铂纳米簇/壳聚糖及其衍生物杂化膜的制备表征及在催化苯部分加氢制备环己烯中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环己烯具有活泼的双键,是一种重要的有机化工原料,在制药工业和石油工业中都有广泛的用途。尤其是在高聚物领域,以环己烯为原料生产尼龙6和尼龙66,具有工艺简单,生产成本低的特点。环己烯为苯加氢反应的中间产物,由于最终产物环己烷的热力学稳定性比环己烯要高得多,所以苯加氢反应很难被控制在环己烯阶段,而是倾向于生成最终加氢产物环己烷。因此,苯部分加氢制备环己烯反应的催化剂研究,具有十分重要的理论和现实意义。
     Pt、Pd、Ru、Ni等金属均可以作为苯加氢催化剂,其中Pt的加氢活性最高,其储量相对较大,且铂类催化剂工业使用寿命大于5年。在铂催化苯加氢反应中,进行适当的催化剂改性可以提高中间产物环己烯的选择性。P. Dini等提出铂/尼龙类的复合催化剂用于苯加氢反应时有环己烯产物生成,在其研究中,当环己烯的选择性达到48%时,苯的转化率为0.4%,而当苯的转化率达到25.9%时,环己烯的选择性仅为0.1%。另外,D. Francisco等用0.5%铂负载在硅土/氧化铝上催化苯加氢反应,只能得到唯一产物环己烷。
     本课题组先前研究了用聚酰亚胺包裹铂纳米簇制备杂化膜,及其催化苯加氢反应性能,其中环己烯选择性可达到72.4%。由此可见,利用液态反应物苯以溶胀的方式与杂化膜中的催化活性中心相接触,通过控制膜的溶胀程度以及膜的化学组成来控制液态反应物和生成物在膜中的停留时间,从而可达到控制苯加氢的程度、选择性生成环己烯的目的。但是,由于聚酰亚胺膜的制备过程较为复杂、成本较高,因此,本文选用价廉易得的天然高分子壳聚糖作为包覆材料,其具有良好的成膜性能和生物可降解性等特点,且主链上含有大量氨基和羟基,对金属离子具有较强的螯合能力。
     具体包括以下几个方面的内容:
     1.以聚乙烯基吡咯烷酮为保护剂、乙二醇为还原剂和溶剂,在微波加热条件下,通过化学还原方法还原氯铂酸,制备了铂金属簇。用壳聚糖为包裹材料,制备了铂纳米簇/壳聚糖杂化膜,用IR、TEM、XRD、XPS和TG对空白膜以及杂化膜进了表征。TEM和XRD显示铂纳米簇能在壳聚糖膜中均匀分散的同时,依然保存完整晶型;XPS和TG显示杂化膜中氮氧原子与铂纳米簇存在螯合作用的同时,杂化膜的热学性能良好。催化苯部分加氢实验显示,当Pt负载量为10%反应2h时,环己烯的选择性最大,达到68%。
     2.在壳聚糖酸溶液中用不同质量的丙醛、己醛、十二碳醛反应生成西弗碱,再用硼氢化钠还原,从而得到烷基化壳聚糖,IR、NMR结果显示不同取代度并且不同碳链长度的烷基成功的接枝到了壳聚糖上。制备了铂纳米簇/烷基化壳聚糖杂化膜,并用XPS、XRD对其进行了表征。支链的引入改变了壳聚糖薄膜的结晶程度以及苯等非极性溶剂在其中的溶胀度。丙基化壳聚糖负载铂纳米簇催化苯加氢反应显示,随着丙基化壳聚糖取代度的增加,苯的转化率逐渐升高,而环己烯的选择性则出现先增大后减小的趋势,当取代度为28.9%时,环己烯的选择性达到最大值—85.2%。己基化壳聚糖负载铂纳米簇催化苯加氢反应显示,随着己基化壳聚糖取代度的增加,苯的转化率逐渐升高,而环己烯的选择性也出现先增大后减小的趋势,当取代度为32%时,环己烯的选择性可达60.3%。十二碳基化壳聚糖负载铂纳米簇催化苯加氢反应显示,随着十二碳基化壳聚糖取代度的增加,苯的转化率逐渐升高,而环己烯的选择性出现减小的趋势。
     3.在壳聚糖分子链上引入疏水性基团GMA,并对其进行了IR、NMR、XRD和XPS表征。疏水性基团GMA的引入改变了CS-g-GMA薄膜的结晶程度的同时使得非极性溶剂,如苯、环己烯和环己烷等,在其中的溶胀度明显增加。苯分子在Pt/CS-g-GMA杂化膜中流动速度的增加,直接使得苯加氢反应的转化率明显增加,而环己烯选择性还基本维持在55%左右。
Cyclohexene is an important chemical raw material with active double bond, which has widespread use in the pharmaceutical and petroleum industry. Especially in polymer field, the production route of Nylon 6 or 66 with cyclohexene as the raw material is simple and low-cost. Although cyclohexene is an intermediate product of benzene hydrogenation, cyclohexane is always produced because of the kinetically favored hydrogenation of cyclohexene to cyclohexane. Thus, investigation of catalyst for the partial hydrogenation of benzene to cyclohexene is the key.
