Mg同位素组成的高精度测定及其在地外物质研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要包括三个方面的内容,即(1)Mg同位素组成高精度测定实验方法的建立;(2)陨石Mg同位素组成的测定及其天体化学意义,(3)陨石的全岩化学组成分析和宁强碳质球粒陨石的分类研究。
     1、Mg同位素组成高精度测定实验方法的建立
     本项研究建立了适用于陨石和其他类似岩石样品Mg同位素组成高精度测定的实验方法,δ~(26)Mg和δ~(25)Mg的分析精度(2σ)分别好于0.14‰和0.08‰。除陨石全岩和熔壳样品用常规的酸溶法溶样外,球粒陨石中的单个集合体(如富Ca,Al包体、球粒、蠕虫状富橄榄石集合体)等微小样品用微量溶样器溶解。样品溶液中Mg与其它元素的分离采用AG50W-X12阳离子树脂。纯化后的Mg溶液用多接受电感耦合等离子质谱仪(MC-ICPMS)精确测定其同位素组成。
     (1)Mg的化学分离:通过一系列条件试验,确定了分离Mg的最佳流程和条件。条件试验的内容包括采用HCl,HNO_3和有机溶剂作为淋洗液的实验和对比,以及淋洗液的酸浓度及树脂量和树脂高度对Mg的提纯的影响等。试验过程中连续分段接取淋出液(2-5ml),并用ICP-MS测定Mg和其它干扰元素的含量。最后对确定的流程进行重复性实验,结果证实具有好的重现性,并且Mg的回收率>98%。
     (2)Mg同位素的MC-ICPMS测定:通过对国际标样SRM980、国家标样GSB和实验室标样IGGCAS三种标准的测定,确定仪器的Mg同位素分馏系数β=0.5177,接近同位素平衡分馏的理论值。对实验室高纯水,硝酸中的Mg同位素干扰进行了测定,其对Mg同位素比值的影响约为0.1‰,并通过扣除本底和标准-样品-标准夹层测量技术,将其影响减少到可忽略程度。Mg分离流程对Ni的分离效果不理想,为此采用不同比例的Mg/Ni混合溶液进行模拟实验,MC-ICPMS测定表明Mg/Ni比<1:2时,溶液中的Ni不会对δ~(26)Mg和δ~(25)Mg测定值产生影响,它们的变化小于长期外部精度0.14‰和0.08‰。此外,研究了标准溶液与样品溶液的Mg浓度差异对Mg同位素比值测定可能产生的影响。分析结果表明,如果标准溶液中Mg的浓度为1ppm,则样品溶液中Mg的浓度控制在0.3-3ppm的范围应为最佳。
     通过对相同样品的化学分离重复实验,以及Mg溶液的仪器重复测定,证明
This dissertation mainly includes three parts as follows (1) method of high-precision measurement of Mg isotope compositions;(2) determination of Mg isotopes of the meteorites and their cosmochemical significance;(3) Analysis of bulk chemical composition and the classification of the Ningqiang carbonaceous chondrite.1. Establishing experiment method for high-precision measurement of Mg isotope compositions.This study develops a new method for high-precision measurement of Mg isotope, which is suitable for extraterrestrial materials and earth rocks with similar composition. Analyzing precisions of δ~(26)Mg and δ~(25)Mg are better than 0.14%o and 0.08%., respectively. A normal acid-dissolving methods is applied to dissolve bulk samples of the meteorites and the crust samples in the meteorites, meanwhile a mini-dissolution device is used to dissolve samples with small volume such as, Ca-, Al-rich inclusions (CAIs), chondrules and amoeboid olivine aggregates (AOAs). Mg of sample solution is chemically separated from other elements via AG50W-X12 resin, and then the purified Mg solutions are accurately measured by MC-ICPMS for their Mg isotope composition.(1) Purification of element Mg: The best procedure for Mg purification has been determined by a series experiments. These experiments included to have used HCl, HNO_3 with different acidity and organic solution as eluents, as well as adjusted different resin amount and height in columns, investigating for them how to effect Mg purification. 2-5 ml eluate was collected one by one, then contents of Mg and interfering elements (e.g., Ni, Cr) in each eluate were analyzed by ICP-MS. Finally, the best procedure of Mg separation was determined. According to the procedure, multiple repeated experiments showed rather good
    repeatability, and the recovery of Mg is better than 98%.(2) High-precision measurement of Mg isotopes by MC-ICPMS: Three standards, i.e., SRM980 (NIST), IGCAS and GSB are chosen and analyzed in order to determine the Mg isotope fractionation factor ( 3 ) during MC-ICPMS instrument measurement. Present study obtained 3 value of 0.5177, which is close to the theoretic value of Mg isotopic equilibrium. Mg-isotope ratios of air, ultra-pure water, and 0.3M HNO3 acid were also analyzed, the results showed them no important interference for Mg isotope measurement of a sample solution. Contributions of the interference from such as ultra-pure water were only less than 