大跨度钢桥关键构造细节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
索梁锚固结构、正交异性钢桥面板和整体节点是大跨度钢桥在设计和制造中的关键构造,它们的受力特点和疲劳性能非常复杂,并且在这些部位最容易出现裂纹,是影响桥梁安全运营的关键所在,所以针对这些构造的研究是目前桥梁研究的难点和热点。
     本论文目的在于验证新结构型式的安全可靠性,研究它们的受力形态和疲劳性能,并有针对性地进行构造优化。主要进行了以下三个方面的研究:①对一种新索梁锚固结构在5种工况下的受力进行模型试验和理论分析;②分析了正交异性钢桥面板各构造细节处的疲劳应力和性能,并对疲劳损伤最为严重的构造进行优化;③针对整体节点部位出现的新结构型式的疲劳构造问题进行了相应研究。
     主要研究成果如下:①验证了一种新型索梁锚固型式的安全性,分析了应力分布、传力途径和控制细节;②得出了正交异性钢桥面板各种可能构造的疲劳性能、近端和远端荷载对结构受力的影响规律,以及疲劳损伤最为严重的构造细节的优化构造图式;③得到了整体节点与桥面系连接部位的一系列新构造的疲劳S-N曲线,主板厚度对横隔板附连件焊缝的疲劳影响关系,以及次应力对疲劳的影响关系。
     本论文有以下创新点:①针对一种新索梁锚固结构,采用理论计算和模型试验相结合的方式,通过对比优化分析来验证设计采用的结构的安全可靠性,并得出了它的传力途径和主要控制细节。②首次从整体体系和局部体系来分析近端和远端荷载对正交异性钢桥面板各构造细节应力的影响,考虑制造和施工来归纳各种构造细节的疲劳性能,创新性地通过构建优化函数来获得纵肋下翼缘与次横梁或横梁腹板交叉部位构造细节的合理布局。③针对整体节点部位出现的新构造,通过疲劳实验首次获得其疲劳性能,并从箱形杆件板厚系数和次应力这些新角度来进行疲劳问题的研究。
Cable-beam anchorage, orthotropic steel bridge deck and integral joint are the key structures of large-span steel bridge during the design and manufacture. Because whose force features and fatigue performances are complicated, and where cracks are easily induced, the reliability of these details is directly related to the safe use of the entire bridge. The research of these details is the difficulty and the hotspot in the present bridge research.
     The purpose of this paper is to verify the reliability and the safety of the new structure. Their patterns of stress and fatigue performance were studied, and in a targeted manner to carry out structural optimization. Three major researches was carried out,①through theoretical analysis and model testing, the force situation of a new cable-beam anchorage was analyzed under five load cases.②the fatigue stress and performance of the structural details in orthotropic steel bridge decks is researched, the optimization of the structure where the fatigue damage is most serious was conducted.③the fatigue structural problems of the integral joints in new structure were analyzed.
     The main research results are as follows.①the reliability of this new anchorage used in design was verified. In the same time, its stress distribution, load transfer path and main control details were obtained.②the fatigue performance of the structural details and the impact of near and remote load was analyzed. The optimization of the structure details where the fatigue damage is most serious was conducted.③the fatigue S-N curves of a series of new structurure in the connection part of the integral joints and the bridge deck system were worked out, as well as the effects of main board thickness to the fatigue performance of welds in the connection on the diaphragm and the impact of secondary stress to the fatigue.
     The following points of innovation are included in this paper.(Dby a way combined theoretical analysis and model testing, the reliability of this new anchorage used in design was verified through contrasting and optimized anlysis. In the same time, its load transfer path and main control details were obtained.②based on the whole system and the local system first time, analyze the impact of the proximal and distal load to the stress of construction details of the orthotropic steel bridge panel. The fatigue performances of a variety of the structure details are summed up to consider manufacturing and construction, through the establishment of innovative optimization function, the rational distribution of the structure details in the intersection part among the vertical limb bottom flange and secondary beam or web of transverse beam was gained.③In allusion to the new structures emerging in the integral joints, their fatigue performance was gained firstly through the fatigue test, and through a new perspective point of view, the thickness coefficient of box element and secondary stress to research the fatigue problem.
引文
1.孔祥福,符力国,张珂.近代以来中外桥梁发展概述:山东交通学院学报,2003(6):55-58.
    2.万明坤,程庆国,项海帆等,桥梁漫笔.北京:中国铁路出版社,1997.
