小麦高效PGPR菌的筛选鉴定及多色FISH检测促生菌在根部的定殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验筛选和鉴定了高效的具有特异亲和性的小麦根际促生菌并研究小麦根际菌在根部的定殖动态。通过使用异硫氰酸荧光素(FITC)标记的小麦凝集素为介导工具筛选小麦根际促生菌。共获得32株与小麦凝集素具有亲和性染色的高效根际菌,分别为固氮菌17株,解磷细菌4株,解钾细菌11株。通过生理生化鉴定,大部分菌落呈白色和乳白色,WS17菌株的菌落颜色呈蛋黄色。17株菌为革兰氏阴性菌,15株菌为革兰氏阳性菌,31菌菌具有接触酶的活性。其中,27株菌具有淀粉酶活性,有3株菌的M.R.实验呈阳性,4株菌的V.P.实验呈阳性,有9株菌可以产硫化氢,8株菌能够利用葡萄糖产酸。大部分菌株可以利用单糖和多糖为唯一碳源。对筛选获得的代表菌株进行了16S rRNA基因序列的分析和构建系统进化树。进化树主要由芽孢杆菌、假单胞菌和节杆菌等7个种属构成组成。其中最主要的类群是芽孢杆菌属(Bacillus)和节杆菌属(Arthrobacter)。
     根际促生菌具有促生特性,对植物的生长具有重要作用,因此鉴定和分析32株菌的促生特性,如产吲哚乙酸、铁载体、溶磷活性和抑制霉菌的能力是获得高效根际菌的重要参考指标。筛选获得的32株中,有21(65.6%)株菌产吲哚乙酸,其中3株菌的产量超过80mg/l,菌株WS12产量最高为103.3mg/l。铁载体的检测采用平板法和液体培养法。32株菌在采用平板法检测时,只有5株菌具有铁载体活性,表现为菌落周围有黄色晕圈。采用液体培养法时,产铁载体菌株的培养基颜色变成淡黄色。通过使用CAS反应检测,19(59.3%)株菌可以产铁载体,12株菌的产量达到5+的水平。说明采用液体培养测定菌株的产铁载体活性更具灵敏性。平板法可能由于使用的产铁载体固体培养基对细菌生长具有一定的抑制作用。31(96.8%)株菌株具有溶磷活性,溶磷能力在9.38-57.5μg/ml之间,其中菌株WS31溶磷活性最高为57.77±1.03μg/ml。虽然这些菌株筛选自不同培养基,但均具有溶磷活性。检测了32株菌抑制植物病原真菌的能力,发现大部分菌株不具备抑制能力,菌株WS07对4种具有明显的抑制作用。菌株WS07对小麦赤霉病(Fusarium Graminearum)抑制率最大,达到51.40%,对棉花枯萎病菌(F.oxysporum)和玉米小斑病菌(Bipolaria maydis),分别为41.03%和39.32%,对水稻纹枯病菌(Rhizoctonia solani)的抑制作用达到37.7%。因此菌株WS07表现出较好的抑制植物病原真菌的效果。测定菌株的促生长特性对微生物肥料的开发和应用具有重要的研究价值。
     采用大试管培养法测定了32株菌对小麦幼苗早期生长的影响。结果发现,适宜浓度的菌液对小麦的生长具有显著性的促进作用。其中21株菌明显促进小麦次生根的生长;22株菌对小麦的株高具有促进作用;23株菌可以促进小麦的根长。接种32株菌,有11株菌对小麦的茎鲜重具有促进作用。17株菌增加了小麦的根鲜重。10株菌增加小麦茎干重,19株增加小麦根干重。在32株菌株中对小麦的主根数、侧根数、株高、根长、总鲜重、根鲜重、茎干重和根干重具有促进作用的比例分别达到15.62、65.62、68.75、71.87、34.37、53.12、31.25和59.37%;上述的促进作用均在p=0.05水平上达到显著性差异。菌株促生作用主要表现在明显提高小麦生长的几个主要指标,如小麦的侧根数、株高、根长和根干重等。将促生结果与细菌的生理活性进行比较,发现若细菌(65.6%)具有越多种类的促生生理活性,则越多种类的小麦生长指标得到显著提高,说明细菌的促生生理活性对植物的生长具有重要的促进作用。考察细菌对小麦生长的促进作用可以为微生物肥料的开发提供参考数据。
     通过使用电转化法将质粒pTR102转入菌株WS32中,用于研究该菌株在小麦根表的吸附情况。电转化转移频率为3.55×10-5~4.14×10-5,获得的标记菌株WS32-L具有发光活性和tet、km和chl三种抗性,菌株WS32-L的luxAB基因标记的丢失率为19.7%,说明luxAB基因具有稳定遗传的特性。因此,在根际微生物的研究中可使用luxAB基因标记技术来获得具有抗性且易检测的菌株,进而更有效地研究根际微生物在植物根部的定殖过程。
     细菌吸附于小麦根表是形成定殖的必要条件,因此菌株WS32-L被用来研究在小麦根表的吸附动力学过程。菌株WS32-L在接触小麦幼根的瞬间就开始吸附,在60min内达到吸附的饱和值7.85±0.084lgCFU/g。WS32-L在小麦幼根的吸附符合等温吸附曲线。经计算WS32-L在小麦幼根的最大吸附量为6.47×108CFU/g,吸附系数α=4.5×10-9。小麦幼根经过小麦凝集素的处理后可以提高菌株WS32-L在小麦根部的吸附量,与对照相比较差异达到显著性水平(p=0.01)。经过热处理的小麦凝集素失去生理活性,不能提高WS32-L在小麦根表的吸附量。由此可见,小麦凝集素在细菌吸附过程中具有重要介导的作用。研究细菌吸附于小麦根表的过程对理解微生物在植物根部的定殖具有指导意义。
     FISH是研究根际微生物有效的检测技术。设计种属特异性探针,研究了根际促生菌(Bacillus sp. WS24和Pseudomonas sp. WS32)在小麦根表的定殖动态。设计的探针具有种属特异性,可检测到目的菌株。使用溶菌酶处理芽孢杆菌WS24菌株提高了FISH检测的灵敏度。在不同菌株混合存在的条件下,不同的种属探针可以同时检测多个目标菌株。采用FISH检测目的菌株在小麦根表定殖,发现大量菌体吸附在小麦根表和根毛部位,菌体沿根表细胞间隙纵向分布形成致密的生物膜;其中根毛区的细菌密度最大,菌体分布在根毛的表面。通过激光共聚焦显微镜观察,细菌菌体也分布于植物细胞的周围和根表的间隙中。不同种属的细菌定殖在小麦根表的部位基本相同,说明细菌在小麦根表的定殖中存在一定程度的位点竞争。通过FISH技术的检测,可以直观地观察到细菌在小麦根表的定殖情况,为根际微生物的研究提供了详细的实验数据。
The aim of this study was mainly to isolate and identify high efficient plantgrowth-promoting rhizobacteria (PGPR) with specific-affintity in wheat plant roots as wellas research the dynamic and adsorption of PGPR in wheat roots. In total,32high efficientisolates were obtained by wheat germ agglutinin (WGA) labeled with fluoresceinisothiocyanate (FITC). Out of the32strains,17ones were obtained from the modifiedAshby medium,11ones from the potassium-releasing selective medium, and4strainsfrom the modified Pikovskaya medium. Based on phenotypic characterization, mostbacterial communities were white and milk-white, etc. Seventeen isolates were gramnegative whereas fifteen ones were gram positive. The oxidase test was positive for31isolates. The starch test was positive for27isolates, and the M.R. test was positive for3bacterial strains while the V.P. test was positive for4bacterial ones. Nine strains couldproduce H2S and eight strains could utilize glucose to produce acid. Most isolates couldutilize monosaccharides and a disaccharide as carbon sources. Based on the phylogeneticanalysis of the16SrRNA partial sequences, the results showed that the whole phylogenetictree was consisted by seven genuses, such as Bacillus, Pseudomonas and Arthrobacter etc.The main genus in phylogenetic tree concluded Bacillus sp. and Arthrobacter sp.