0.1 %o when 24Mg/24Mg and 26Mg/24Mg ratios were measured. Adopting auto-subtraction blank and bracketing technique can eliminate these interferences. On the other hand, present Mg- purified procedure can not separate Mg from Ni well, therefore a simulating experiment was carried out in order to evaluate whether different Mg/Ni ratios may result in variation of Mg isotope composition measured by MC-ICPMS. The simulating results revealed that measured 26Mg and 25Mg values were not changed when Ni/ Mg ratio in solution was less than 2:1. Furthermore, our experiment results showed that 0.3-3 ppm concentration range for Mg solution of a sample would be best to fit lppm Mg standard solution.In summary, through many repeated-experiments of Mg chemical separation and MC-ICPMS measurement for a same sample, the measured results in present study are rather stable. Reproducibility of 826Mg and 825Mg values is better than 0.14%o and 0.08%o, respectively.2. Mg-isotope compositions of the meteorites and cosmochemistry significance.(1) Mg isotope compositions of different chemistry group (e.g., carbonaceous chondrite, Allende, NQ, ordinary chondrite, JL;Mars meteorite, and GRV 99027, et al.) were measured. These meteorites plot a small field, the values of 526Mg and 525Mg are (0.06±0.03)%o and (0.01±0.02)%o, (average, ±2ct), hinting that Mg isotope compositions of the supernova material in the Solar System are very uniform.(2) the feldspar ingredient in the Mars meteorite GRV 99027 was analyzed, its Mg isotope ratios are 5 26MgDSM3 = (—0.21+0.02)%0 and 8 25MgDSM = (—O.15±O.O2)%o, (±2a), respectively. Relative to bulk rock, the feldspar ingredient shows more enriched light-Mg
    isotope, indicating that mass fractionation of Mg isotopes occurred during igneous crystallization fractionation on the Mars.(3) The Al and Mg isotope compositions of CAIs and AOAs in Allende and Ningqiang meteorite were measured. Excess 26Mg from in situ decay of the short-lived 26A1 nuclide (0.74 Myr half life) has been recognized. Both CAIs and AOAs have a similar initial 26A1/27A1 ratio (5.54xl0~5 and 5.42xlO'5). Allende chondrules have unclear excess 26Mg, upper limit of their initial 26A1/27A1 ratios is ~ 4.84xlO'5. These data probably imply that the CAIs, AOAs and chondrule were contemporaneously generated. On the other hand, it should be noticed that enrichment of heavy Mg isotope has not been found in CAIs and AOA, even some of the CAIs, AOAs and chondrules exhibit more enriched light Mg-isotope relative to bulk meteorite. Therefore the CAIs have not experienced high temperature evaporation during formation.(4) Some of the chondrules in present study show weak enrichment of heavy Mg isotope, hinting that these chondrules took place differentiation with different degree when they underwent high temperature melting. Meanwhile, crusts of the chondrites show no mass fractionation of Mg isotope, indicating that forming condition of crusts from the chondrites was distinct from that of the chondrules.3. Bulk chemical composition of several meteorites and classification of Ningqiang carbonaceous chondrite.Bulk chemical compositions of Ningqiang, Jilin, and Allende meteorites have been measured. According to new data, we discuss the classification of Ningqiang carbonaceous chondrite, which is a long debated topic. This study compares the REE, lithophile elements and siderophile elements of Ningqiang meteorite with CV and CK group meteorites, classifies the Ningqiang to be ungroup carbonaceous chondrites.
