.
    施积炎,陈英旭,林琦,王远鹏 根分泌物与微生物对污染土壤重金属活性的影响中国环境科学 2004,24,316-319.
    施积炎.海州香薷和鸭跖草Cu吸收机理和分子形态研究.[浙江大学博士学位论文],杭州,浙江大学,2004.
    孙汉中,赖辉比.红壤类土壤含镉量对水稻生态的影响及其临界含量的探讨.土壤环境容量研究(夏增禄主编),气象出版社,1986.
    孙琴,王晓蓉,丁士明.超积累植物吸收重金属的根际效应研究进展.生态学杂志,2005,24,30-36.
    王果.络合作用对重金属离子吸附的影响.土壤学进展,1994,22,6-13.
    王建林,刘芷宇.重金属在根际中的化学行为Ⅱ:土壤中吸附态铜解吸的根际效应.应用生态学报,1990,1,338-343.
    王建林,刘芷宇.重金属在根际中的化学行为 Ⅰ:土壤中铜吸附的根际效应.环境科学学报,1991,11.178-185.
    王建林,刘芷宇.水稻根际中铁的形态转化.土壤学报,1992,29,358-363.
    王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其铜吸收的影响.环境科学,2005,26.174-180.
    王美娥,周启星,张利华.污染物在根-土界面的化学行为与生态效应.应用生态学报,2003,14,2067-2071.
    郑袁明,陈同斌,郑国砥等.不同土地利用方式对土壤铜积累的影响以北京市为例.自然资源学报,2005,20,690-696.
    王晓钧,守屋政彦.含Cd~(2+)离子土壤的ESR测定.南京化工大学学报,2000,20,10-13.
    王美娥,周启星,张利华.污染物在根-土界面的化学行为与生态效应.应用生态学报,2003,14.2067-2071.
    王夔.生物界面上的化学过程—关于化学生物学研究前沿的讨论.化学进展,2003,15,428-435.
    赵其国,骆永明.开展我国东南沿海经济快速发达地区资源与环境质量问题研究建议.土壤, 2000,32,169-172.
    朱永官.土壤-植物系统中的微界面过程及其生态环境效应.环境科学学报,2003,23,205-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700