     It is well known that plant growth-promoting rhizobacteria play important roles inplant growth processes, so it is necessary to identification of plant growth promoting (PGP)traits, such as production of indole-3-acetic acid (IAA) and siderophores, phosphorussolubilization as well as inhibition to fungi pathogens. The results showed that out of32tested isolates,21(65.6%) strains were found to produce IAA. Three isolates producedmore than80mg/l IAA, and strain WS12showed the highest IAA production (103.3mg/l).Petri plate and liquid cultivation methods were employed to detect production ofsiderophores. The results showed that few isolated could produce siderophores on petriplates, which showed yellow-halo around the communities, this might attribute to the toxinof medium used. However, the medium could change to light-yellow when bacteriaproduced siderophores. Nineteen (59.3%) isolates produced siderophores by using CASreaction, with12strains producing them at high amounts5+. This indicates that detectionof siderophores by liquid cultivation is more efficient. In detection of phosphorussolubilization,31(96.8%) strains exhibited the ability to solubilize phosphate, arrangingfrom9.38-57.50μg/ml. Strains WS31showed the largest amount of solubilized phosphate,which was57.7μg/ml. The detection of phosphorus solubilization indicates that although isolates are obtained from different media, they have the same ability to solubilizephosphate. Most isolates showed nearly no inhibition to four fungi pathogens. However,strain WS07showed satisfied ability to inhibit four tested fungi. The largest inhibition wasdetected toward wheat scab (Fusarium Graminearum), the inhibition efficiency was51.40%, and the next were cotton fusarium wilt (Fusarium. oxysporum) and Maize(Bipolaria maydis), with inhibition efficiency of41.03%and39.32%, respectively. Thelowest inhibition was toward rice sheath blight fungi (Rhizoctonia solani), which inhibitionefficiency was37.7%. Overall, strain WS07showed satisfied inhibiting effect. It isimportant to determine growth-promoting properties of tested strains as it can be used inthe application of microbial fertilizers.
     Large tube cultivation method was used to determine the promoting effect of32strains on the growth in wheat seedlings. The results showed that the concentration ofbacterial cells had great impact on the wheat growth. Low concentration showed nopromotion whereas high concentration showed inhibition of wheat plant growth. Out of32tested strains,21isolates increased the lateral roots,22strains promoted the plant heightwhile23increased the root length. Inoculation with32isolates,11strains increased theshoot fresh weight and17strains promoted the root fresh weight. By determination ofwheat dry weights, the results showed that10strains increased shoot dry weight,19isolates increased the root dry weight. The proportion of promotion on wheat primary root,lateral root number, plant height, root length, total fresh weight, root fresh weight, shootdry weight and root dry weight were15.62,65.62,68.75,71.87,34.37,53.12,31.25and59.37%, respectively. The all promotions mentioned above reached significant differenceat p=0.05level. The results showed that tested strains did not show promotions in all testeditems, but in several indicators, such as number of lateral root, plant height, root length androot dry weight. After comparion of promotion items with bacterial PGP traits, the resultsshowed that most of bacteria (65.6%) possessing two or three PGP traits, the number inpromotion items which achieved significant difference were more larger, this indicates thatbacterial growth-promoting properties paly important role in plant growth. Theseexperimental results provide concrete data to facilitate research on biofertilizers.
     Electroporation was employed to transfer the plasmid pTR102to strain WS32in orderto make easier to study the adsorption in wheat root surface. The results showed that thelabeled strains had luminescence and the resistances to three kinds of antibiotics (tet, kmand chl). The transfer frequency was3.55×10-5~4.14×10-5while the lost frequency was19.7%, this indicate that luxAB gene shows well genetic stability. Therefore, the strain, which had resistance and was easier to detect, could be obtained by labeled with luxABgene and made more efficient in research the adsorption of microbial strains in plantrhizosphere.
     Attachment of bacteria to plant roots is a necessary and vital step when bacteriacolonize the wheat root surface. Strain WS32-L was chosen to study the adsorptionkinetics in wheat roots. The results showed that attachment of strains WS32-L to wheatroots reached the highest and stable amount (7.85±0.084lgCFU/g) in first60min. Theadsorption of strain WS32-L matched well with isothermal adsorption curve. The highestamount was6.47×108CFU/g and the adsorption coefficient α=4.5×10-9after calculation instandard curve. Herein, the attachment was significantly increased by treated the wheatroot with WGA when compared to the control treatments at p=0.01level. However,heat-treated WGA failed to increase the adsorption amount. Thus, WGA play an importantrole in attachment of bacteria in plant root. These findings expand the understanding of themechanisms which WGA is involved. In addition, the research on adsorption of bacteriacan give us a better understanding in colonization process of bacteria to plant roots.
     Fluorescence in situ hybridization (FISH) is a powerful tool to detect the rhizospheremicrobes. The colonization of plant growth promoting strain (Bacillus sp. WS24andPseudomonas sp. WS32) was investigated by FISH technique. Species-specific probeswere designed. The results showed that probes had specific toward the target strains andcould detected the tested strains. The detecting efficiency of Bacillus sp. could be greatlyimproved by pretreated strains with lysozyme. Under the mixture cultivation conditions,different specie-probes could well detect the target strains. By using FSIH technique, theresults showed that most bacterial cells adsorbed on wheat root surface and root hairs.Bacterial cells were distributed along longitudinal gap of plant root cells and formed in thepattern of dense biofilm. Moreover, the bacterial density in the root hair was the biggestand majority of bacterial cells were located on root hair surfaces. By using laser scanningconfocal microscopy, it also showed that bacteria were distributed in the peripheral surfacegap of plant root cells in wheat. This study also found that, regardless of different bacterialspecies, their colonization in wheat root position were most similar, this may indicate thatbacteria in wheat root colonization process possesses great competion of adhering sites.Herein, by using the FISH technique, we can visually observe the adsorption andcolonization of bacteria in wheat root surface. All the work performed here provides morespecific experimental data in the research of rhizosphere microorganisms.