引文
1 Alexander, C. M. O., Grossman, J. N., Wang, J., Zanda, B., Bourot-Denise, M. and Hewins, R H. 2000. The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteoritics & Planetary Science 35(4): 859-868.
    2 Alexander, C. M. O. D. 2001. Exploration of quantitative kinetic models for the evaporation of silicate metals in vacuum and in hydrogen. Meteoritics and Planetary Science 36(2): 255-283.
    3 Amelin, Y, Krot, A. N., Hutcheon, I. D. and Ulyanov, A. A. 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich Inclusions. Science 297(5587): 1678-1683.
    4 Barrat, J. A., Blichert-Toft, J,, Gillet, P. and Keller, F, 2000. The differentiation of eucrites: The role of in situ crystallization. Meteoritics and Planetary Science 35:1087-1100.
    5 Bennett, W. E. and Skovlin, D. O. 1966. Separation of alkaline earth elements by anion exchange. Analytical chemistry 38:518.
    6 Benoit, P. H., Symes, S. J. K., Guimon, R. K. and Sears, D. W. G 1995. The CV chondrites: metamorphism, thermal history, and their relationship to CK chondrites. Lunar and Planetary Institute Conference Abstracts 26:105.
    7 Bernius, M. T., Hutcheon, I. D. and Wasserburg, G J. (1991). Search for evidence of ~(26)A1 in meteorites that are planetary differentiates. Lunar and Planetary Institute Conference Abstracts.
    8 Bizzarro, M., Baker, J. A. and Haack, H. 2004. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431(7006): 275-278.
    9 Boyle, E. A. 1981. Cadmium, zinc, copper, and barium in foraminifera tests. Earth and Planetary Science Letters 53(1): 11-35.
    10 Bradley, J. G, Huneke, J. C. and Wasserburg, G J, 1978. Ion microprobe evidence for the presence of excess Mg-26 in an Allende anorthite crystal. Journal of Geophysical Research 83: 244-254.
    11 Caillet, C., MacPherson, G J. and Zinner, E. K 1993. Petrologic and Al-Mg isotopic clues to the accretion of two refractory inclusions onto the Leoville parent body: One was hot, the other wasn't. Geochimica et Cosmochimica Acta 57(19): 4725-4743.
    12 Campbell, D. N. and Charles, T. K. 1954. Separation of magnesium from calcium by ion exchange chromatography application to determination of calcium oxide and magnesia in limestones and dolomites. Analytical chemistry 26: 560.
    13 Catanzaro, E. I, Murphy, T. J., Garner, E. L. and Shields, W. R 1966. Absolute isotopic abundance ratios and atomic weight of magnesium. Jouranl of Research of the National Bureau of Standards —A. Physics and Chemistry 70A: 453-458.
    14 Chang, V. T.-C, Makishima, A., Belshaw, N. S. and O'Nions, R. K. 2003. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 18((4)): 296-301.
    15 Chizmadia, L. J., Rubin, A. E. and Wasson, J. T. 2002. Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationship to parent-body aqueous alteration. Meteoritics and Planetary Science 37: 1781-1796.
    16 Clayton, R N. 1993. Oxygen isotopes in meteorites. Annual Review of Earth and Planetry Science 21: 115-149.
    17 Clayton, R N., Hinton, R W. and Davis, A. M. 1988. Isotopic variations in the rock-forming elements in meteorites. Royal Society of London Philosophical Transactions Series A 325: 483-501.
    18 Clayton, R. N., MacPherson, G J., Hutcheon, I. D., Davis, A. M., Grossman, L., Mayeda, T. K., Molini-Velsko, C, Allen, J. M. and El Goresy, A. 1984. Two forsterite-bearing FUN inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta 48: 535-548.
    19 Clayton, R N. and Mayeda, T. K. 1977. Correlated oxygen and magnesium isotope anomalies in Allende inclusions. Geophysical Research Letters 4: 295-298.