    3.F Leonhardt, W Zellner.Past, Present and Future of Cable-strayed Bridges[R].1991.
    4.M Virlogeux.Structural and Architectural Design of Bridge[J].SEI,1996, (2)
    5.庾莉萍.斜拉桥与悬索桥[J].交通与运输,2005,(03):47.
    6.乙藤宪一,刘全德.挪威的悬索桥和斜拉桥[J].世界桥梁,1985,(01)
    7.项柳福,赵长军.悬索桥的发展历史与研究现状[J].浙江交通职业技术学院学报2005,(03):1-4.
    8.严国敏.现代斜拉桥.成都:西南交通大学出版社,1995年.
    9.黄文雄.从长江大桥看桥梁发展:长江大学学报(自然科学版),2006(6):593-596.
    10.候文葳.我国钢桥事业新进展:钢结构,2007(5):1-6.
    11.史永吉.面向21世纪焊接钢桥的发展:中国铁道科学,2001(10):1-10.
    12.万国朝.90年代桥梁工程发展趋势[J].国外公路,1995,(04):1-10.
    13.王世平.我国公路桥梁的发展趋势[J].太原城市职业技术学院学报,2005,(06):158-159.
    14.方志禾.我国悬索桥的现状与技术成就[J].市政技术,1998,(01):9-14.
    15.潘际炎.中国钢桥.中国工程科学,2007,(07):18-26.
    16.项海帆等主编.中国桥梁画册[M].上海:同济大学出版社,1993
    17.陈伯蠡.中国焊接钢桥的发展,电焊机,2007,(03):1-5.
    18.刘晓光.钢桥疲劳研究关键技术分析,钢结构,2007,(04):7-9.
    19.裴岷山.钢斜拉桥索梁锚固构造[J].公路,2006,(11):69-72
    20.陈开利编译.大跨度斜拉桥斜拉索锚固结构的试验研究.世界桥梁,2004(1):29-37.
    21.远藤武夫.大跨度斜拉桥斜拉索锚固结构的疲劳试验研究[A].土木工程学会论文集[C].日本:土木学会,1995.319—330.
    22.卫星,李小珍,强士中.湛江海湾大桥索梁锚固结构的疲劳试验研究:中外公路,2006(10):90-94.
    23.李小珍,蔡婧,强士中,刘庆宽.南京长江二桥南汊桥索梁锚固结构疲劳试验研究:工程力学,2005(1):223-234.
    24.陈开利,王天亮.南京长江二桥斜拉桥索梁锚固区模型疲劳试验研究:桥梁钢结构,2004(6):20-22
    25.郑纲,童智洋.苏通长江公路大桥锚箱模型疲劳试验报告[R].武汉:中铁大桥局桥梁科学研究院有限公司,2004.
    26.李乔,满洪高,唐亮等.苏通长江大桥主桥锚箱式索梁锚固结构模型静载与疲劳试验报告.成都:西南交通大学土木工程学院,2004.
    27.陈伟庆,强士中.斜拉桥锚固结构模型静力试验研究:铁道建筑技术,2003(6):1-4.
    28.刘永前,刘庆宽.斜拉桥索梁锚固结构疲劳性能的试验研究[J].石家庄铁道学院学报,2001,(01):33-36
    29.满洪高.李乔;张育智.斜拉桥索梁锚固结构疲劳试验模型设计优化.东南大学学报(自然科学版),2007,(02):301-305
    30.张育智,李乔,满洪高,斜拉桥锚箱式索梁锚固区应力及传力途径分析.西南交通大学学报,2006,(02):179-183
    31.鄢余文.安庆长江大桥索锚固结构静载与疲劳试验研究:学位论文.成都:西南交通大学,2003.
    32.朱劲松,肖汝诚,曹一山.杭州湾跨海大桥索梁锚固节点模型试验研究[J].土木工程学报,2007,(01)):49-59
    33.张宝胜,朱劲松,叶俊能.杭州湾跨海大桥钢箱梁耳板模型试验研究[J].桥梁建设,2006,(05):1-4
    34.王勇,金卫兵,徐立功,石利群.灌河斜拉桥锚拉板结构分析[J].现代交通技术,2004,(01):33-35
    35.孙旭霞.钢箱梁正交异性桥面板的构造对铺装的影响研究:学位论文.上海:同济大学,2006.