引文
[1] Compant S, Clement C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere ofplants: Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biol Biochem.2010,42(5):669-678.
    [2]胡江春.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报.2004,15(10):1963-1966.
    [3]陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志.2000,20(1):38-41.
    [4] Haichar FE, Marol C, Berge O, et al. Plant host habitat and root exudates shape soil bacterialcommunity structure[J]. Isme J.2008,2(12):1221-1230.
    [5]胡小加.根际微生物与植物营养[J].中国粮油学报.1999,21(3):77-79.
    [6] Hussain S, Mirza M, Malik K. Production of phytohormones by the nitrogen fixation bacteria isloatedfrom sugarcan[J]. Biohorizons.1999,2(124):61-76.
    [7] Malik K, Bilal R, Mehnaz S, et al. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria(PGPR) with kallar grass and rice[J]. Plant Soil.1997,194(1):37-44.
    [8] Schippers B, Bakker AW, Bakker PAHM. Interactions of deleterious and beneficial rhizospheremicroorganisms and the effect of cropping practices[J]. Ann Rev Phytopathol.1987,25(1):339-358.
    [9] Kloepper JW, Leong J, Teintze M, et al. Enhanced plant growth by siderophores produced by plantgrowth-promoting rhizobacteria[J]. Nature.1980,286(5776):885-886.
    [10] Glick BR, Patten C, Penrose D, et al. Biochemical and genetic mechanisms used by plant growthpromoting bacteria[M]. Imperial College Press London,1999.
    [11] CARTIEAUX F, Nussaume L, Robaglia C. Tales from the underground: molecular[J]. Plant, Cell&Environ.2003,26(2):189-199.
    [12] Cummings S, Orr C. The role of plant growth promoting rhizobacteria in sustainable and low-inputgraminaceous crop production. In Plant Growth and Health Promoting Bacteria, Maheshwari.(SpringerBerlin/Heidelberg),2011, p.297-315.
    [13] Weller DM, Thomashow LS. Use of rhizobacteria for biocontrol[J]. Curr Opin Biotech.1993,4(3):306-311.
    [14] Guo J-H, Qi H-Y, Guo Y-H, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria[J].Biol Control.2004,29(1):66-72.
    [15] Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing cropproductivity[J]. Trend Biotechnol.1989,7(2):39-44.
    [16] Frankenberger, Arshad. Phytohormones in soils:Microbial production and function[J]. New York:Marcel.1995: Dekker. p.503.
    [17]黄晓东,卢林纲,等.植物促生菌及其促生机理(续)[J].现代化农业.2002,7:13-15.
    [18]龙伟文. PGPR与AMF相互关系的研究进展[J].应用生态学报.2000,11(2):311-314.
    [19]连宾,臧金平,袁生.微生物肥料科学研究中几个热点问题[J].南京师大学报:自然科学版.2004,27(2):65-69.
    [20] Vassilev N, Nikolaeva I, Vassileva M. Indole-3-acetic acid production by gel-entrapped Bacillusthuringiensis in the presence of rock phosphate ore[J]. Chemical Engin Commun.2007,194(4):441-445.
    [21] Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plantsignaling[J]. FEMS Microbiol Rev.2007,31(4):425-448.
    [22] Leveau JHJ, Gerards S. Discovery of a bacterial gene cluster for catabolism of the plant hormoneindole3-acetic acid[J]. FEMS Microbiol Ecol.2008,65(2):238-250.
    [23] Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid[J]. Can J Microbiol.1996,42(3):207-220.
    [24] Abbasi MK, Sharif S, Kazmi M, et al. Isolation of plant growth promoting rhizobacteria from wheatrhizosphere and their effect on improving growth, yield and nutrient uptake of plants[J]. PlantBiosystems.2011,145(1):159-168.
    [25] Choi J, Choi D, Lee S, et al. Cytokinins and plant immunity: old foes or new friends?[J]. Trends PlantSci.2011,16(7):388-394.
    [26] Loper JE, Buyer JS. Siderophores in microbial interactions on plant surfaces[J]. Mol Plant-MicrobeInteract.1991,4(1):5-13.
    [27] Hider RC, Kong X. Chemistry and biology of siderophores[J]. Nat Prod Rep.2010,27(5):637-657.
    [28] Wyatt R, Sodroski J. The HIV-1envelope glycoproteins: fusogens, antigens, and immunogens[J].Science.1998,280(5371):1884-1888.
    [29] Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport andtolerance[J]. Environ Microbiol.2011,13(11):2844-2854.
    [30] Naureen Z, Hafeez FY, Roberts M. Biological control of sheath blight disease of rice by siderophoreproducing rhizobacterial strains and their role in efficient mobilisation of micronutrients from soil[J].Curr Opin Biotech.2011,22:48-S48.
    [31] Baltimore D, Heilman C. HIV vaccines: prospects and challenges[J]. Scientific American.1998,279(1):98-103.
    [32] Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1patients withprimary infection[J]. Science.1993,261(5125):1179.
    [33] Howie WJ, Suslow TV. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in thecotton spermosphere and rhizosphere by Pseudomonas fluorescens[J]. Mol. Plant-Microbe Interact.1991,4:393-399.
    [34] Pieterse CMJ, Van Wees SCM, Van Pelt JA, et al. A novel signaling pathway controlling inducedsystemic resistance in Arabidopsis[J]. The Plant Cell Online.1998,10(9):1571-1580.
    [35] Van Loon L, Bakker P, Pieterse C. Systemic resistance induced by rhizosphere bacteria[J]. Ann RevPhytopathol.1998,36(1):453-483.
    [36] Kloepper JW, Ryu CM, Zhang S. Induced systemic resistance and promotion of plant growth byBacillus spp[J]. Phytopathology.2004,94(11):1259-1266.
    [37] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation[J]. Microbiol Rev.1995,59(1):143-169.
    [38] Wissuwa M, Mazzola M, Picard C. Novel approaches in plant breeding for rhizosphere-related traits[J].Plant Soil.2009,321(1):409-430.
    [39] Vessey JK. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant Soil.2003,255(2):571-586.
    [40] Hafeez FY, Yasmin S, Ariani D, et al. Plant growth-promoting bacteria as biofertilizer[J]. AgronSustain Dev.2006,26(2):143-150.
    [41]沙新平.报告基因系统的研究进展[J].国外医学:临床生物化学与检验学分册.2003,24(1):26-28.
    [42]刘志锋,姜勇.报告基因技术的理论基础及其应用[J].生理科学进展.2002,33(4):361-363.
    [43] Meighen EA. Molecular biology of bacterial bioluminescence[J]. Microbiol Rev.1991,55(1):123-142.
    [44] Khalid A, Arshad M, Zahir ZA. Screening plant growth-promoting rhizobacteria for improving growthand yield of wheat[J]. J Appl Microbiol.2004,96(3):473-480.