    20 Davis, A. M., Prinz, M. and Laughlin, J. R (1988). An Ion Microprobe Study of Plagioclase-rich Clasts in the North Haig Polymict Ureilite. Lunar and Planetary Institute Conference Abstracts.
    21 Galy, A., Belshaw, N. S., Halicz, L. and O'Nions, R K. (2001). High-Precision Measurement of Light Elements Isotopic Ratios by MC-ICPMS: Example of Mg. Eleventh Annual V. M. Goldschmidt Conference.
    22 Galy, A., Belshaw, N. S., Halicz, L. and O'Nions, R. K. 2001. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry 208(1-3): 89-98.
    23 Galy, A., Young, E. D., Ash, R. D. and O'Nions, R K. 2000. The formation of chondrules at high gas pressures in the solar nebula. Science 290(5497): 1751.
    24 Galy, A. Y, O.;Janney,P.E;Willians,R.W;Cloquet,C.;Alard,O.;et al. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry 18: 1352-1356.
    25 Goswami, J. N., Marhas, K. K. and Sahijpal, S. 2001. Did solar energetic particles produce the short-lived nuclides present in the early solar system? Astrophysical Journal 549: 1151-1159.
    26 Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. and Lee, T. 2001. Extinct radioactivities and protosolar cosmic rays: Self-shielding and light elements. Astrophysical Journal 548: 1051-1070.
    27 Gray, C. M. and Compston, W. 1974. Excess 26Mg in the Allende meteorite. Nature 251: 495.
    28 Greenwood, R. C, Lee, M. R., Hutchison, R. and Barber, D. J. 1994. Formation and alteration of CAIs in Cold Bokkeveld (CM2). Geochimica et Cosmochimica Acta 58: 1913.
    29 Grossman, L. and Steele, I. M. 1976. Amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmochimica Acta 40: 149-155.
    30 Guan, Y, Huss, G R., MacPherson, G J. and Wasserburg, G J. 2000. Calcium-aluminum-rich inclusions from enstatite chondrites: indigenous or foreign? Science 289(5483): 1330-1333.
    31 Haichen, L., Ying, L. and Zhanxia, Z. 1998. Determination of ultra-trace rare earth elements in chondritic meteorites by inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 53(10): 1399-1404.
    32 Halicz, L., Galy, A., Belshaw, N. S. and O'Nions, R. K. 1999. High-precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Journal of Analytical Atomic Spectrometry 14: 1835-1838.
    33 Hashimoto, A. and Grossman, L. 1987. Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmochimica Acta 51:1685-1704.
    34 Hashimoto, A. and Takahashi, T. 1997. Chemical and isotopic constraints on the dynamic recycling of the nebular materials (abstract). National Institute & Polar Research Sympium XXII: 49-51.
    35 Hewins, R. H. 1997. Chondrules. Annual Review of Earth and Planetary Sciences 25: 61-83.
    36 Hirota, Y, Tamaki, M. and Nakamura, N. 2002. Rare earth element abundances in the CK chondrites including the Kobe meteorite. Geochemical Journal 36: 309-322.
    37 Hsu, W. and Crozaz, G 1996. Mineral chemistry and the petrogenesis of eucrites: I. Noncumulate eucrites. Geochimica et Cosmochimica Acta 60(22): 4571-4591.
    38 Hsu, W., Huss, G R and Wasserburg, G J. 2003. Al-Mg systematics of CAIs, POI, and ferromagnesian chondrules from Ningqiang. Meteoritics & Planetary Science 38(1): 35-48.
    39 Hutcheon, I. D. 1982. The Mg isotopic composition of igneous-textured refractory inclusions from C3 meteorites. Meteoritics 17: 230.
    40 Hutcheon, I. D. and Newton, R. C. 1981. Mg isotopes, mineralogy, and mode fo formation of secondary phases in C3 refractory inclusions (abstract). Lunar and Planetary Science XII: 491-493.
