IL-1β和TNF-α对原代培养的腹侧中脑神经元铁代谢的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease, PD)是一种常见的中枢神经系统退行性疾病,临床表现主要有静止性震颤、肌僵直和运动减少等症状。其主要病理学基础为黑质(substantia nigra, SN)多巴胺(dopamine, DA)能神经元的脱失以及继发引起的纹状体DA含量下降。迄今为止,PD的发病原因仍未完全明了,遗传、环境、年龄因素导致的如神经炎症、铁代谢异常、线粒体功能障碍、蛋白异常聚集等都被认为参加了PD的发病。神经炎症反应主要表现为小胶质细胞的激活和炎性因子如白细胞介素1β(interleukin 1β,IL-1β)和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)的大量释放。尸检结果和动物实验证实在PD病人和动物模型的SN和纹状体区域IL-1β和TNF-α的含量升高;将IL-1β和TNF-α直接注射至脑内可以引起DA能神经元的凋亡,而阻断IL-1β和TNF-α的受体可以缓解6-羟基多巴胺(6-hydroxydopamine,6-OHDA)和1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine, MPTP)制备的PD动物模型脑内DA能神经元的损伤。这些证据提示炎性因子可能参与了DA能神经元的损伤。在PD病人脑内炎性因子升高的SN区同时存在铁的异常聚积,而神经炎症反应与铁聚积之间的关系却并未引起人们足够的重视。本实验应用流式细胞仪技术、免疫荧光、免疫印迹、酶联免疫吸附实验、激光共聚焦扫描技术等多项研究方法,观察了激活的小胶质细胞释放的IL-1β和TNF-α是否可以影响腹侧中脑(ventral mesencephalon, VM)神经元的铁代谢,并对其调控机制进行了探讨。结果如下:
     1、10ng/ml的IL-1β和TNF-α处理原代培养的VM神经元24h,细胞的摄铁功能显著增强(P<0.01),铁转出功能显著降低(P<0.01)。
     2、10ng/ml的IL-1p和TNF-α处理原代培养的VM神经元24h,含有铁反应元件(iron responsive element, IRE)的二价金属离子转运体(divalent metal transporter 1, DMT1)的蛋白和mRNA水平都有显著增高(P<0.05),铁转出蛋白ferroportin1 (FPN1)的蛋白和mRNA的表达水平都有显著降低(P<0.05)。
     3、10 n∥ml的IL-1p和TNF-α处理原代培养的VM神经元24h,铁调节蛋白1 (iron regulatory protein, IRP1)的蛋白表达水平有显著增高(P<0.05)。
     4、10ng/ml的IL-1β和TNF-α处理原代培养的VM神经元24h,细胞内活性氧物质(reactive oxide species, ROS)和一氧化氮(nitric oxide, NO)的生成显著增加(P<0.01)。
     5、0.5 mmol/L的抗氧化剂N-乙酰-L-半胱氨酸(N-acetyl-1-cysteine, NAC)和1 mmol/L的一氧化氮合成酶抑制剂Nω-硝基-L-精氨酸甲酯盐酸盐(Nω-Nitro-L-arginine methyl ester hydrochloride, L-NAME)预处理0.5h后,可分别阻断IL-1β引起的ROS和NO的生成,进而阻断神经元内IRP1的表达上调,TNF-α处理组得到同样的结果。
     6、10ng/ml的IL-1β和TNF-α处理原代培养的VM神经元24h, hepcidin的mRNA水平显著升高(P<0.05)。
     7、800ng/ml的脂多糖(lipopolysaccharide, LPS)处理原代培养的小胶质细胞48h,IL-1β和TNF-α的释放量显著增加(P<0.01)。100μm/L的枸橼酸铁铵(ferric ammonium citrate, FAC)预处理可显著增加其释放量(P<0.05),而100μm/L甲磺酸去铁胺(desferrioxamine mesylate, DFO)预处理则显著减少其释放量(P<0.05)。
     上述结果表明,炎性因子IL-1p和TNF-α能激活VM神经元的IRP1,进而引起DMT1+IRE的上调和FPN1的下调,从而增强细胞的摄铁功能并减弱细胞的铁转出功能。IRP1的激活可能与细胞内ROS和NO的生成有直接关系,抗氧化剂NAC和一氧化氮合酶抑制剂L-NAME可以完全阻断IRP1的激活IL-1β和TNF-α诱导的hepcidin上调也参与了FPN1的表达下调,加剧了神经元内的铁聚积。脂多糖诱导的小胶质细胞激活可释放大量的IL-1p和TNF-α,并且这一过程可以被细胞内的高铁状态所增强,而被铁缺乏状态所减弱。本实验证实了体外培养的小胶质细胞释放的IL-1p和TNF-α可以调控VM神经元铁的转运,进而导致细胞内的铁聚集和细胞损伤。本研究首次证实了小胶质细胞可通过释放炎性因子而影响神经元的铁代谢,从而为PD中神经炎症和铁代谢异常之间的相互作用以及二者对DA能神经元的损伤提供了强有力的实验基础,并为PD的临床抗炎治疗提供更加详实的理论依据。
Parkinson's disease (PD) is a common neurodegenerative disorder characterized symptomatically by resting tremor, rigidity, and bradykinesia. The neuropathological hallmarks of PD include the progressive loss of dopaminergic neurons in the substantia nigra (SN) and the subsequent depletion of dopamine in the striatum. Although the pathogenesis of PD is still unclear up to now, neuroinflammation, abnormal iron deposit, protein aggregation or mitochondria dysfunction related to environmental, heredity factors or aging were reported to be involved in PD pathogenesis. The prominent hallmarks of neuroinflammation is microglia activation and subsequent secretion of pro-inflammatory cytokines such as interleukin 1β(IL-1β) and tumour necrosis factor-a (TNF-a). Elevated cytokines IL-1βand TNF-a has been detected in the SN and striatum of PD patients and animal models. Direct intra-parenchymal injection of TNF-a and IL-1βinduced dopaminergic neurons degeneration; while blockage of the IL-1βor TNF-a receptor attenuate the death of dopaminergic neurons in 