    [45] Canbolat MY, Barik K, Cakmakci R, et al. Effects of mineral and biofertilizers on barley growth oncompacted soil[J]. Soil and Plant Sci.2006,56(4):324-332.
    [46] Hafeez FY, Yasmin S, Ariani D, et al. Plant growth-promoting bacteria as biofertilizer[J]. AgronSustain Dev.2006,26(2):143-150.
    [47] Yu X, Ai C, Xin L, et al. The siderophore-producing bacterium, Bacillus subtilis CAS15, has abiocontrol effect on Fusarium wilt and promotes the growth of pepper[J]. Eur J Soil Biol.2011,47(2):138-145.
    [48] Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reducedapplication rates of chemical fertilizers[J]. Microbial Ecol.2009,58(4):921-929.
    [49] Fischer SE, Fischer SI, Magris S, et al. Isolation and characterization of bacteria from the rhizosphereof wheat[J]. World J Microbiol Biotechnol.2007,23(7):895-903.
    [50] J.萨姆布鲁克,弗里奇EF, T.曼尼阿帝斯.分子克隆实验指南(第二版)[M].北京:科学出版社,1999.
    [51] Naylor LH. Reporter gene technology: the future looks bright[J]. Biochem Pharmacol.1999,58(5):749-757.
    [52] Deming JW. Deep ocean environmental biotechnology[J]. Curr Opin Biotechnol.1998,9(3):283-287.
    [53] Ahmad KA, Stewart GSAB. The production of bioluminescent lactic acid bacteria suitable for therapid assessment of starter culture activity in milk[J]. J Appl Microbiol.1991,70(2):113-120.
    [54] Meighen EA. Molecular biology of bacterial bioluminescence[J]. Microbiol Rev.1991,55(1):123-142.
    [55] Stewart B, Williams P. lux genes and the applications of bacterial bioluminescence[J]. Microbiology.1992,138(7):1289-1300.
    [56]茆灿泉.生物发光细菌lux基因系统的研究进展[J].国外医学:临床生物化学与检验学分册.1998,19(6):241-243.
    [57]王平.土壤因子对发光酶基因标记的荧光假单胞菌X16L2在小麦根圈定殖的影响[J].微生物学报.2000,40(3).
    [58]王平,胡正嘉,李阜棣.发光酶基因标记的荧光假单胞菌X16L2在小麦根圈的定殖动态[J].微生物学报.2000,40(2):151~154.
    [59] Tang X, Sun Y, Wen C, et al. Survival of Pseudomonas fluorescence X16(luxAB) strain in soilsaccumulated with mixed rare earth elements[J]. J Rare Earths.2004,22(6):904-908.
    [60]柏建玲,王平.利用发光酶基因标记技术跟踪棉花根圈中的绿针假单胞菌pl9l[J].微生物学报.1999,39(1):43-48.
    [61] Lis H, Sharon N. Lectins as Molecules and as Tools[J]. Ann Rev Biochem.1986,55(1):35-67.
    [62] Bohlool BB, Schmidt EL. Lectins: A possible basis for specificity in the rhizobium-legume root nodulesymbiosis[J]. Science.1974,185(4147):269-271.
    [63] Peumans WJ, Damme EJMV. Lectins as plant defense proteins[J]. Plant Physiol.1995,(1995)109:347-352.
    [64] Nathan S. Lectins: past, present and future[J]. Biochem. Soc. Trans.(2008).2008,36,1457–1460.
    [65] De Hoff P, Brill L, Hirsch A. Plant lectins: the ties that bind in root symbiosis and plant defense[J].Mol Genet Genomics.2009,282(1):1-15.
    [66] Zatta P, Cummings R. Lectins and their uses as biotechnological tools[J]. Biochemical Education.1992,20(1):2-9.
    [67] Sumner J, Howell S. Identification of hemagglutinin of jack bean with concanavalin A[J]. J Bacteriol.1936,32(2):227.
    [68] Allen AK, Neuberger A, Sharon N. The purification, composition and specificity of wheat-germagglutinin[J]. Biochem J.1973,131(1):155-162.
    [69] Muller WE, Zahn RK, Kurelec B, et al. Lectin, a possible basis for symbiosis between bacteria andsponges[J]. J Bacteriol.1981,145(1):548-558.
    [70] Vandenborre G, Smagghe G, Van Damme EJM. Plant lectins as defense proteins against phytophagousinsects[J]. Phytochemistry.2011,72(13):1538-1550.
    [71] Ma QH, Tian B, Li YL. Overexpression of a wheat jasmonate-regulated lectin increases pathogenresistance[J]. Biochimie.2010,92(2):187-193.
    [72] Behl R, Narula N, Bhatia R, et al. Interaction of Azotobacter Chroococcum with Wheat GermAgglutinin (WGA)[J]. The IUP J Gene Evol.2011,4(1):15-20.
    [73] Portillo-Téllez MC, Bello M, Salcedo G, et al. Folding and Homodimerization of Wheat GermAgglutinin[J]. Biophysical J.2011,101(6):1423-1431.
    [74] Ma Q-H, Tian B, Li Y-L. Overexpression of a wheat jasmonate-regulated lectin increases pathogenresistance[J]. Biochimie.2010,92(2):187-193.
    [75] Singh BK, Millard P, Whiteley AS, et al. Unravelling rhizosphere–microbial interactions: opportunitiesand limitations[J]. Trends Microbiol.2004,12(8):386-393.
    [76] Peumans WJ, Van Dame EJM. Plant lectins: Versatile proteins with important perspectives inbiotechnology[M]. Andover, ROYAUME-UNI: Intercept,1998.
    [77] Van Damme E. Lectins as tools to select for glycosylated proteins[J]. Methods Molecul Biol.2011,753:289.
    [78] Dammes EJM, Fouquaert E, Lannoo N, et al. Novel concepts about the role of lectins in the plantcell[J]. Molecul Immunol Complex Carbohyd.2011:271-294.
    [79] Peumans W, Barre A, Hao Q, et al. Higher plants developed structurally different motifs to recognizeforeign glycans[J]. Trend Glycoscience Glycotechnol.2000,12(64):83-102.
    [80] Zhao JK, Zhao YC, Li SH, et al. Isolation and characterization of a novel thermostable lectin from thewild edible mushroom Agaricus arvensis[J]. J Basic Microbiol.2011,51(3):304-311.
    [81]林敏,尤崇杓.根际联合固氮作用的研究进展[J].植物生理学通讯.1992,28(5):323-329.
    [82] Callow J. Biochemical Plant Pathology.(Chichester: John Wiley and Sons),1983, p.299-324.
    [83] Hamblin J, Kent SP. Carbohydrate-binding sites in plant lectins[J]. Nature New Bio1.1973,245:28~30.
    [84] Dazzo FB, Truchet GL. Interactions of lectins and their saccharide receptors in the rhizobium-legumesymbiosis[J]. J Memb Biol.1983,73(1):1-16.