    41 Hutcheon, I. D., Steele, I. M, Smith, J. V. and Clayton, R. N. 1978. Ion microprobe, electron microprobe and cathodoluminescence data for Allende inclusions with emphasis on plagioclase chemistry. Lunar and Planetary Science Conference 9: 1345-1368.
    42 Kallemeyn, G W. (1996). The Classificational Wanderings of the Ningqiang Chondrite. Lunar and Planetary Institute Conference Abstracts.
    43 Kallemeyn, G W. 1996. The classificational wanderings of the Ningqiang chondrite (abstract). Lunar and Planetary Science Conference. 27: 635-636.
    44 Kallemeyn, G W., Rubin, A. E. and Wasson, J. T. 1991. The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta 55: 881-892.
    45 Kehm, K., Hauri, E. H, Alexander, C. M. O. and Carlson, R W. 2003. High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS. Geochimica et Cosmochimica Acta 67: 2879-2891.
    46 Keil, K. 1989. Enstatite meteorites and their parent bodies. Meteoritics 24: 195-208.
    47 Kennedy, A. K, Hutchison, R., Hutcheon, I. D. and Agrell, S. O. 1992. A unique high Mn/Fe microgabbro in the Parnallee (LL3) ordinary chondrite -Nebular mixture or planetary differentiate from a previously unrecognized planetary body? Earth and Planetary Science Letters 113: 191-205.
    48 Kimura, M., Noguchi, T, Lin, Y. and Wang, D. 1997. Petrology and mineralogy of an unusual Ningqiang carbonaceous chondrite. Geochemical studies on synthetic and natural rock systems: 153-165.
    49 Kleine, X, Klaus, M., Herbert, P., Scherer, E. and Muenker, C. 2004. A new chronology for asteroid formation in the early solar system based on ~(182)W systematics. American Geophysical Union Fall Meeting Abstracts 31: 04.
    50 Komatsu, M., Krot, A. N, Mikouchi, T., Tagai, T, Miyamoto, M. and Keil, K. 2004. Amoeboid olivine aggregates in the NWA 760 CV3 chondrite. Lunar and Planetary Institute Conference Abstracts 35: 1537.
    51 Komatsu, M., Krot, A. N., Petaev, M. I, Ulyanov, A. A., Keil, K. and Miyamoto, M. 2001. Mineralogy and petrography of amoeboid olivine aggregates from the reduced CV3 chondrites Efremovka, Leoville and Vigarano: Products of nebular condensation, accretion and annealing. Meteoritics and Planetary Science 36: 629-641.
    52 Krot, A. N., Russell, S. S., MacPherson, G J., Huss, G R., Itoh, S. and Keil, K. (2004). The Genetic Relationship Between Refractory Inclusions and Chondrules. Workshop on Chondrites and the Protoplanetary Disk.
    53 Krot, A. N, Yurimoto, H, Hutcheon, I. D. and Scott, E. R D. 2004. Oxygen Isotope Exchange in CAIs and Chondrules: Implication for Oxygen Isotope Reservoirs in the Solar Nebula. Meteoritics & Planetary Science, vol. 39, Supplement. Proceedings of the 67th Annual Meeting of the Meteoritical Society, August 2-6, 2004, Rio de Janeiro, Brazil, abstract no.5043 39: 5043.
    54 Lauretta, D. S., Buseck, P. R. and Zega, T. J. 2001. Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: constraints on the chondrule formation environment. Geochimica et Cosmochimica Acta 65(8): 1337-1353.
    55 Lee, T. and Papanastassiou, D. A. 1974. Mg isotopic anomalies in the Allende meteorite and correlation with O and SR effects. Geophysical Research Letters 1: 225-228.
    56 Lee, T., Papanastassiou, D. A. and Wasserburg, G J. 1976. Demonstration of Mg-26 excess in Allende and evidence for Al-26. Geophysical Research Letters 3: 41-44.
    57 Leya, I., Wieler, R. and Halliday, A. N. 2002. Nucleosynthesis by spallation reactions in the early solar system. Meteoritics & Planetary Science 37(Suppl.): A86.
    58 Lin, Y, Guan, Y, Leshin, L. A., Ouyang, Z. and Wang, D. 2005. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite. Proceedings of the National Academic Sciences. 102(5): 1306-1311.