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) induced PD models. Although the mechanisms underlying elevated cytokines induced neurotoxicity are not fully elucidated, PD patients showed amplified levels of pro-inflammatory cytokines in the SN, the same region where iron deposit occured. The relationship between neuroinflammation and iron accumulation becomes compelling. Using fluorometric assays, immunofluorescence, enzyme-linked immunoabsorbent assay, laser confocal scanning microscopy and other methods, the present study aimed to investigate whether and how the pro-inflammatory cytokines IL-1βand TNF-a released by activated microglia, can affect the iron metabolism of ventral mesencephalic (VM) neurons. The results were as follows:
     1. Iron influx was increased (P<0.01) and iron efflux was decreased (P<0.01) in primary VM neurons with 10 ng/ml IL-1βor TNF-a treatment for 24 h.
     2. Divalent metal transporter 1 with the iron response element (DMT1+IRE) was up-regulated on both protein and mRNA levels (P<0.05), and ferroportinl (FPN1) was down-regulated on both protein and mRNA levels (P<0.05) in primary VM neurons with 10 ng/ml IL-1βor TNF-a treatment for 24 h.
     3. Iron regulatory protein (IRP) 1 protein level was up-regulated in primary VM neurons with 10 ng/ml IL-1(3 or TNF-a treatment for 24 h (P<0.05).
     4. Reactive oxide species (ROS) and nitric oxide (NO) generation was enhanced in primary VM neurons with 10 ng/ml IL-1βor TNF-a treatment for 24 h (P<0.01).
     5. IL-1βand TNF-a induced IRP1 activation was fully abolished in primary VM neurons by pretreatment with 0.5 mmol/L N-acetyl-1-cysteine (NAC) and 1 mmol/L Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) due to the complete blockage ROS and NO generation.
     6. Hepcidin mRNA expression was increased in primary VM neurons with 10 ng/ml IL-1βor TNF-a treatment for 24 h (P<0.05).
     7. IL-1βand TNF-a release was significantly increased in primary microglia with 800 ng/ml lipopolysaccharide (LPS) treatment for 48 h (P<0.01), and this process was enhanced by 100μm/L ferric ammonium citrate (FAC) (P<0.05), but attenuated by 100μm/L desferrioxamine mesylate (DFO) (P<0.05).
     The above results suggest that IL-1βand TNF-a can induce activation of IRP1, thus up-regulated DMT1+IRE expression and down-regulated FPN1 expression, which are responsible for the increased iron influx and decreased iron efflux of VM neurons. ROS and NO may be responsible for the activation of IRP1; which was fully abolished by co-administration of radical scavenger NAC and nitric oxide synthase inhibitor L-NAME. In addition to IRP1, hepcidin also participate in down-regulation of FPN1. And microglia can be activated by LPS, resulting in abundant IL-1(3 and TNF-a secretion. This process is enhanced by iron repletion and attenuated by iron depletion. Our findings provide evidence that microglia play an important role in neuron iron homoeostasis by secreting IL-1(3 and TNF-a. Oxidative stress and NO induced by IL-1β and TNF-a activated IRP1, which regulated expression of DMTl+IRE and FPN1, thus leading to neuron iron load and even demise. Our findings provide powerful evidence that the cooperative effect of neuroinflammation and iron metabolism may enhance dopaminergic neurons demise in PD and further support that anti-inflammation could be valuable therapeutic approaches in PD.