    [85] Dazzo F, Yanke W, Brill W. Trifolin: a rhizobium recognition protein from white clover[J]. Biochimicaet Biophysica Acta (BBA)-General Subjects.1978,539(3):276-286.
    [86] Dazzo F, Hollingsworth R, Sherwood J, et al. Recognition and infection of clover root hairs byRhizobium trifolii[J]. Nitrogen fixation research progress. Martinus Nijhoff Publishers BV, Dordrecht,The Netherlands.1985:239-245.
    [87] Diaz CL, Logman T, Stam HC, et al. Sugar-Binding Activity of Pea Lectin Expressed in White CloverHairy Roots[J]. Plant Physiol.1995,109(4):1167-1177.
    [88] Sharon N. Lectins: carbohydrate-specific reagents and biological recognition molecules[J]. J BiolChem.2007,282(5):2753-2764.
    [89] Diaz C, Melchers L, Hooykaas P, et al. Root lectin as a determinant of host plant specificity in therhizobium-legume symbiosis[J].1989,338:579-581.
    [90] Lerouge P, Roche P, Faucher C, et al. Symbiotic host-specificity of Rhizobium meliloti is determinedby a sulphated and acylated glucosamine oligosaccharide signal[J]. Nature.1990,344(6268):781-784.
    [91]眭顺照,李琳莉,祝钦泷等.蜡梅凝集素基因克隆及其对蚜虫,蛞蝓抗性分析[J].中国农业科学.2011,44(2):358-368.
    [92] Lam SK, Ng TB. Lectins: production and practical applications[J]. Applied Microbiol Biotechnol.2011,89(1):45-55.
    [93] Singh BK, Millard P, Whiteley AS, et al. Unravelling rhizosphere-microbial interactions: opportunitiesand limitations[J]. Trends Microbiol.2004,12(8):386-393.
    [94] Dobereiner J, JM D (1974). In Newton WE. In Nyman EJ(eds), Proceedings of the lth InternationalSymposium on Nitrogen-fixation, ed.^eds.(Madison: Science Tech. Publishers), pp.518.
    [95] Eyers M. Nitrogen Fixation: Achievements and Objectives.(New York: Chapman and Halt),1990, p.491.
    [96] Rodr′guez-Navarro DN, Dardanelli MS, Ru′z-Sa′nz JeE. Attachmentof bacteria to the roots ofhigher plants[J]. FEMS Microbiol Lett.2007:272(2007)2127–2136.
    [97] Sharon N, Lis H. Lectins as cell recognition molecules[J]. Science.1989,246(4927):227-234.
    [98] Antonyuk LP, Evseeva NV. Wheat lectin as a factor in plant-microbial communication and a stressresponse protein[J]. Microbiology.2006,75(4):470-475.
    [99] Shakirova FM, Kildibekova AR, Bezrukova MV, et al. Wheat germ agglutinin regulates cell division inwheat seedling roots[J]. Plant Growth Regul.2004,42(2):175-180.
    [100] Fife DJ, Bruhn DF, Miller KS, et al. Evaluation of a fluorescent lectin-based staining technique forsome acidophilic mining bacteria[J]. Appl Environ Microbiol.2000,66(5):2208-2210.
    [101] Joshi A, Dang HQ, Vaid N, et al. Pea lectin receptor-like kinase promotes high salinity stress tolerancein bacteria and expresses in response to stress in planta[J]. Glycoconj J.2009,27(1):133-150.
    [102]邓黛青,李光明,周仰原等. FISH荧光原位杂交技术在污水生物脱氮研究中的应用[J].微生物学通报.2006,33(002):132-136.
    [103] Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytologicalpreparations[J]. PNAS.1969,64(2):600.
    [104] Giovannoni SJ, DeLong EF, Olsen GJ, et al. Phylogenetic group-specific oligodeoxynucleotide probesfor identification of single microbial cells[J]. J Bacteriol.1988,170(2):720-726.
    [105] DeLong EF, Wickham GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for theidentification of single cells[J]. Science.1989,243(4896):1360-1363.
    [106] Albertson DG, Fishpool RM, Birchall PS (1995). Fluorescence in Situ Hybridization for the Detectionof DNA and RNA. In Methods in Cell Biology, HenryDiane, ed.^eds.(Academic Press), pp.339-364.
    [107] Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates inbacterial rRNA[J]. Nucl Acids Res.1996,24(17):3381-3391.
    [108] Trebesius K, Harmsen D, Rakin A, et al. Development of rRNA-targeted PCR and in situ hybridizationwith fluorescently labelled oligonucleotides for detection of Yersinia species[J]. J Clin Microbiol.1998,36(9):2557-2564.
    [109] Lischewski A, Amann RI, Harmsen D, et al. Specific detection of Candida albicans and Candidatropicalis by fluorescent in situ hybridization with an18S rRNA-targeted oligonucleotide probe[J].Microbiology.1996,142(10):2731-2740.
    [110] Baschien C, Manz W, Neu TR, et al. Fluorescence in situ hybridization of freshwater fungi[J]. Int RevHydrobiol.2001,86(4-5):371-381.
    [111] Wagner M, Schmid M, Juretschko S, et al. In situ detection of a virulence factor mRNA and16S rRNAin Listeria monocytogenes[J]. FEMS Microbiol Lett.1998,160(1):159-168.
    [112] Kenny JH, Zhou Y, Schriefer ME, et al. Detection of viable Yersinia pestis by fluorescence in situhybridization using peptide nucleic acid probes[J]. J Microbiol Methods.2008,75(2):293-301.
    [113]卢圣栋.现代分子生物学实验技术(第二版)[M].北京:中国协和医科大学出版社.1999,156.
    [114]陈瑛.微生物荧光原位杂交(FISH)实验技术[J].哈尔滨工业大学学报.2008,40(4):546-549.
    [115] Watt M. Numbers and locations of native bacteria on field-grown wheat roots quantified byfluorescence hybridization (FISH)[J]. Environ Microbiol.2006,8(5):871-884.
    [116] Wilén B-M, Onuki M, Hermansson M, et al. Microbial community structure in activated sludge flocanalysed by fluorescence in situ hybridization and its relation to floc stability[J]. Water Res.2008,42(8-9):2300-2308.
    [117] M ller S, Sternberg C, Andersen JB, et al. In situ gene expression in mixed-culture biofilms: evidenceof metabolic interactions between community members[J]. Appl Environ Microbiol.1998,64(2):721-732.
    [118] Tagawa T, Syutsubo K, Sekiguchil Y, et al. Quantification of methanogen cell density in anaerobicgranular sludge consortia by fluorescence in-situ hybridization[J]. Water Sci Technol.2000:77-82.
    [119] Yoshie S, Noda N, Tsuneda S, et al. Design of16S rRNA-targeted oligonucleotide probes and microbialcommunity analysis in the denitrification process of a saline industrial wastewater treatment system[J].FEMS Microbiol Lett.2004,235(1):183-189.