    59 Lin, Y. and Kimura, M. 1998. Anorthite-spinel-rich inclusions in the Ningqiang carbonaceous chondrite: Genetic links with Type A and C inclusions. Meteoritics & Planetary Science 33(3): 435-446.
    60 Lin, Y. and Kimura, M. 1998. Petrographical and mineral chemical study of new EH melt rocks and a new grouplet of enstatite chondrites. Meteoritics & Planetary Science 33(3): 501-511.
    61 Lin, Y. and Kimura, M. 2000. Two unusual Type B refractory inclusions in the Ningqiang carbonaceous chondrite: Evidence for relicts, xenoliths and multi-heating. Geochimica et Cosmochimica Acta 64(23): 4031-4047.
    62 Lin, Y and Kimura, M. 2003. Ca-Al-rich inclusions from the Ningqiang meteorite: continuous assemblages of nebular condensates and genetic link to Type B inclusions. Geochimica et Cosmochimica Acta 67(12): 2251-2267.
    63 Lin, Y, Ouyan, Z., Wang, D., Miao, B., Liu, X., Kimura, M. and Jun, Y. 2002. Grove Mountains (GRV) 99027: A new martian lherzolite. MAPS 37(7). A87.
    64 Lin, Y T, Qi, L., Wang, G Q. and Xu, L. 2005. Major, Trace and Platinum-Group Elements of the Martian Lherzolite Grove Mountains (GRV) 99027. Meteoritics & Planetary Science, Vol. 40, Supplement, Proceedings of 68th Annual Meeting of the Meteoritical Society, held September 12-16, 2005 in Gatlinburg, Tennessee. 40: 5154.
    65 Liu, Y, Liu, H. and Li, X. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica 25: 552.
    66 Lofgren, G E. 1996. A dynamic crystallization model for chondrule melts. Chondrules and the Protoplanetary Disk: 187.
    67 Lorin, J. C, Michel-Levy, M. C. and Desnoyers, C. 1978. Ophitic Ca-Al inclusions in the Allende and Leoville meteorites - A petrographic and ion-microprobe study. Meteoritics 13: 537-540.
    68 Lugmair, G W. and Galer, S. J. G 1992. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra DOS Reis. Geochimica et Cosmochimica Acta 56: 1673-1694.
    69 MacPherson, G J. and Davis, A. M. 1993. A petrologic and ion microprobe study of a Vigarano Type B refractory inclusion: Evolution by multiple stages of alteration and melting. Geochimica et Cosmochimica Acta 57: 231-243.
    70 MacPherson, G J., Davis, A. M. and Zinner, E. K. 1995. The distribution of aluminum-26 in the early solar system - A reappraisal. Meteoritics 30: 365-386.
    71 Maharaj, S. V and Hewins, R. H. 1999. Simulating flash heating in a muffle tube furnace. Meteoritics & Planetary Science 34(6): 885-890.
    72 Marhas, K. K., Goswami, J. N. and Davis, A. M. 2002. Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution. Science 298(5601): 2182-5.
    73 Martin, P. M. and Mason, B. 1974. Major and trace elements in the Allende meteorite. 249(5455): 333-334.
    74 Mason, B. 1975. The Allende meteorite — cosmochemistry's Rosetta Stone? Accounts Chem. Research 8: 217-224.
    75 McKeegan, K. D., Chaussidon, M. and Robert, F. 2000. Evidence for the In Situ Decay of 10Be in an Allende CAI and Implications for Short-lived Radioactivity in the Early Solar System (abstract). LPSC XXXI: #1999.
    76 McKeegan, K. D., Chaussidon, M. and Robert, F. 2000. Incorporation of short-lived (10)Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science 289(5483): 1334-7.
    77 McSween, H. Y, Jr. 1977. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta 41: 1777-1790.
    78 Modjaz, M., Li, W. D., Filippenko, A. V and Treffers, R R 2000. High-quality optical light curves of supernovae with the Katzman automatic imaging telescope. Bulletin of the American Astronomical Society 196: 687.