引文
1. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS:Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain:role of microglia. J Neurosci 2000, 20(16):6309-6316.
    2. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R:Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 2001,101(3):249-255.
    3. Greenamyre JT, MacKenzie G, Peng TI, Stephans SE:Mitochondrial dysfunction in Parkinson's disease. Biochem Soc Symp 1999,66:85-97.
    4. Hirsch EC:Altered regulation of iron transport and storage in Parkinson's disease. J Neural Transm Suppl 2006(71):201-204.
    5. Hirsch EC, Vyas S, Hunot S:Neuroinflammation in Parkinson's disease. Parkinsonism Relat Disord 2012,18 Suppl l:S210-212.
    6. Nagatsu T, Mogi M, Ichinose H, Togari A:Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl 2000(60):277-290.
    7. Bartels AL, Leenders KL:Neuroinflammation in the pathophysiology of Parkinson's disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 2007, 22(13):1852-1856.
    8. Carvey PM, Chen EY, Lipton JW, Tong CW, Chang QA, Ling ZD:Intra-parenchymal injection of tumor necrosis factor-alpha and interleukin 1-beta produces dopamine neuron loss in the rat. J Neural Transm 2005,112(5):601-612.
    9. McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG:Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci 2006,26(37):9365-9375.
    10. Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Lee D, Chung H, Oh MS, Lee KT et al: Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotox Res 2009,15(4):332-347.
    11. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB: Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988,74(3):199-205.
    12. Berg D:In vivo detection of iron and neuromelanin by transcranial sonography-a new approach for early detection of substantia nigra damage. J Neural Transm 2006,113(6):775-780.
    13. Jiang H, Qian ZM, Xie JX:[Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice]. Sheng Li Xue Bao 2003,55(5):571-576.
    14. Song N, Jiang H, Wang J, Xie JX:Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. JNeurosci Res 2007,85(14):3118-3126.
    15. Andrews NC:The iron transporter DMT 1. IntJBiochem Cell Biol 1999,31(10):991-994.
    16. Lee PL, Gelbart T, West C, Halloran C, Beutler E:The human Nramp2 gene:characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis 1998,24(2):199-215.
    17. Hubert N, Hentze MW:Previously uncharacterized isoforms of divalent metal transporter (DMT)-1:implications for regulation and cellular function. Proc Natl Acad Sci U S A 2002, 99(19):12345-12350.
    18. Mackenzie B, Takanaga H, Hubert N, Rolfs A, Hediger MA:Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J 2007,403(1):59-69.
    19. Ganz T:Cellular iron:ferroportin is the only way out. Cell Metab 2005,1(3):155-157.
    20. Muckenthaler M, Gray NK, Hentze MW:IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell 1998, 2(3):383-388.
    21. Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J:Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 2010,20(3):345-356.
    22. Zhang S, Wang J, Song N, Xie J, Jiang H:Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. Neurobiol Aging 2009,30(9):1466-1476.
    23. Fahmy M, Young SP:Modulation of iron metabolism in monocyte cell line U937 by inflammatory cytokines:changes in transferrin uptake, iron handling and ferritin mRNA. Biochem J 1993,296 (Pt 1):175-181.
    24. Ludwiczek S, Aigner E, Theurl I, Weiss G:Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 2003,101 (10):4148-4154.
    25. Rathnasamy G, Ling EA, Kaur C:Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci 2011, 31(49):17982-17995.
    26. Cuadros MA, Navascues J:The origin and differentiation of microglial cells during development. Prog Neurobiol 1998,56(2):173-189.
    27. Bronstein DM, Perez-Otano I, Sun V, Mullis Sawin SB, Chan J, Wu GC, Hudson PM, Kong LY, Hong JS, McMillian MK:Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res 1995,704(1):112-116.
    28. Dobrovolskaia MA, Vogel SN:Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 2002,4(9):903-914.
    29. Jiang P, Xu Y, Liu Y, Huang XZ, Xing Y, Deng SX:[The effect on the pro-inflammatory role of N9 microglia exposured to hyperoxia after preconditioning with lipopolysaccharide in vitro]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2012,28(3):268-271.
    30. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T:Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994,180(2):147-150.
    31. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T:Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett 1996,211(1):13-16.
    32. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC:Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci Lett 1994, 172(1-2):151-154.
    33. Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC: FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999,19(9):3440-3447.