    [120] DOMLNAUES M, Araujo J, Varesche M, et al. Evaluation of thermophilic anaerobic microbialconsortia using fluorescence in situ hybridization (FISH)[J]. Water Sci Technol.2002:27-33.
    [121] Simon N, Biegala IC, Smith EA, et al. Kinetics of attachment of potentially toxic bacteria toAlexandrium tamarense[J]. Aqua Microbial Ecol.2002,28(3):249-256.
    [122] Araya R, Tani K, Takagi T, et al. Bacterial activity and community composition in stream water andbiofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis[J].FEMS Microbiol Ecol.2003,43(1):111-119.
    [123] Girguis PR, Delong EF. Anaerobic enrichment of methane-oxidizing archaeal bacterial consortia indeep-sea marine sediments[J]. Abstracts of the General Meeting of the American Society forMicrobiology.2002,102:327.
    [124] McNamara CJ, Lemke MJ, Leff LG. Culturable and non-culturable fractions of bacterial populations insediments of a South Carolina stream[J]. Hydrobiologia.2002,482(1):151-159.
    [125] Zoetendal EG, Ben-Amor K, Harmsen HJM, et al. Quantification of uncultured Ruminococcusobeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometryusing16S rRNA-targeted probes[J]. Appl Environ Microb.2002,68(9):4225-4232.
    [126] Thurnheer T, r RG, Guggenheim B. Multiplex FISH analysis of a six-species bacterial biofilm[J]. JMicrobiol Methods.2003,56(2004)37–47.
    [127] Foster JS, Palmer Jr RJ, Kolenbrander PE. Human oral cavity as a model for the study ofgenome-genome interactions[J]. Biological Bullet.2003,204(2):200-204.
    [128] Wu Q, Li Y, Wang M, et al. Fluorescence in situ hybridization rapidly detects three different pathogenicbacteria in urinary tract infection samples[J]. J Microbiol Methods.2010,83(2):175-178.
    [129] Amann RI. Fluorescently labelled, rRNA-targeted oligonucleotide probes in the study of microbialecology[J]. Mol Ecol.1995,4(5):543-554.
    [130] Icgen B, Moosa S, Harrison STL. A study of the relative dominance of selected anaerobicsulfate-reducing bacteria in a continuous bioreactor by fluorescence in situ hybridization[J]. MicrobEcol.2007,53(1):43-52.
    [131] Wu CH, Hwang YC, Lee W, et al. Detection of recombinant Pseudomonas putida in the wheatrhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA[J]. Appl MicrobiolBiotechnol.2008,79(3):511-518.
    [132] Fernandez N, Diaz EE, Amils R, et al. Analysis of microbial community during biofilm development inan anaerobic wastewater treatment reactor[J]. Microb Ecol.2008,56(1):121-132.
    [133] Alagappan A, Bergquist PL, Ferrari BC. Development of a two-color fluorescence in situ hybridizationtechnique for species-level identification of human-infectious Cryptosporidium spp[J]. Appl EnvironMicrobiol.2009,75(18):5996-5998.
    [134] Manti A, Boi P, Amalfitano S, et al. Experimental improvements in combining CARD-FISH and flowcytometry for bacterial cell quantification[J]. J Microbiol Methods.2011,87(3):309-315.
    [135] Whiley H, Taylor M, Bentham R. Detection of Legionella species in potting mixes using fluorescent insitu hybridisation (FISH)[J]. J Microbiol Methods.2011,86(3):304-309.
    [136] Babot JD, Hidalgo M, Arga araz-Martínez E, et al. Fluorescence in situ hybridization for detection ofclassical propionibacteria with specific16S rRNA-targeted probes and its application to enumeration inGruyère cheese[J]. Int J Food Microbiol.2011,145(1):221-228.
    [137] Lawrence SA, O'Toole R, Taylor MW, et al. Subcuticular bacteria associated with two common NewZealand echinoderms: Characterization using16S rRNA sequence analysis and fluorescence in situhybridization[J]. Biol Bull.2010,218(1):95-104.
    [138] Hartmann A, Rothballer M, Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology andsoil bacteriology research[J]. Plant Soil.2008,312(1-2):7-14.
    [139] Kloepper JW, Schroth MN. Plant growth-promoting rhizobacteria on radishes.[J]. Proc4th1978:897-882.
    [140] Zahir ZA, Arshad M, Frankenberger WT. Plant Growth Promoting Rhizobacteria: Applications andPerspectives in Agriculture. In Advances in Agronomy, Sparks.(Academic Press),2004, p.97-168.
    [141] Monem M, Khalifa HE, Beider M, et al. Using biofertilizers for maize production: Response andeconomic return under different irrigation treatments[J]. J Sustain Agr.2001,19(2):41-48.
    [142] Mahfouz SA, Sharaf-Eldin MA. Effect of mineral vs. biofertilizer on growth, yield, and essential oilcontent of fennel (Foeniculum vulgare Mill.)[J]. Int Agrophysics.2007,21(4):361-366.
    [143] Mahmoud A, Mohamed H. Impact of biofertilizers application on improving wheat (Triticum aestivumL.) resistance to salinity[J]. Res J Agr Biol Sci.2008,4(5):520-528.
    [144] Burdman S, Jurkevitch E, Okon Y, et al. Recent advances in the use of plant growth promotingrhizobacteria (PGPR) in agriculture[J]. Microbial Interact Agri Forest.2000,2:229-250.
    [145] Kluepfel DA. The behavior and tracking of bacteria in the rhizosphere[J]. Ann Rev Phytopathol.1993,31(1):441-472.
    [146] Lee KH, Ruby EG. Detection of the light organ symbiont, Vibrio fischeri, in hawaiian seawater by usinglux gene probes[J]. Appl Environ Microbiol.1992,58(3):942-947.
    [147]盛下放.硅酸盐细菌NBT菌株在小麦根际定殖的初步研究[J].应用生态学报.2003,14(11):1914-1916.
    [148]韦兵,唐欣昀.假单胞菌JK45菌株lux基因标记及在土壤中的存活[J].农业环境科学学报.2006,25(6):1524-1528.
    [149] Monsigny M, Mayer R, Roche AC. Sugar-lectin interactions: sugar clusters, lectin multivalency andavidity[J]. Carbohydr Lett.2000,4(1):35-52.
    [150] Yegorenkova I, Konnova S, Sachuk V, et al. Azospirillum brasilense colonisation of wheat roots and therole of lectin–carbohydrate interactions in bacterial adsorption and root-hair deformation[J]. PlantSoil.2001,231(2):275-282.
    [151] Michiels KW, Croes CL, Vanderleyden J. Two different modes of attachment of Azospirillumbrasilense Sp7to wheat roots[J]. J Gener Microbiol.1991,137(9):2241.
    [152] Rodríguez‐Navarro DN, Dardanelli MS, Ruíz‐Saínz JE. Attachment of bacteria to the roots ofhigher plants[J]. FEMS Microbiol Lett.2007,272(2):127-136.