    79 Mostefaoui, S., Lugmair, G W, Hoppe, P. and El Goresy, A. 2003. Evidence for live iron-60 in semarkona and chervony Kut: A nanoSIMS study. Lunar and Planetary Institute Conference Abstracts 34: 1585.
    80 Nagahara, H., Young, E. D., Hoering, T. C. and Mysen, B. O. 1993. Oxygen isotopic fractionation during evaporation of SiO_2 in vacuum and in H gas. Meteoritics 28(3): 406.
    81 Nguyen, L.-A., O'D. Alexander, C. M. and Carlson, R W. 2000. Mg isotope variation in bulk meteorites and chondrules. Lunar and Planetary Institute Conference Abstracts 31: 1841.
    82 Oura, Y, Ebihara, M., Yoneda, S. and Nakamura, N. 2002. Chemical composition of the Kobe meteorite;Neutron-induced prompt gamma ray analysis study. Geochemical Journal 36: 295-307.
    83 Ozawa, K. and Nagahara, H. 2001. Chemical and isotopic fractionations by evaporation and their cosmochemical implications. Geochimica et Cosmochimica Acta 65: 2171-2199.
    84 Podosek, F. A., Zinner, E. K., MacPherson, G J., Lundberg, L. L., Brannon, J. C. and Fahey, A. J. 1991. Correlated study of initial Sr-87/Sr-86 and Al-Mg isotopic systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite. Geochimica et Cosmochimica Acta 55: 1083-1110.
    85 Ponnamperuma, C. 1977. Organic compounds in carbonaceous chondrites with special reference to the Mighei meteorite. Meteoritics 12: 340.
    86 Richter, F. M, Davis, A. M, Ebel, D. S. and Hashimoto, A. 2002. Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochimica et Cosmochimica Acta 66: 521-540.
    87 Rubin, A. E., Wang, D., Kallemeyn, G W. and Wasson, J. T. 1988. The Ningqiang meteorite: Classification and petrology of an anomalous CV chondrite. Meteoritics 23: 13-23.
    88 Rubin, A. E. and Wasson, J. T. 1995. Variations of chondrite properties with heliocentric distance. Meteoritics 30: 569.
    89 Russell, S. S., Srinivasan, G, Huss, G R, Wasserburg, G J. and MacPherson, G J. 1996. Evidence for widespread ~(26)Al in the solar nebula and constraints for nebula time scales. Science 273: 757-762.
    90 Schramm, D. N, Tera, F. and Wasserburg, G J. 1970. The isotopic abundance of ~(26)Mg and limits on ~(26)Al in the early solar system. Earth and Planetary Science Letters 10: 44-59.
    91 Sheng, Y. J., Wasserburg, G J. and Hutcheon, I. D. 1992. Self-diffusion of magnesium in spinel and in equilibrium melts - Constraints on flash heating of silicates. Geochimica et Cosmochimica Acta 56(6): 2535-2546.
    92 Shi, J., Wang, D. and Xiang, M. 1992. A preliminary study on soluble organic matter in Ningqiang carbonaceous meteorite. Geochimica: 34-40.
    93 Shinotsuka, K. and Ebihara, M. 1997. Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry — a comparative study with radiochemical neutron activation analysis. Analytica Chimica Acta 338(3): 237-246.
    94 Shinotsuka, K., Hidaka, H. and Ebihara, M. 1995. Detailed abundances of rare earth elements, thorium and uranium in chondritic meteorites: An ICP-MS study. Meteoritics 30: 694.
    95 Shu, F. H., Shang, H., Glassgold, A. E. and Lee, T. 1997. X-rays and fluctuating X-winds from protostars. Science 277: 1475-1479.
    96 Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E. and Lee, T. 2001. The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophysical Journal 548: 1029-1050.
    97 Shu, F. H., Shang, H. and Lee, T. 1996. Toward an Astrophysical Theory of Chondrites. Science 271: 1545-1552.
    98 Srinivasan, G and Bischoff, A. 1998. Magnesium-aluminum study of hibonites within a chondrule-like object from Sharps (H3). Meteoritics & Planetary Science 33: 148.
