基于通信系统的铁路信号安全信息传输的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国经济的快速发展对铁路提出了更高的要求。研究国外的铁路安全标准和相关的安全评估、认证体系,并结合中国铁路通信信号发展的实际情况,建立中国铁路通信信号系统的安全评估和认证体系势在必行。本文对CENELEC制定的欧洲系列标准EN—50126、EN—50128、EN—50129、EN-50159进行了研究,并对它们在基于通信系统的铁路信号安全信息传输上的应用作出分析。
     论文首先论述了建立基于通信系统的铁路信号安全信息传输的必要性,指出TBTC系统必将为CBTC系统所取代,通信信号一体化是世界各国铁路发展的一个必然趋势,指出应该设立中国铁路相关的安全标准;接着研究了欧洲铁路安全标准及原理;构建出适合中国铁路并基于通信系统的铁路信号安全信息传输生命周期,制定了生命周期14个阶段内应完成的任务;指出不同安全完整性级别对故障概率的限制值,论述了如何实现铁路信号传输系统的故障—安全,提出封闭通信系统安全编码长度的计算方法,分析了开放通信系统的威胁和安全性设计原则;阐述了信息传输编码的理论,验证欧洲应答器传输协议的安全性并对其安全传输的概率进行估算,证明其满足欧洲安全标准SIL4的要求,指出对该协议的安全验证和评估能对基于通信系统的铁路信号安全信息传输起到指导与参考的作用;最后得出结论:基于通信系统的铁路信号安全信息传输是可行的。
With the rapid development of Chinese economy, higher requirements are purposed to railway. Consequently, by researching overseas railway safety standards and the relevant safety evaluation and safety validation systems and combining with the practice of development of Chinese railway communication and signalling, the safety evaluation and validation system of Chinese railway communication and signalling system must be established availably and in time. In this paper, the author researches the European serials standards developed by CENELEC, such as EN—50126, EN—50128, EN —50129 and EN —50159, and for the application of these standards in safety information transmission of railway signalling based on the communication system, some theories are also analyzed.
    Firstly, the paper discusses the necessity of constructing the railway signalling safety information transmission based on the communication system, and points out the TBTC system must be replaced by the CBTC system finally, and the integration of communication and signalling is the inevitable trend for railway development of every country. The necessity of establishing Chinese safety related railway standard is pointed. Secondly, the author studies the European railway safety standards and principles. The railway signalling safety information transmission lifecycle is constructed which is adapted to Chinese railway and based on the communication system, the tasks should be accomplished in 14 stages within this lifecycle are made. Restricted value of fault probability under variable safety integrity levels is indicated. How to realize fail—safe of railway signalling transmission system is discussed. The author puts forward a calculation method of safety code length in closed transmission system. The threats of open transmission system and safety design rules are analyzed. The theory of information transmission codes is introduced. The paper verifies the safety of European balise transmission protocol and estimates its safety transmission probability. The author testifies that this protocol can fulfill the requirement belong to SIL4 established in European standards and indicates that safety verification and evaluation to this protocol can guide and consult the transmission of railway signalling safety information based on the communication system. At last, the author draws the conclusion that the railway signalling safety information transmission based on the communication systems is feasible.
引文
[1] 张锐.国内外铁路信号现状、差距对比和我国铁路信号发展方向的思考.铁道标准设计.2004.7
    [2] IEC61508: 2000, Functional Safety of electrical/el ectronic/programmable electronic safety-related systems[s].
    [3] CENELEC EN50126: 1999, Railway Applications: The specification and demonstration of Reliability, Availability, Maintainability and Safety(RAMS)[s].
    [4] CENELEC ENS0129: 1999, Railway Applications: Safety related electronic systems for signalling[s].
    [5] CENELEC ENS0128: 1998, Railway Applications: Software for Railway Control and Protection Systems[s].
    [6] CENELEC ENS0159-1:2001, Railway Applications Communication, signalling and processing systems -Part 1: Safety-related communication in closed transmission systems[s].
    [7] CENELEC ENS0159-2:2001, Railway Applications Communication, signalling and processingsystems -Part 1: Safety-related communication in open transmission systems[s].
    [8] GB/T 12758-2004城市轨道交通信号系统通用技术条件[s].国家标准局.2004
    [9] 冯晓升.IEC61508电器的/电子的/可编程电子安全一相关系统的功能安全简介.仪器仪表标准化与计量.2000.6
    [10] 李佳玉 员春欣.IEC61508功能安全国际标及安全性分析.中国铁路.2001.1
    [11] 郜春海 唐涛 燕飞.基于CENELEC铁路标准的列车自动防护系统车载设备研究与设计.铁道学报.2006.28(1)
    [12] 陶滢 吴重庆 李卓毅.高速铁路安全信息传输光纤局域网安全性分析及实现.北方交通大学学报.2000.24(6)
    [13] 杨岗 邹少文.铁路信号站间信息的安全传输方案研究.铁路通信信号工程技术.2005.12
    [14] 余鑫 吴汶麒.安全信息传输系统.铁道通信信号.2003.39(1)
    [15] 王宇 卢昱.信息网络的通信安全控制.计算机工程.2006.32(12)
    [16] 张仕雄 杜平.基于光缆传输的自动站间闭塞系统相关问题探讨.铁道通信信号.2005.41(8)
    [17] 中国铁路通信信号总公司.通信.北京.中国铁道出版社.2000
    [18] 中国铁路通信信号总公司.信号.北京.中国铁道出版社.2000
    [19] 韩熠.高速铁路安全信息光纤局域网的研究.[硕士学位论文].铁道部科学研究院.2000
    [20] 王令朝.我国铁路通信的现状及未来.现代通信.2002.7
    [21] Peter.winter.欧洲铁路通信信号系统的现状和发展.中国铁路.2002.2
    [22] 邱述威.铁路信号系统中远程控制通信技术的应用研究.[硕士学位论文].合肥工业大学.2004
    [23] 李超.无线机车信号与GSM-R网络的通信接口研究一车载部分.[硕士学位论文].北京交通大学.2004
    [24] 王军.区域联锁安全信息传输通道及干扰仿真.[硕士学位论文].同济大学.2003
    [25] 宋焕章.计算机纠错编码.北京.国防科技大学出版社.1999
    [26] 归绍升.纠错编码技术和应用.上海.上海交通大学出版社.1988
    [27] 王新梅肖国镇.纠错码.西安.西安电子科技大学出版社.1991
    [28] 孟德红.循环冗余校验码的软件实现.矿业研究与开发.2000.6
    [29] 杜生辉 张秋琴.循环冗余检错码及其应用.现代电子技术.2001.1
    [30] 张新华 鲁志康.纠错编码技术及远程监测系统的设计.机床与液压.2000.6
    [31] 谢志远 范寒柏.电力数据传输中的纠错编码技术.华北电力大学学报.2001.1
    [32] 贺玉成 杨莉 王新梅.纠错码性能仿真中的误码率估计.通信学报.2001.9
    [33] 赵志熙.车站信号控制系统.北京.中国铁道出版社.1997
    [34] 熊桂喜 王小虎.计算机网络.北京.清华大学出版社.1998
    [35] 郑崇勋.数字系统故障对策与可靠性技术.北京.国防工业出版社.1995
    [36] Parag K.Lala.容错与故障可测性设计.北京.中国铁道出版社.1985
    [37] 胡谋.计算机容错技术.北京.中国铁道出版社.1995
    [38] 何国伟.软件可靠性.北京.国防工业出版社.1998
    [39] 储钟圻.现代通信新技术.北京.机械工业出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700