    34. Tansey MG, Goldberg MS:Neuroinflammation in Parkinson's disease:its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010,37(3):510-518.
    35. Lucin KM, Wyss-Coray T:Immune activation in brain aging and neurodegeneration:too much or too little? Neuron 2009,64(1):110-122.
    36. Castano A, Herrera AJ, Cano J, Machado A:Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 1998, 70(4):1584-1592.
    37. Jarskog LF, Xiao H, Wilkie MB. Lauder JM, Gilmore JH:Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 1997,15(6):711-716.
    38. Kabiersch A, Furukawa H, del Rey A, Besedovsky HO:Administration of interleukin-1 at birth affects dopaminergic neurons in adult mice. Ann N YAcad Sci 1998,840:123-127.
    39. McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM:Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 2001,169(2):219-230.
    40. Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM:Lipopolysaccharide (LPS)-induced dopamine cell loss in culture:roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res 2002,133(1):27-35.
    41. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP:Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity:implications for Parkinson's disease. FASEB J 2002,16(11):1474-1476.
    42. Ferger B, Leng A, Mura A, Hengerer B, Feldon J:Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. JNeurochem 2004,89(4):822-833.
    43. Rousselet E, Callebert J, Parain K, Joubert C, Hunot S, Hartmann A, Jacque C, Perez-Diaz F, Cohen-Salmon C, Launay JM et al: Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol 2002,177(1):183-192.
    44. Song N, Wang J, Jiang H, Xie J:Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson's disease. Free Radic Biol Med 2010,48(2):332-341.
    45. Song N, Wang J, Jiang H, Xie J:Ferroportinl and hephaestin overexpression attenuate iron-induced oxidative stress in MES23.5 dopaminergic cells. J Cell Biochem 2010,110(5):1063-1072.
    46. Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, Srai SK, Sharp P: Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. JBiol Chem 2000,275(2):1023-1029.
    47. Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR:Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. JNeurosci Res 2001,66(6):1198-1207.
    48. Huang E, Ong WY, Connor JR:Distribution of divalent metal transporter-1 in the monkey basal ganglia. Neuroscience 2004,128(3):487-496.
    49. Knutson M, Menzies S, Connor J, Wessling-Resnick M:Developmental, regional, and cellular expression of SFT/UbcH5A and DMT1 mRNA in brain. J Neurosci Res 2004,76(5):633-641.
    50. Abboud S, Haile DJ:A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000,275(26):19906-19912.
    51. Donovan A, Brownlie A, Zhou Y. Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A. Barut B, Zapata A et al: Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature 2000,403(6771):776-781.
    52. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F et al: A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000,5(2):299-309.
    53. Devalia V, Carter K, Walker AP, Perkins SJ, Worwood M, May A, Dooley JS:Autosomal dominant reticuloendothelial iron overload associated with a 3-base pair deletion in the ferroportin 1 gene (SLC11A3). Blood 2002,100(2):695-697.
    54. Jiang DH, Ke Y, Cheng YZ, Ho KP, Qian ZM:Distribution of ferroportinl protein in different regions of developing rat brain. Dev Neurosci 2002,24(2-3):94-98.
    55. Jeong SY, David S:Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. JBiol Chem 2003,278(29):27144-27148.
    56. Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA:Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res 2004,1001(1-2):108-117.
    57. Eisenstein RS:Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 2000,20:627-662.
    58. Klausner RD, Rouault TA:A double life:cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell 1993,4(1):1-5.
    59. Pantopoulos K, Weiss G, Hentze MW:Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol 1996,16(7):3781-3788.
    60. Hentze MW, Kuhn LC:Molecular control of vertebrate iron metabolism:mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 1996, 93(16):8175-8182.
    61. Emery-Goodman A, Hirling H, Scarpellino L, Henderson B, Kuhn LC:Iron regulatory factor expressed from recombinant baculovirus:conversion between the RNA-binding apoprotein and Fe-S cluster containing aconitase. Nucleic Acids Res 1993,21(6):1457-1461.
    62. Gray NK, Quick S, Goossen B, Constable A, Hirling H, Kuhn LC, Hentze MW:Recombinant iron-regulatory factor functions as an iron-responsive-element-binding protein, a translational repressor and an aconitase. A functional assay for translational repression and direct demonstration of the iron switch. Eur J Biochem 1993,218(2):657-667.
    63. Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD:Cellular regulation of the iron-responsive element binding protein:disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc Natl Acad Sci USA 1992,89(24):11735-11739.
    64. Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H:Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci U S A 1992,89(24):11730-11734.