    36. Wolchuk, Roman, Steel orthotropic decks developments in the 1990s:Transportation Research Record, n 1688, Nov,1999:30-37
    37.马坤全,吴定俊.高速铁路钢结构桥梁桥面结构布局探讨:铁道标准设计,2003(12):56-59.
    38.齐金朋.32 m有碴正交异性钢桥面系下承板梁试制.铁道标准设计,1994(1):
    39.樊启武.正交异性桥面系第二体系应力计算方法研究:学位论文.成都:西南交通大学,2005.
    40.Michele S. Pfeila, Ronaldo C.Battista, Aluisio J.R.Mergulh.Stress concentration in steel bridge orthotropic decks. Journal of Constructional Steel Research,2005,41:1172-1183
    42. Cullimore, M. S. G.; Smith, J. W., Local stresses in orthotropic steel bridge decks caused by wheel loads:Journal of Constructional Steel Research, v 1, n2, Jan,1981: 17-26
    43. Huang, Haoxiong (Lawrie and Associates, LLC); Kaliakin, Victor N.; Chajes, Michael J.; Mertz, Dennis R.; Shenton, Harry W., Application of orthotropic thin plate theory to filled steel grid decks for bridges:Journal of Bridge Engineering, v 12, n 6, 2007:807-810
    44. Tinawi, Rene; Redwood, Richard G., Orthotropic bridge decks with closed stiffeners em dash analysis and behaviour:Computers and Structures, v 7, n6, Dec,1977:683-699
    45.Connor, Robert J.; Fisher, John W., Consistent approach to calculating stresses for fatigue design of welded rib-to-web connections in steel orthotropic bridge decks:Journal of Bridge Engineering, v11, n5,2006:517-525
    46.Eurocode3:Design of steel structures Part2:Steel bridges. PrEN 1993-2:2003
    47.Wolchuk R.Lessons from weld cracks in orthotropic decks on three European bridges.Journal of Structural Engineering, ASCE 1990;116 (1):75-84.
    48.Zhi-Gang Xiaoa, Kentaro Yamadab, Jirou Inouec, Kouta Yamaguchic, Fatigue cracks in longitudinal ribs of steel orthotropic deck. International Journal of Fatigue.2006 (28)
    49. Hirabayashi, Yasuaki; Konishi, Takuyo; Machida, Fumitaka; Tokida, Hideo; Shimozato, Tetsuhiro, Fatigue cracking in steel bridge piers and orthotropic steel decks of Tokyo Metropolitan Expressway. Proceedings-Conference of the Australian Road Research Board, v 21, Proceedings-21st ARRB and 11th REAAA Conference, Transport Our Highway to a Sustainable Future,2003:897-934
    50.Dexter RJ, Fisher JW.Fatigue cracking of orthotropic decks.In:Proc.IABSE workshop: evaluation of existing steel and composite bridges.1997.
    51. Xiao, Zhi-Gang; Yamada, Kentaro; Inoue, Jirou; Yamaguchi, Kouta, Fatigue cracks in longitudinal ribs of steel orthotropic deck:International Journal of Fatigue, v 28, n 4, April,2006:409-416
    52. Battista, R.C. (COPPE Civil Engineering Dep); Pfeil, M.S., Fatigue cracks induced by traffic loading on steel bridges' slender orthotropic decks:Proceedings of the International Conference on Computational Methods and Experimental Measurements, CMEM,1999: 37-46
    53. Abdou, Samia (Ammann and Whitney); Zhang, Wuzhen; Fisher, John W., Orthotropic Deck Fatigue Investigation at Triborough Bridge, New York:Transportation Research Record, n 1845,2003:153-162
    54.Kolstein, M.H.; Wardenier, J.; Cuninghame, J.R.;Beales, C.; Bruls, A.; Poleur, E.; Caramelli, S.; Croce, P.; Carracilli, J.; Jacob, B.; Leendertz, J.S.; Bignonnet, A.; Lehrke, H.P, Fatigue strength of welded joints in orthotropic steel bridge decksSource: Welding in the World, Le Soudage Dans Le Monde, v38, Nov,1996:175-194
    55.Tsakopoulos, Paul A.; Fisher, John W., Full-scale fatigue tests of steel orthotropic decks for the williamsburg bridge:Journal of Bridge Engineering, v 8, n5, September/October, 2003:323-333
    56. Jent, K.; Bez, R.; Bruhwiler, E.; Hirt, M., Fatigue resistance of orthotropic steel bridge decks with open ribs:VTT Symposium (Valtion Teknillinen Tutkimuskeskus), v 2, n 156,1995:311
    57. Kaczinski, Mark R. (Lehigh Univ); Stokes, Frank E.; Lugger, Peter; Fisher, John W., Full-scale fatigue test of the Williamsburg Bridge orthotropic deck:Structures Congress-Proceedings, v 1, Building an International Community of Structural Engineers,1996: 329-336
    58. Caramelli, S.; Croce, P.; Froli, M.; Sanpaolesi, L.Analysis of fatigue test results on field-welded rib splices in orthotropic steel bridge decks:Proceedings of the International Workshop on Needs in Testing Metals, Testing of Metals for Structures,1992:203
    59.L. Fry'ba, L. Gajdos, Fatigue properties of orthotropic decks on railway bridges, Engineering Structures,1999,21:639-652.