    [153] Chabot R, Antoun H, Kloepper JW, et al. Root colonization of maize and lettuce by bioluminescentRhizobium leguminosarum biovar phaseoli[J]. Appl Environ Microb.1996,62(8):2767-2772.
    [154] Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE. Attachment of bacteria to the roots of higherplants[J]. FEMS Microbiol Lett.2007,272(2):127-136.
    [155] Rüdiger H, Gabius HJ. Plant lectins: occurrence, biochemistry, functions and applications[J].Glycoconjugate J.2001,18(8):589-613.
    [156] Podile A, Kishore G. Plant growth-promoting rhizobacteria[J]. Plant-Associated Bacteria.2006:195-230.
    [157] Zahir ZA, Arshad M, Frankenberger WT (2004). Plant Growth Promoting Rhizobacteria: Applicationsand Perspectives in Agriculture. In Adv Agron, Sparks,(Academic Press).2004, p.97-168.
    [158]沈萍,范秀容,李广武.微生物学实验(第三版)[M]..北京:高等教育出版社,1999.
    [159]李阜棣.农业微生物学实验技术.[M].北京:中国农业出版社,1996.
    [160] Park M, Kim C, Yang J, et al. Isolation and characterization of diazotrophic growth promoting bacteriafrom rhizosphere of agricultural crops of Korea[J]. Microbiol Res.2005,160(2):127-133.
    [161]何琳燕,黄为一.发光酶基因luxAB标记硅酸盐细菌NBT菌株的研究[J].应用生态学报.2004,15(7):1241-1244.
    [162]张纪忠.微生物分类学[M].复旦大学出版社,1990.
    [163]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法[M].北京:科学出版社,1978.
    [164] Weisburg WG, Barns SM, Pelletier DA, et al.16S ribosomal DNA amplification for phylogeneticstudy[J]. J Bacteriol.1991,173(2):697-703.
    [165] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA)software version4.0[J]. Mol Biol Evol.2007,24(8):1596-1599.
    [166] Hartmann A, Schmid M, Tuinen D, et al. Plant-driven selection of microbes[J]. Plant Soil.2009,321(1):235-257.
    [167] Chopade BA, Sachdev DP, Chaudhari HG, et al. Isolation and characterization of indole acetic acid(IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) andtheir effect on plant growth[J]. Indian J Exp Biol.2009,47(12):993-1000.
    [168] Laguerre G, Allard M-R, Revoy F, et al. Rapid identification of rhizobia by restriction fragment Lengthpolymorphism analysis of PCR-amplified16S rRNA genes[J]. Appl Environ Microbiol.1994,60(1):56-63.
    [169] Frankenberger WT, Arshad M. Phytohormones in soils: microbial production and function[M]. CRC,1995.
    [170] Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope formanipulation of the direct oxidation pathway involving glucose dehydrogenase[J]. J Appl Microbiol.2009,109(1):1-12.
    [171] Park JH, Bolan N, Megharaj M, et al. Isolation of phosphate solubilizing bacteria and their potentialfor lead immobilization in soil[J]. J Hazard Mater.2011,185(2-3):829-836.
    [172]王平,董飚.小麦根圈细菌铁载体的检测[J].微生物学通报.1994,21(6):323-326.
    [173] Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid[J]. Plant Physiol.1951,26(1):192.
    [174]波钦诺克[苏]著XH,荆家海,丁钟荣译.植物生物化学分析方法[M].北京:科学出版社,1981.
    [175] Milagres AMF, Machuca A, Napole o D. Detection of siderophore production from several fungi andbacteria by a modification of chrome azurol S (CAS) agar plate assay[J]. J Microbiol Methods.1999,37(1):1-6.
    [176] Chaiharn M, Chunhaleuchanon S, Lumyong S. Screening siderophore producing bacteria as potentialbiological control agent for fungal rice pathogens in Thailand[J]. World J Microbiol Biotechnol.2009,25(11):1919-1928.
    [177] Dhandapani. Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soilsfrom southern India[J]. Int. J. Soil Sci.2011,6(2):134-141.
    [178] Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reducedapplication rates of chemical fertilizers[J]. Microb Ecol.2009,58(4):921-929.
    [179] Ravikumar S, Kathiresan K, Ignatiammal STM, et al. Nitrogen-fixing azotobacters from mangrovehabitat and their utility as marine biofertilizers[J]. J Experiment Mari Biol Ecol.2004,312(1):5-17.
    [180] Hoagland DR, Arnon DI. The water-culture method for growing plants without soil[J]. Circ. Calif.Agric. Exp. Stn.1950,347:4-31.
    [181]杨建雄.生物化学与分子生物学实验技术教程[M].北京:科学出版社,2002.
    [182] Chaiharn M, Lumyong S. Screening and optimization of indole-3-acetic acid production and phosphatesolubilization from rhizobacteria aimed at Improving plant growth[J]. Curr Microbiol.2011,62(1):173-181.
    [183] Lugtenberg B, Kamilova F. Plant-Growth-Promoting Rhizobacteria[J]. Annu Rev Microbiol.2009,63:541-556.
    [184] Prosser J. Molecular marker systems for detection of genetically engineered micro-organisms in theenvironment[J]. Microbiology.1994,140(1):5-17.
    [185] Yao S, Rana S, Liu D, et al. Electroporation optimization to deliver plasmid DNA into dental folliclecells[J]. Biotechnol J.2009,4(10):1488-1496.
    [186] Toro CS, Mora GC, Figueroa-Bossi N. Gene transfer between related bacteria by electrotransformation:mapping Salmonella typhi genes in Salmonella typhimurium[J]. J Bacteriol.1998,180(17):4750-4752.
    [187]刘健,李俊,姜昕等.荧光假单胞菌AS1.867和3-PHB的luxAB基因标记及其在小麦根际的定殖[J].华东理工大学学报.2002,28(6):606-609.
    [188]刘健,李俊,姜昕等.巨大芽胞杆菌luxAB标记菌株的根际定殖研究[J].微生物学通报.2001,28(6):1-4.
    [189]林稚兰,黄秀梨.现代微生物学与实验技术[M].北京:科学出版社,2002.
    [190] J.萨姆布鲁克, D.W.拉塞尔.分子克隆实验指南[M].北京:科学出版社,2002.
    [191] Akkermans ADL, Elsas JD, Bruijn FJ. Molecular Mcrobial Ecology Manual.[M]. Holland: KluwerAcademic Publishers,1996.
    [192]冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学[J].中国生物化学与分子生物学报.2002,18(1):85-91.
    [193] Gordon SAB, Stewart PW. Lux gene and the application of bacterial bioluminescence[J]. J Microbiol.1992,138:1289~1300.
    [194] Amin H-S, Meikle A, Glover L-A. Plasmid and chromosomally encoded luminescence marker systemsfor detection of Pseudomonas f luorescence in soil[J]. Mol Ecol.1993,2:47-54.