    65. Gray NK, Hentze MW:Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J 1994,13(16):3882-3891.
    66. Park CH, Valore EV, Waring AJ, Ganz T:Hepcidin, a urinary antimicrobial peptide synthesized in the liver. JBiol Chem 2001,276(11):7806-7810.
    67. Viatte L, Lesbordes-Brion JC, Lou DQ, Bennoun M, Nicolas G, Kahn A, Canonne-Hergaux F, Vaulont S:Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice. Blood 2005,105(12):4861-4864.
    68. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O:A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. JBiol Chem 2001,276(11):7811-7819.
    69. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S: The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002,110(7):1037-1044.
    70. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004,306(5704):2090-2093.
    71. De Domenico I, Nemeth E, Nelson JM, Phillips JD, Ajioka RS, Kay MS, Kushner JP, Ganz T, Ward DM, Kaplan J:The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab 2008,8(2):146-156.
    72. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T:IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004,113(9):1271-1276.
    73. Darshan D, Anderson GJ:Interacting signals in the control of hepcidin expression. Biometals 2009,22(1):77-87.
    74. Wrighting DM, Andrews NC:Interleukin-6 induces hepcidin expression through STAT3. Blood 2006,108(9):3204-3209.
    75. Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU: STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 2007, 109(1):353-358.
    76. Halliwell B:Reactive oxygen species and the central nervous system. J Neurochem 1992, 59(5):1609-1623.
    77. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T:The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002,22(7):2478-2486.
    78. Sakai A, Takasu K, Sawada M, Suzuki H:Hemokinin-1 Gene Expression Is Upregulated in Microglia Activated by Lipopolysaccharide through NF-kappaB and p38 MAPK Signaling Pathways. PLoS One 2012,7(2):e32268.
    79. Magni P, Ruscica M, Dozio E, Rizzi E, Beretta G, Facino RM:Parthenolide Inhibits the LPS-induced Secretion of IL-6 and TNF-alpha and NF-kappaB Nuclear Translocation in BV-2 Microglia. Phytother Res 2012.
    80. Gillardon F, Schmid R, Draheim H:Parkinson's disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 2012.
    81. Lu YC, Yeh WC, Ohashi PS:LPS/TLR4 signal transduction pathway. Cytokine 2008, 42(2):145-151.
    82. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A 1997,94(14):7531-7536.
    83. Pawate S, Shen Q, Fan F, Bhat NR:Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. JNeurosci Res 2004,77(4):540-551.
    84. Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, Kageyama K. Nakagawa T, Shibasaki K, Kaneko S:Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 2012.
    85. Haddad JJ:Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002,296(4):847-856.
    86. Huang SX, Partridge MA, Ghandhi SA, Davidson MM, Amundson SA, Hei TK: Mitochondria-Derived Reactive Intermediate Species Mediate Asbestos-Induced Genotoxicity and Oxidative Stress-Responsive Signaling Pathways. Environ Health Perspect 2012.
    87. Jiang D, Li Q, Kolosov VP, Zhou X:The inhibition of aldose reductase on mucus production induced by interleukin-13 in the human bronchial epithelial cells. Int Immunopharmacol 2012.
    88. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A: Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann Neurol 2005, 58(6):963-967.
    89. Gaeta A. Hider RC:The crucial role of metal ions in neurodegeneration:the basis for a promising therapeutic strategy. Br J Pharmacol 2005,146(8):1041-1059.
    1. Toulouse A, Sullivan AM:Progress in Parkinson's disease-where do we stand? Prog Neurobiol 2008,85(4):376-392.
    2. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E:Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003,24(2):197-211.
    3. Fearnley JM, Lees AJ:Ageing and Parkinson's disease:substantia nigra regional selectivity. Brain 1991,114 (Pt5):2283-2301.
    4. Duke DC, Moran LB, Pearce RK, Graeber MB:The medial and lateral substantia nigra in Parkinson's disease:mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics 2007,8(2):83-94.
    5. Doty RL:Olfaction in Parkinson's disease. Parkinsonism Relat Disord 2007,13 Suppl 3:S225-228.
    6. Braak H, Braak E, Yilmazer D, Schultz C, de Vos RA, Jansen EN:Nigral and extranigral pathology in Parkinson's disease. JNeural Transm Suppl 1995,46:15-31.
    7. Gibb WR, Poewe WH:The centenary of Friederich H. Lewy 1885-1950. Neuropathol Appl Neurobiol 1986,12(3):217-222.
    8. Robinson PA:Protein stability and aggregation in Parkinson's disease. Biochem J 2008, 413(1):1-13.
    9. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S:Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22(5):1763-1771.
    10. Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR:Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 2006,54(8):795-804.