    60.大型公路钢箱梁正交异性板工地接头构造细节的改进及应用,南京长江二桥钢箱梁关键技术的研究之一: 南京长江第二大桥建设指挥部,1999(8)
    61.熊健民,叶勇,余天庆.基于正交异性钢桥面板的疲劳寿命分析:湖北工学院学报,2003(8): 10-13.
    62.童乐为,沈祖炎.开口纵肋的正交异性钢桥面板疲劳试验研究:中国公路学报,1997(9):59-65.
    63.Kolstein H, Back J De.Fatigue behavior of field-welded rib joints in orthotropic steel decks. IABSE workshop, Lausanne,1990,59:237-248
    64.史永吉等译,欧洲钢结构协会第六技术委员会ECCS钢结构疲劳设计规范(1985)西安:西北工业大学出版社.1989
    65.童乐为,沈祖炎.正交异性钢桥面板静力试验和有限元分析:同济大学学报,1997(6):617-622.
    66.陈玉,陈勇.焊接整体节点技术在铁路钢桥上的运用:山西建筑,2005(10):114-115.
    67.赵延衡,林阴岳.京九线孙口黄河大桥整体节点钢桁梁:铁道工程学报,1996(9):53-61.
    68.任伟平.钢桥整体节点疲劳性能研究:学位论文.成都:西南交通,2004.
    69.王元良,周友龙,胡久富.我国钢桥焊接技术及其发展[J].电焊机,2004,(04):1-5.
    70.潘际炎,玉兴铎.我国铁路焊接钢桥的理论与实践[J].钢结构,1994,(01):59-66.
    71. Y Edward Zhou.Fatigue Problems in steel Bridge Structures.Proceedings of the 2004 Structures Congress-Building on the Past:Securing the Future,2004.
    72.王嘉弟.钢桥整体节点对接焊缝力学性能分析.桥梁建设,1997,(3):44-49.
    73.孟培元,孙昌茂,陶祖记.铁路钢梁整体节点的焊接技术[J].焊接技术,1997,(01):18-21.
    74.卿仁杰,周天喜.浅谈钢桁梁焊接整体节点的设计[J].西部探矿工程,2006,(S1)
    75.陈勇.单线铁路大跨度整体节点简支下承钢桁梁设计研究[J].铁道标准设计,2005(11):110-113.
    76.李厚民,熊健民,余天庆等.钢桁梁整体节点模型强度分析.湖北工学院学报,2002(3):37-44.
    77.任伟平,李小珍,李俊,卫星,强士中.现代公路钢桥典型细节疲劳问题分析公路.2004(4):82-87.
    78.铁道部大桥局.孙口黄河大桥技术总结,北京:科学技术出版社,1997
    79.刘承虞,赵廷衡.孙口黄河大桥整体节点钢桁梁的设计与制造[J].桥梁建设,1996,(03):44-48.
    80.隋宝善.孙口黄河大桥整体节点钢桁梁的制造[J].桥梁建设,1995,(02):71-74.
    81.郭兆祺,李军平,王岁利等.芜湖长江大桥钢梁整体节点的制造:钢结构,2001(1):31-33.
    82.中国铁路工程总公司芜湖长江大桥有限责任公司.芜湖长江大桥钢梁制造技术,北京:科学出版社,2001.
    83.张玉玲,潘际炎等.芜湖长江大桥关键技术研究.北京:铁道科学研究院铁道建筑研究所研究报告,1999.
    84.中华人民共和国铁道部.TB 10002.4-2005铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005.