     Several metals can be used as hydrogenation catalysts, such as Pt, Pd, Ru, and Ni, in which Pt has the highest catalytic activity for benzene hydrogenation. Dini et al found that cyclohexene was a reaction product of benzene hydrogenation when the Pt/polyamide was used as catalysts. In their studies, the highest selectivity to cyclohexene was 48.0%, but the conversion of benzene was 0.4%, while the conversion of benzene got to 25.9%, but then the selectivity to cyclohexene was only 0.1%. In addition, Domínguez et al reported that when catalysts of 0.5% Pt supported on gallia/alumina were used in benzene hydrogenation, the only product was cyclohexane. Nagahara reported a particularly efficient catalyst composed of Ru-black promoted with ZnO. In their studies, the yield of 56% and the selectivity of 80% were believed to be high enough to develop an industrial process. Recently, William et al have studied the activities for low-temperature hydrogenation of benzene by Pt/Ni bimetallic catalysts supported onγ-Al2O3. It was observed that the bimetallic catalysts were more active than either parent metal catalyst, but in this paper cyclohexane was the only observed reaction product.
     In our previous studies, we have investigated the fabrication of Pt nano-cluster/polyimide hybrid membrane and its catalytic activity to the partial hydrogenation of benzene, in which the selectivity to cyclohexene reached to 72.4%. Thus it can be supposed that benzene may contact the active center of catalyst in the hybrid membrane through swelling method, and the controlling of the hydrogenation to obtain higher selectivity of cyclohexene can be realized by controlling the swelling degree of membrane. However, the preparation process of polyimide is complex and costly, so in this research the cheap and abundant natural polymer chitosan (CS) was chosen. Chitosan is the N-deacetylated derivative of chitin, which is suitable functional material because of its biocompatibility, biodegradability, non-toxicity, adsorption properties, etc. In addition, the large number of -NH2 and -OH in CS has good chelating ability to metal. There are three parts to be included in this paper:
     1. Monodispersed Pt nano-clusters were prepared by the reduction of H2PtCl6 with eth ylene glycol under microwave conditions. IR、TEM、XRD、XPS and TG were used to characterize the structure of platinum nano-particles and Pt/CS. TEM and XRD sho wed that Pt nanoclusters can be dispersed in the chitosan membrane, while keep intact crystal; XPS and TG data indicated that Pt was coordinated with N and O in CS to some extend, while hybrid membrane has good thermal properties. Experimental results showed that Pt/CS catalyst gave a high selectivity for cyclohexene of 68% in the liquid phase hydrogenation of benzene, while there was no cyclohexene in the product when the catalyst was only Pt nano-particles without chitosan hybrid membrane.
     2. N-arylation of chitosan was performed via a Schiff bases formed by the reaction between the 2-amino group of glucosamine residue of chitosan with different quality of propionaldehyde, hexanal, twelve carbon aldehyde under acidic condition followed by reduction of the Schiff base intermediate with sodium borohydride.IR and NMR di fferent degrees of substitution and different length of alkyl chain has been grafted on to chitosan.Pt/ N-aryl chitosans were characterized by XRD,XPS and TG. With the in creasing of extent of substitution of N-n-propyl, the swelling degrees of PCS membr anes in benzene, cyclohexene, and cyclohexane were all increased. Experimental of hydrogenation of benzene catalyzed by Pt/C3H5-CS showed that with the increasing of the extent of substitution of N-n-propyl, the conversion of benzene was gradually increased, while the selectivity of cyclohexene increased at first and then decreased. With 28.9 % of ES, the selectivity of cyclohexene was as high as 85.2 %. Experimental of hydrogenation of benzene catalyzed by Pt/C6H13-CS showed that with the increasing of the extent of substitution of N-n- C6H13, the conversion of benzene was gradually increased, while the selectivity of cyclohexene increased at first and then decreased. With 32 % of ES, the selectivity of cyclohexene was as high as 60.3 %. Experimental of hydrogenation of benzene catalyzed by Pt/C12H25-CS showed that with the increasing of the extent of substitution of N-n- C12H25, the conversion of benzene was gradually increased, while the selectivity of cyclohexene decreased.