    [195]罗明云,张小平,等.用发光酶基因(luxAB)标记法研究慢生花生根瘤菌的竞争结瘤能力[J].生态学报.2003,23(2):278-283.
    [196] Ramsey MM, Whiteley M. Pseudomonas aeruginosa attachment and biofilm development in dynamicenvironments[J]. Mol Microbiol.2004,53(4):1075-1087.
    [197] Kamnev AA, Sadovnikova JN, Tarantilis PA, et al. Responses of Azospirillum brasilense to nitrogendeficiency and to wheat lectin: A diffuse reflectance infrared fourier transform (DRIFT) spectroscopicstudy[J]. Microbial Ecol.2008,56(4):615-624.
    [198] Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm[J]. J Ind MicrobiolBiotechnol.2007,34(9):577-588.
    [199] Mishkind M, Raikhel NV, Palevitz BA, et al. Immunocytochemical localization of wheat germagglutinin in wheat[J]. J cell Biol.1982,92(3):753-764.
    [200] Mishkind M, Raikhel N, Palevitz B, et al. The cell biology of wheat germ agglutinin and relatedlectins[J]. Progr Clin Biolog Res.1983,138:163.
    [201] Gafny R, Okon Y, Kapulnik Y, et al. Adsorption of Azospirillum brasilense to corn roots[J]. Soil BiolBiochem.1986,18(1):69-75.
    [202] Yegorenkova IV, Konnova SA, Sachuk VN, et al. Azospirillum brasilense colonisation of wheat rootsand the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation[J].Plant Soil.2001,231(2):275-282.
    [203] Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signalling: a love parade beneath ourfeet[J]. Crit Rev Microbiol.2004,30(4):205-240.
    [204] Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm[J]. J Indust MicrobiolBiotechnol.2007,34(9):577-588.
    [205] Kapulnik Y, Okon Y, Henis Y. Changes in root morphology of wheat caused by Azospirilluminoculation[J]. Can J Microbiol.1985,31(10):881-887.
    [206] Bashan Y, Levanony H. Factors affecting adsorption of Azospirillum brasilense Cd to root hairs ascompared with root surface of wheat[J]. Can J Microbiol.1989,35(10):936-944.
    [207] Egorenkova I, Konnova S, Fedonenko YP, et al. Role of the polysaccharide components ofAzospirillum brasilense capsules in bacterial adsorption on wheat seedling roots[J]. Microbiology.2001,70(1):36-40.
    [208] Zamudio M, Bastarrachea F. Adhesiveness and root hair deformation capacity of Azospirillum strainsfor wheat seedlings[J]. Soil Biol Biochem.1994,26(6):791-797.
    [209] Turner RH, Liener IE. The use of glutaraldehyde-treated erythrocytes for assaying the agglutinatingactivity of lectins[J]. Analytical Biochem.1975,68(2):651.
    [210]沈霞.临床免疫学与免疫学检验新技术[M].北京:人民军医出版社,2002.
    [211]朱灵峰,路福绥.物理化学[M]..北京:中国农业出版社,2003.
    [212] Sadovnikova YN, Bespalova LA, Antonyuk LP. Wheat germ agglutinin is a growth factor for thebacterium azospirillum brasilense[J]. Doklady Biochem Biophysics.2003,389(1):103-105.
    [213] Mishkind M, Keegstra K, Palevitz BA. Distribution of wheat germ agglutinin in young wheat plants[J].Plant Physiol.1980,66(5):950-955.
    [214] Laus MC, Logman TJ, Lamers GE, et al. A novel polar surface polysaccharide from Rhizobiumleguminosarum binds host plant lectin[J]. Mol Microbiol.2006,59(6):1704-1713.
    [215] Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms[J]. Ann Rev Microbiol.1995,49(1):711-745.
    [216]齐枝花,于鑫,余萍等.细菌细胞间通讯的群感效应[J].微生物学通报.2005,32(002):128-133.
    [217] Van Houdt R, Michiels C. Biofilm formation and the food industry, a focus on the bacterial outersurface[J]. J Appl Microbiol.2010,109(4):1117-1131.
    [218] Stoecker K, Dorninger C, Daims H, et al. Double labeling of oligonucleotide probes for fluorescence insitu hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility[J]. ApplEnviron Microbiol.2010,76(3):922-926.
    [219] Stepanovic S, Vukovic D, Dakic I, et al. A modified microtiter-plate test for quantification ofstaphylococcal biofilm formation[J]. J Microbiol Methods.2000,40(2):175-179.
    [220] Yang X, Beyenal H, Harkin G, et al. Quantifying biofilm structure using image analysis[J]. J MicrobiolMethods.2000,39(2):109-119.
    [221] Bakke R, Kommedal R, Kalvenes S. Quantification of biofilm accumulation by an optical approach[J].J Microbiol Methods.2001,44(1):13-26.
    [222] Vo GD, Heys J. Biofilm deformation in response to fluid flow in capillaries[J]. Biotechnol Bioengine.2011,108(8):1893-1899.
    [223] Pernthaler A. Identification of environmental microorganisms by fluorescence in situ hybridization[M].Handbook of Hydrocarbon and Lipid Microbiology.2010,33:4127-4135.
    [224] Ofek M, Hadar Y, Minz D. Colonization of cucumber seeds by bacteria during germination[J]. EnvironlMicrobiol.2011,13(10):2794-2807.
    [225] Amann RI, Binder BJ, Olson RJ, et al. Combination of16S rRNA-targeted oligonucleotide probes withflow cytometry for analyzing mixed microbial populations[J]. Appl Environ Microbiol.1990,56(6):1919-1925.
    [226] Hugenholtz P, Tyson GW, Blackall LL. Design and evaluation of16S rRNA-targeted oligonucleotideprobes for fluorescence in situ hybridization[J]. Meth Mol Biol.2002,179:29-42.
    [227] Daims H, Wagner M. Quantification of uncultured microorganisms by fluorescence microscopy anddigital image analysis[J]. Appl Microbiol Biotechnol.2007,75(2):237-248.
    [228] S rensen J, Jensen LE, Nybroe O. Soil and rhizosphere as habitats for Pseudomonas inoculants: newknowledge on distribution, activity and physiological state derived from micro-scale and single-cellstudies[J]. Plant Soil.2001,232(1):97-108.
    [229] Bolton H, Elliott L, Gurusiddaiah S, et al. Characterization of a toxin produced by a rhizobacterialPseudomonas sp. that inhibits wheat growth[J]. Plant Soil.1989,114(2):279-287.
    [230] Egorenkova IV, Konnova SA, Fedonenko YP, et al. Role of the polysaccharide components ofAzospirillum brasilense capsules in bacterial adsorption on wheat seedling roots[J]. Microbiology.2001,70(1):36-40.
    [231] Turnbull GA, Morgan JA, Whipps JM, et al. The role of motility in the in vitro attachment ofPseudomonas putida PaW8to wheat roots[J]. FEMS Microbiol Ecol.2001,35(1):57-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700