    85.袁明,马庭林,游励晖.长寿长江大桥设计[J].桥梁建设,2005,(03):40-43.
    86.陈春华,董晓军,吴国红等.渝怀线长寿长江特大桥整体节点钢梁试制工艺:焊接,2002(10):17-23.
    87.张玉玲,潘际炎,陶晓燕等.焊接韧性标准及整体节点次应力对疲劳性能影响的研究.北京:铁道科学研究院铁道建筑研究所研究报告,2003.
    88.王荣辉,黄永辉.整体节点刚度对钢桁梁桥结构受力的影响分析:公路,2007年(10):27-30.
    89.陈勇.112m焊接整体节点钢桁梁节点刚性影响的研究[J].山西建筑,2005,(15):48-49.
    90.邓军.自锚式悬索桥主缆系统计算和锚固区试验研究.湖南大学,2006.
    91.裴岷山,赵和平.钢斜拉桥索梁锚固方式研究[A]中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集[C],2005.
    92.李小珍,蔡婧,强士中.大跨度钢箱梁斜拉桥索梁锚固结构型式的比较研究[J].土木工程学报,2004,37(3):73-79
    93.高剑,裴岷山.大跨度斜拉桥索梁锚箱空间受力分析[J].建筑科学与工程学报,2006,(03):66-70
    94.潘慧敏,李小珍,司秀勇.某斜拉桥索梁锚固结构有限元分析[J].四川建筑,2006,(01):99-100
    95.黄勇,程晓东,曾进忠.斜拉桥索梁锚固区受力情况的三维有限元分析[J].桥梁建设,2005,(S1):120-123
    96.万臻,李乔,毛学明.大跨度斜拉桥钢锚箱式索梁锚固结构空间有限元模型比较研究[J].四川建筑科学研究,2006,(01):26-31
    97.万臻,李乔.大跨度斜拉桥索梁锚固区三维有限元仿真分析[J].中国铁道科学,2006, (02):41-45
    98.马俊,陈彦江,盛洪飞,孙航.斜拉桥桥塔锚固区足尺寸模型试验与理论研究[J].公路交通科技,2007,(01):74-77
    99.沈桂平.斜拉索钢箱梁锚固区空间应力分析[J].桥梁建设,1997,(01):36-40
    100.王春寒.索梁锚固结构疲劳性能试验与研究.西南交通大学,2005.
    101.任美龙,曹映泓,刘承虞.锚拉板式索梁锚固结构传力机理及设计优化[J].中外公路,2006,(05):94-97
    102.刘均利,陈富坚,王晓峰,郭俊平.斜拉桥索梁销铰连接锚固区空间应力分析[J].桂林工学院学报,2005,(01):44-46
    103.刘庆宽,强士中.斜拉桥耳板索梁锚固结构受力特性研究:中国公路学报,2002(1):72-75.
    104.邱建英.销铰锚固型式在桃天门大桥上的应用[J].公路,2005,(12):15-18
    105.余振生,周定久,陶晓燕等,西堠门大桥加劲梁吊索锚箱模型试验试验报告.北京:铁道科学研究院铁道建筑研究所研究报告,2005年12月
    106.颜海,范立础.大跨度斜拉桥索梁锚固中的非线性接触问题[J].中国公路学报,2004,(02):46-49
    107.陈伟庆.斜拉索耳板锚固结构接触应力分析:铁道建筑技术,2003(6):5-7.
    108.刘晓光、潘际炎、张玉玲、荣振环、陶晓燕、田越等.武汉天兴洲公铁两用大桥结构构造疲劳性能试验研究.北京:铁道科学研究院铁道建筑研究所研究报告,2007年4月
    109.张玉玲,刘晓光,荣振环,陶晓燕等.Fatigue test for stonecutters北京:铁道科学研究院铁道建筑研究所研究报告,2007年9月
    110.刘晓光、潘际炎、张玉玲等.苏通大桥桥面板疲劳试验研究.北京:铁道科学研究院铁道建筑研究所研究报告,2007年2月
    111.潘际炎、张玉玲、刘晓光等.南京大胜关长江大桥结构构造疲劳性能试验研究.北京:铁道科学研究院铁道建筑研究所研究报告,2007年2月
    112.陶晓燕,张玉玲,刘晓光.铁路钢桥整体节点双轴疲劳试验研究:中国铁道科学,2005(2):77-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700