     3. Chitosan grafted hydrophobic groups GMA were characterized by IR, NMR, XRD and XPS. The introduction of hydrophobic groups GMA changed the degree of crystallinity of CS-g-GMA , also made the swelling ratio of non-polar solvents such as benzene, cyclohexene and cyclohexane, in CS-g-GMA increase significantly. With the increasing of flow velocity of benzene molecules in the Pt / CS-g-GMA hybrid membrane made conversion of benzene hydrogenation reaction significantly increase, while the selectivity of cyclohexene is also essential to maintain the 55%.
引文
[1] Pedroni V., Schulz P.C., Gschaider M.E., Morini M.A., A chitosan monolithic siliceaous mesoporous– macroporous material, Colloid Polym. Sci. 2000, 278:964–971.
    [2] Alberto D. M., M ichael S., Makarand V. , Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biom aterials, 2005, 26: 5983-5990.
    [3] Choong Y C, Su B. K., Pyong K.P., Dong I. Y., Yong S. C., Effect of N-acylation on structure and properties of chitosan fibers.Carbohydrate Polymers,2007, 68: 122– 127.
    [4]Canh L. T., Monique L., Pompilia I.S., Mircea-Alexandru M., N-acylated chitosan: hydrophobic matrices for controlled drug release.Journal of Controlled Release, 2003,9: 31– 13.
    [5] Mohamed E. I. Badawy, Entsar I. Rabea, Tina M. Rogge, Christian V. Stevens, Guy Smagghe, Walter Steurbaut, and Monica H?fte, Synthesis and Fungicidal Activity of New N,O-Acyl Chitosan Derivatives,Biomacromolecules, 2004, 5 (2) : 589–595.
    [6] Wolfrom M L, Vercelotti, J. R. & Horton, D. Journal of Organic Chemistry, 1964, 29:547
    [7]王爱勤,俞贤达,烷基化壳聚糖衍生物的制备与性能研究.功能高分子学报,1998,11(1):83.
    [8]刘德汞,曹书勤,王菲,壳聚糖烷基化及其对Cr(Ⅵ)离子吸附研究.信阳师范学院学报(自然科学版),2005,4 :18.
    [9]Badawy M. , Chemical modification of chitosan: Synthesis and biological activity of new heterocyclic chitosan derivatives. Polym Int 2008,57:254–61.
    [10]Warayuth S., Supawan T., Varawut T.,Mrunal T.,William H. D., Synthesis and characterization of N-aryl chitosan derivatives. International Journal of Biological Macromolecules 2008, 43 :79–87.
    [11] Webser A, Hailing M D, Grant D M. Metal Complexat ion of Chit osan and It s Glut araldehyde Cross-Linked Derivat ive.Carbohydr at e R esearch, 2007, 342( 9) : 1189.
    [12] Kit tur F S , Kumar A B V, Varadaraj M C et al. Chitooligosaccharides Prepara tion with the Aid of Pectinase Isozyme from Aspergillus Niger and T heir Ant ibact erial Act ivity . Carbohyd rat e R esearch, 2005, 340( 6) : 1239.
    [13]孙昌梅,曲荣君,王春花等,基于壳聚糖及其衍生物的金属离子吸附剂的研究进展.离子交换与吸附, 2004, 20( 2) : 184.
    [14]郝志峰,杨阳,余坚等,壳聚糖膜与Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)复合物的IR光谱和XPS谱.光谱实验室, 2003, 20( 6) : 799.
    [15]于昆,姜宝娜,羧甲基壳聚糖对Eu3+离子吸附性能的研究.光谱实验室, 2008, 25( 2) : 213.
    [16]丁纯梅,岳文瑾,苏云等.壳聚糖与Cd(Ⅱ) , Pb (Ⅱ) , Ce(Ⅲ) , Zr(Ⅳ)配合物的制备及光谱分析.光谱学与光谱分析, 2007, 27( 6) : 1185.