    11. Collins LM, Toulouse A, Connor TJ, Nolan YM:Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 2012.
    12. Gillardon F. Schmid R. Draheim H:Parkinson's disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 2012.
    13. Guttman M, Kish SJ, Furukawa Y:Current concepts in the diagnosis and management of Parkinson's disease. CMAJ2003,168(3):293-301.
    14. Nimmerjahn A, Kirchhoff F, Helmchen F:Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005,308(5726):1314-1318.
    15. Marin-Teva JL, Cuadros MA, Martin-Oliva D, Navascues J:Microglia and neuronal cell death. Neuron Glia Biol 2012:1-16.
    16. Hagberg H, Gressens P, Mallard C:Inflammation during fetal and neonatal life:Implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2011.
    17. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC:CNS immune privilege:hiding in plain sight. Immunol Rev 2006,213:48-65.
    18. Davoust N, Vuaillat C, Androdias G, Nataf S:From bone marrow to microglia:barriers and avenues. Trends Immunol 2008,29(5):227-234.
    19. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010,330(6005):841-845.
    20. Cuadros MA, Navascues J:The origin and differentiation of microglial cells during development. Prog Neurbiol 1998,56(2):173-189.
    21. Morris L, Graham CF, Gordon S:Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 1991,112(2):517-526.
    22. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM:Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007,10(12):1538-1543.
    23. Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, Dalmau I, Finsen B: Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 2005,48(2):196-206.
    24. Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R:Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 2001,98(11):6295-6300.
    25. Kreutzberg GW:Microglia:a sensor for pathological events in the CNS. Trends Neurosci 1996, 19(8):312-318.
    26. Tanaka J, Toku K. Matsuda S, Sudo S, Fujita H, Sakanaka M, Maeda N:Induction of resting microglia in culture medium devoid of glycine and serine. Glia 1998,24(2):198-215.
    27. Eder C, Schilling T. Heinemann U, Haas D, Hailer N, Nitsch R:Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 1999,11(12):4251-4261.
    28. Davalos D, Grutzendler J, Yang G Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005,8(6):752-758.
    29. Hanisch UK:Microglia as a source and target of cytokines. Glia 2002,40(2):140-155.
    30. Kawai T, Akira S:The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol 2010, 11(5):373-384.
    31. Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC:Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 2011, 186(8):4973-4983.
    32. Langosch JM, Gebicke-Haerter PJ, Norenberg W, Illes P:Characterization and transduction mechanisms of purinoceptors in activated rat microglia. Br J Pharmacol 1994,113(1):29-34.
    33. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP:TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005, 175(7):4320-4330.
    34. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T:The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002,22(7):2478-2486.
    35. Lin S, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Yang QW, Yin Q:Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. JNeuroinflammation 2012,9(1):46.
    36. Saponaro C, Cianciulli A, Calvello R, Dragone T, Iacobazzi F, Panaro MA:The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol Immunotoxicol 2012.
    37. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A 1997,94(14):7531-7536.
    38. Dobrovolskaia MA, Vogel SN:Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 2002,4(9):903-914.
    39. Pawate S, Shen Q, Fan F, Bhat NR:Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. JNeurosci Res 2004,77(4):540-551.
    40. Lin HY. Huang CC, Chang KF:Lipopolysaccharide preconditioning reduces neuroinflammation against hypoxic ischemia and provides long-term outcome of neuroprotection in neonatal rat. Pediatr Res 2009,66(3):254-259.
    41. Kim SU, de Vellis J:Microglia in health and disease. JNeurosci Res 2005,81(3):302-313.
    42. El Khoury J, Hickman SE, Thomas CA, Loike JD, Silverstein SC:Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol Aging 1998,19(1 Suppl):S81-84.
    43. Combs CK:Inflammation and microglia actions in Alzheimer's disease. J Neuroimmune Pharmacol 2009,4(4):380-388.
    44. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong JS, Zhang J: Aggregated alpha-synuclein activates microglia:a process leading to disease progression in Parkinson's disease. FASEB J 2005,19(6):533-542.
    45. Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, Citron BA, Andrade-Gordon P, Festoff BW:Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 2002,80(4):655-666.
    46. Brautigam VM, Frasier C, Nikodemova M, Watters JJ:Purinergic receptor modulation of BV-2 microglial cell activity:potential involvement of p38 MAP kinase and CREB. J Neuroimmunol 2005, 166(1-2):113-125.
    47. Barclay AN, Wright GJ, Brooke G, Brown MH:CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002,23(6):285-290.
    48. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH et al: Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000,290(5497):1768-1771.
    49. Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S:Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPalpha (signal regulatory protein-alpha) on phagocytes. JNeuroinflammation 2011,8:24.