    99 Srinivasan, G, Goswami, J. N. and Bhandari, N. 1999. 26A1 in eucrite piplia kalan: plausible heat source and formation chronology. Science 284(5418): 1348-50.
    100 Strelow, F. W. E., Rethemeyer, R. and Bothma, C. J. C. 1965. Ion exchange selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polystyrene resin. Analytical Chemistry 37: 106-111.
    101 Strelow, F. W. E. V, A.H.;Van Zyl,C.R;Eloff Cynthia 1971. Distribution coefficients and cation exchange behavior of elements in hydrochloric acidacetone. Analytical Chemistry 43(7): 870-876.
    102 Tachibana, S. and Huss, G R. 2003. Iron-60 in Troilites from an unequilibrated ordinary chondrite and the Initial ~(60)Fe/~(56)Fe in the early solar system. Lunar and Planetary Institute Conference Abstracts 34: 1737.
    103 Urey, H. C. 1955. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the earth, the moon, and mars. Proceedings of the National Academy of Science 41: 127-144.
    104 Van Schmus, W. R and Wood, J. A. 1967. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31: 747-765.
    105 Wai, C. M. and Wasson, J. T. 1979. Nebular condensation of Ga, Ge and Sb and the chemical classification of iron meteorites. Nature 282: 790-793.
    106 Wakita, H. and Schmitt, R 1970. Rare earth and other elemental abundances in the Allende meteorite. Nature 227(5257): 478-479.
    107 Walder, A. J. and Freedman, P. A. 1992. Communication isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. Journal of Analytical Atomic Spectrometry 7(10): 571-575.
    108 Walter, R and Maeder, A. 1989. The synthesis of Al-26 in massive stars. Astronomy and Astrophysics 218: 123-130.
    109 Wang, D., Miao, B. and Lin, Y 2005. Mineralogic-petrologic characteristic of meteorites and their classification. Chinese journal of polar research 17: 45-74.
    110 Wasserburg, G J., Lee, T. and Papanastassiou, D. A. 1977. Correlated O and MG isotopic anomalies in Allende inclusions. Ⅱ - Magnesium. Geophysical Research Letters 4: 299-302.
    111 Wasson, J. T. 1974. Meteorites: Classification and properties. Materials Chemistry, and Physics: 63-84.
    112 Weisberg, M. K., Prinz, M., Zolensky, M. E., Clayton, R. N., Mayeda, T K. and Ebihara, M. 1996. Ningqiang and its relationship to oxidized CV3 chondrites (abstract). Meteoritics & Planetary Science 31(suppl.): A150-A151.
    113 Young, E. D., Galy, A. and Nagahara, H. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66(6): 1095-1104.
    114 Young, E. D., Simon, J. I., Galy, A., Russell, S. S., Tonui, E. and Lovera, O. 2005. Supra-canonical ~(26)Al/~(27)Al and the residence time of CAIs in the solar protoplanetary disk. Science 308: 223-227.
    115 Yurimoto, H. and Wasson, J. T 2002. Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very ~(16)O-rich olivine and a~(26)Mg-excess. Geochimica et Cosmochimica Acta 66(24): 4355-4363.
    116 Zhu, X. K., Guo, Y., O'Nions, R. K., Young, E. D. and Ash, R. D. 2001. Isotopic homogeneity of iron in the early solar nebula. Nature 412(6844): 311-313.
    117 Zinner, E. 1998. Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Annual Review of Earth and Planetary Sciences 26: 147-188.
    118 Zinner, E., Amari, S., Anders, E. and Lewis, R. 1991. Large amounts of extinct ~(26)Al interstellar grains from the Murchison carbonaceous chondrite. Nature 349: 51-54.
    119 王道德,缪秉魁,林杨挺.2005.陨石的矿物.岩石学特征及其分类.极地研究 17:45-74.
    120 王道德,陈永亨,李肇辉等,1993.中国陨石导论.科学出版社,北京.
    121 朱祥坤,何学贤,杨淳.2005.Mg同位素标准参考物质SRM980的同位素不均一性研究.地球学报26(Sup):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700