    [17]袁彦超,朱再盛,章明秋.交联壳聚糖树脂吸附Co2+的机理研究.离子交换与吸附, 2005, 21( 5) : 452.
    [18]王伟宏杨亚玲,壳聚糖对Pb(Ⅱ)的吸附机理研究,光谱实验室,2 0 1 0,2: 2 7 .
    [19]Muzzarelli R A A. Natural Chelating Polymers , Oergamon Press,Oxford,1973.
    [20] Santos K.S.C.R., Coelho J.F.J., Ferreira P., Pinto I., Lorenzetti S.G., Ferreira E.I., Higa O.Z., Gil M.H., Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan .International Journal of Pharmaceutics,2006,310:37–45 .
    [21] Fatemeh A., Firooze A. M., Rassoul D.,Mohammad J. Z.M., Gill P., Thiolated chitosan coated poly hydroxyethyl methacrylate nanoparticles: Synthesis and characterization.Carbohydrate Polymers ,2008, 74 :59–67.
    [22] Terin Adali, Elvan Yilmaz ,Synthesis,characterizationandbiocompatibilitystudiesonchitosan-graft-poly(EGDMA) .Carbohydrate Polymers,2009, 77:136–141.
    [23] Hamit C ., Elvan Y ., Osman Y .,Synthesis, characterization and antibacterial activityof poly(N-vinylimidazole) grafted chitosan,Carbohydrate Polymers 2007, 69:318–325 .
    [24]Jun Z., YuanY.L., Shen J., Synthesis and characterization of chitosan grafted poly (N;N-dimethyl -N- methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by ceric (IV)ion .Sicong LinEuropean Polymer Journal 2003, 39:847–850.
    [25] Yilmaz E., Adali T., Yilmaz O., Bengisu M.,Grafting of poly(triethylene glycol dimethacrylate) onto chitosan by cericion initiation .Reactive & Functional Polymers ,2007,67: 10–18.
    [26]吴昊,陆婷,朱爱萍,壳聚糖接枝甲基丙烯酸羟乙酯的合成与表征.扬州大学学报(自然科学版) :2005,2:8.
    [27]唐星华,舒红英,胡小华,郭灿城,硝酸铈铵-乙二胺四乙酸引发壳聚糖与MAA和VAc接枝共聚合,高分子材料科学与工程,2005,4(1):21.
    [28] Vinod K. K., Ramanjaneyulu K., Satish P., Giridhar M., Adsorption of anionic dyes on chitosan grafted poly (alkyl methacrylate)s,Chemical Engineering Journal 2010,158:393–401.
    [29] V. Singh, A.K. Sharma, D.N. Tripathi , R. Sanghi,Poly (methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes. Journal of Hazardous Materials ,2009,161:955–966
    [30] Balbir S.K., Rajeev J., Asim K.J., Mithu M., Characterization and evaluation of methyl methacrylate-acetylated Saccharumspontaneum L. graft copolymers prepared under microwave. Carbohydrate Polymers, 2009,78: 987–996.
    [31] Vandana S., Devendra N. T.,Microwave synthesized chitosan-graft-poly(methylmethacrylate):An efficient Zn2C ion binder.Carbohydrate Polymers.2006,65:35–41.
    [32]Khaled F. El-Tahlawy, Safaa M. El-Rafie, Aly Sayed Aly,Preparation and application of chitosan/poly(methacrylic acid) graft copolymer. Carbohydrate Polymers 2006,66:176–183.
    [33] Li Y., Liu L., Zhang W., Fang Y. , A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite.Radiation Physics and Chemistry , 2004, 69: 467–471.
    [34] Yu L.a, Li L., Shen X.F., Preparation of chitosan/poly(butyl acrylate) hybrid materials by radiation-induced graft copolymerization based on phthaloylchitosan,Radiation Physics and Chemistry , 2005, 74l:297–301.
    [35] Mei F. H., Shen X.F.,, Yuan S. , Yue F.,Study of graft copolymerization of N-maleamic acid-chitosan and butyl acrylate by -ray irradiation, International Journal of Biological Macromolecules ,2005,36:98–102.
    [36] Grant J., Allen C.,Chitosan as a Biomaterial for Preparation of Depot-Based Delivery Systems.Polysaccharides for Drug Delivery and Pharmaceutical Applications, 2006, 10: 201-225.
    [37] Mircea A. M., Pompilia I.S., Jér?me M.,Cross-Linked Starch Derivatives for Highly Loaded Pharmaceutical Formulations. Polysaccharides for Drug Delivery and Pharmaceutical Applications, 2006, 6:121-137.