    50. Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, Barclay AN: Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000,13(2):233-242.
    51. Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KH, Lynch MA:CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro:a role for IL-4. J Neurosci 2007, 27(31):8309-8313.
    52. Chang RC, Hudson P, Wilson B, Haddon L, Hong JS:Influence of neurons on lipopolysaccharide-stimulated production of nitric oxide and tumor necrosis factor-alpha by cultured glia. Brain Res 2000,853(2):236-244.
    53. Anisman H, Merali Z:Anhedonic and anxiogenic effects of cytokine exposure. Adv Exp Med Biol 1999,461:199-233.
    54. McGeer PL, Itagaki S, Boyes BE, McGeer EG:Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988,38(8):1285-1291.
    55. Garden GA, Moller T:Microglia biology in health and disease. J Neuroimmune Pharmacol 2006, 1(2):127-137.
    56. Batchelor PE, Porritt MJ, Martinello P, Parish CL, Liberatore GT, Donnan GA, Howells DW: Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting Toward but Not beyond the Wound Edge. Mol Cell Neurosci 2002,21(3):436-453.
    57. Babior BM:NADPH oxidase:an update. Blood 1999,93(5):1464-1476.
    58. Ekdahl CT:Microglial activation-tuning and pruning adult neurogenesis. Front Pharmacol 2012, 3:41.
    59. Neher JJ, Neniskyte U, Brown GC:Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 2012,3:27.
    60. Gao HM, Hong JS:Why neurodegenerative diseases are progressive:uncontrolled inflammation drives disease progression. Trends Immunol 2008,29(8):357-365.
    61. Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE et al: A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J2007,21(1):179-187.
    62. Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, Liu Y, Qian L, Wilson B, Di Monte DA et al: Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. JImmunol 2008,181(10):7194-7204.
    63. Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S:Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 2008,5:43.
    64. Perry VH, Cunningham C, Holmes C:Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007,7(2):161-167.
    65. Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH: Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. EurJNeurosci 2003,18(10):2731-2742.
    66. McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG:Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci 2006,26(37):9365-9375.
    67. Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT: Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra:a time course study in a 6-hydroxydopamine model of Parkinson's disease. J Neurochem 2009, 110(3):966-975.
    68. Doudet D, Gross C, Lebrun-Grandie P, Bioulac B:Effect of increasing regimens of levodopa on chronic MPTP-induced parkinsonism in monkey; mechanographic and electromyographic data. Electromyogr Clin Neurophysiol 1986,26(8):711-727.
    69. Przedborski S, Vila M:The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model:a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci 2003,991:189-198.
    70. McGeer PL, Schwab C, Parent A, Doudet D:Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 2003, 54(5):599-604.
    71. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S:Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999,5(12):1403-1409.
    72. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM et al: Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2009, 119(1):182-192.
    73. Sherer TB, Betarbet R, Kim JH, Greenamyre JT:Selective microglial activation in the rat rotenone model of Parkinson's disease. Neurosci Lett 2003,341(2):87-90.
    74. Gao HM, Liu B, Zhang W, Hong JS:Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J 2003,17(13):1954-1956.
    75. Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S:NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci U S A 2003,100(10):6145-6150.
    76. McGeer PL, McGeer EG:Inflammation and the degenerative diseases of aging. Ann N YAcad Sci 2004,1035:104-116.
    77. Cao JJ, Li KS, Shen YQ:Activated immune cells in Parkinson's disease. J Neuroimmune Pharmacol 2011,6(3):323-329.
    78. Hirsch EC, Hunot S:Neuroinflammation in Parkinson's disease:a target for neuroprotection? Lancet Neurol 2009,8(4):382-397.
    79. Tansey MG, McCoy MK, Frank-Cannon TC:Neuroinflammatory mechanisms in Parkinson's disease:potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007,208(1):1-25.
    80. Knott C, Stern G, Wilkin GP:Inflammatory regulators in Parkinson's disease:iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 2000,16(6):724-739.
    81. Amor S. Puentes F, Baker D, van der Valk P:Inflammation in neurodegenerative diseases. Immunology 2010,129(2):154-169.
    82. Colton CA, Wilcock DM:Assessing activation states in microglia. CNS Neurol Disord Drug Targets 2010,9(2):174-191.
    83. Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF:mRNA up-regulation of MHC Ⅱ and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging 2006,27(5):717-722.
    84. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL:Dystrophic microglia in the aging human brain. Glia 2004,45(2):208-212.
    85. Graeber MB, Li W, Rodriguez ML:Role of microglia in CNS inflammation. FEBS Lett 2011, 585(23):3798-3805.
    86. Ogata A, Tashiro K, Nukuzuma S, Nagashima K, Hall WW:A rat model of Parkinson's disease induced by Japanese encephalitis virus. JNeurovirol 1997,3(2):141-147.
    87. Qian L, Flood PM, Hong JS:Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. J Neural Transm 2010,117(8):971-979.
    88. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS:Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain:role of microglia. J Neurosci 2000, 20(16):6309-6316.
    89. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R:Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 2001,101(3):249-255.
    90. Greenamyre JT, MacKenzie G, Peng TI, Stephans SE:Mitochondrial dysfunction in Parkinson's disease. Biochem Soc Symp 1999,66:85-97.
    91. Rail D, Scholtz C, Swash M:Post-encephalitic Parkinsonism:current experience. J Neurol Neurosurg Psychiatry 1981,44(8):670-676.
    92. Ogata A, Tashiro K, Pradhan S:Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology 2000,55(4):602.
    93. Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, Carvey PM:In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 2002,17(1):116-124.
    94. Ling ZD, Chang Q, Lipton JW, Tong CW, Landers TM, Carvey PM:Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain. Neuroscience 2004,124(3):619-628.
    95. Hagan P, Poole S, Bristow AF, Tilders F, Silverstein FS:Intracerebral NMDA injection stimulates production of interleukin-1 beta in perinatal rat brain. JNeurochem 1996,67(5):2215-2218.
    96. Gao X, Hu X, Qian L, Yang S, Zhang W, Zhang D, Wu X, Fraser A, Wilson B, Flood PM et al: Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 2008, 116(5):593-598.
    97. Olah M, Biber K, Vinet J, Boddeke HW:Microglia phenotype diversity. CNS Neurol Disord Drug Targets 2011,10(1):108-118.
    98. Banati RB, Daniel SE, Blunt SB:Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov Disord 1998,13(2):221-227.
    99. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y:Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol 2003,106(6):518-526.
    100. Sawada M, Imamura K, Nagatsu T:Role of cytokines in inflammatory process in Parkinson's disease. J Neural Transm Suppl 2006(70):373-381.
    101. Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH: Marked microglial reaction in normal aging human substantia nigra:correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 2007,114(4):419-424.
    102. Lynch MA:The multifaceted profile of activated microglia. Mol Neurobiol 2009,40(2):139-156.
    103. Block ML, Hong JS:Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 2007,35(Pt 5):1127-1132.
    104. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC:Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci Lett 1994, 172(1-2):151-154.
    105. Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW:Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 1999,100(1):34-41.
    106. Nagatsu T, Mogi M, Ichinose H, Togari A:Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl 2000(60):277-290.
    107. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD:Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 1989, 52(2):381-389.
    108. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ:Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-lbeta in the substantia nigra. Neurobiol Dis 2006,24(1):183-193.
    109. Gayle DA, Ling Z, Tong C. Landers T, Lipton JW, Carvey PM:Lipopolysaccharide (LPS)-induced dopamine cell loss in culture:roles of tumor necrosis factor-alpha, interleukin-lbeta, and nitric oxide. Brain Res Dev Brain Res 2002,133(1):27-35.
    110. Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Lee D, Chung H, Oh MS, Lee KT et al: Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotox Res 2009,15(4):332-347.
    111. Herrera AJ, Tomas-Camardiel M, Venero JL, Cano J, Machado A:Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm 2005,112(1):111-119.
    112. Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q, Tao E:Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 2011,1395:12-20.
    113. Zhu LH, Bi W, Qi RB, Wang HD, Lu DX:Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. Int JNeurosci 2011,121(6):329-336.
    114. Castano A, Herrera AJ, Cano J, Machado A:The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. JNeurochem 2002,81(1):150-157.
    115. Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybylkowski A, Czlonkowski A, Czlonkowska A:Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease. Int Immunopharmacol 2004,4(10-11):1307-1318.
    116. Grilli M, Pizzi M, Memo M, Spano P:Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 1996,274(5291):1383-1385.
    117. Kopp E, Ghosh S:Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994, 265(5174):956-959.
    118. Bernardo A, Ajmone-Cat MA, Gasparini L, Ongini E, Minghetti L:Nuclear receptor peroxisome proliferator-activated receptor-gamma is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen. JNeurochem 2005,92(4):895-903.
    119. Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G:Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 2007,205(2):295-312.
    120. Ton TG, Heckbert SR, Longstreth WT, Jr., Rossing MA, Kukull WA, Franklin GM, Swanson PD, Smith-Weller T, Checkoway H:Nonsteroidal anti-inflammatory drugs and risk of Parkinson's disease. Mov Disord 2006,21(7):964-969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700