    [38] Properties,J. Jin, M. Song, and D. J. ,Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Hourston,Biomacromolecules, 2004, 5(1) :162–168.
    [39] Waldo Argüelles-Monal, Francisco M. Goycoolea, Jaime Lizardi, Carlos Peniche, and Inocencio Higuera-Ciapara, Chitin and Chitosan in Gel Network Systems,Polymer Gels, 2002, 7:102-121.
    [40] Fwu-Long Mi, Synthesis and Characterization of a Novel Chitosan?Gelatin Bioconjugate with Fluorescence Emission. Biomacromolecules, 2005, 6 (2) : 975–987.
    [41] Wong D.W.S., Gastineau F.A., Gregorski K.S., eta. Chitosan lipid films: Mierostruc ture and surface energy .J Agrie Food Chem,1992,40:540-544.
    [42]张颖,乔迁.壳聚糖膜分离乙醇水溶液的渗透汽化性能研究.水处理技术,2004,3,(27):142-144.
    [43]UragaminT.,Matsuda T.,Okuno H.,etal,Structure of chemically modified Chitosan membranes and their characteristics of Permeation and separation ofethanol solutions .J. MembraneSci,1994,88:243-251.
    [44]喻胜飞,叶菊招.壳聚糖活性炭共混超滤膜的研制.水处理技术,5(25):255-258.
    [45]Jyh-Jeng Shieh, Robert Y.M.Huang. Chitosan/N-methylol nylon6 blend Membranes for the evaporation separation of ethanol- water mixtures. Journal of Membrane science, 1998,148:243-255.
    [46] Barbara Krajewska. Diffusion of metal ions through gel chitosan membranes. Reactive & functional Polymers,2001,47:37-47.
    [47] D.A.Mueale,A Kumar,G. Pleizier. Formation and characterization of poly(acrylonitrile)/chitosan composite ultra filtration membranes .Jounal of membranes science,1999,154:163-173.
    [48] S.R.Kim,S.H.Yuk,M.S.John. A semi-interpenetrating network system for a polymer membrane,Eur. Polym.J.,1997,33:1009-1015.
    [49] K.Naoji,Permeability properties of chitosan-transition metal complex membranes,J.Appl.Polym.Sci.,1997,64:819-826.
    [50]许振良,污水处理膜分离技术的研究进展.净水技术,2000(3):3-6.
    [51]Kramaerva N. V.,Stakheev A. Y.,Tkachenko O .P .etal .Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions : study of the structure.J.Mol.Catal.A:Chem.,2004,209:97-1061.
    [52]Kramaerva N.V.,Kucherov A.V., Finashina E.,Stakheev A.Y.,Kustov L.M. Heterogenized transition metal complexes with chitosan and its derivatives as new environmentally friendly oxidation catalysts. Fisrt intemational school conefernce on catalysis for young scientists:catalyst desing,Novosibirsk,Russia:2002, 153.
    [53]Tong J. H.,LI Z.,Xia C. G. Highly efficient catalysts of chitosan-Schiff base Co(Ⅱ) and Pd(Ⅱ)complexes for aerobic oxidation of cyclohexane in the absence of reductants and sovlents.J.Mol.Catal.A:Chem.,2005,231:197-203.
    [54]Arena B J. Chitin-and chitosan-based immobilized metal catalysts .US Patent 4274980,1981
    [55]李继平,宋立民,张淑娟,韩吉惠,刑巍巍.壳聚糖钯催化剂对巴豆醛氢化的催化作用研究.辽宁师范大学学报(自然科学版),2002,25(l):60-62.
    [56]李莉,王元瑞,丁宝洁,张龙.壳聚糖-钯催化剂用于对硝基苯酚的催化加氢[J].贵金属,2003 24(2):7-10.
    [57] Ishizuki N.,Torigoe K.,Esumi K. Meguro K. Characterization of precious metal particles prepared using chitosan as a protective agent.Colloid Surface,1991,55(4):15-21.
    [58]卢华,王惠,刘汉范.甲壳质中甲壳胺衍生物保护的贵金属胶体[J].高分子学报,1993,11(l):100-103.
    [59] Adlim M.,Abu Bakar M.,Liew K .Y,Ismail J. Synthesis of chitosan-stabilized platinum and palladium nano-particles and their hydrogenation activity.J.Mol. Catal. A : Chem.,2004,212:140-149.
    [60]Huang A.,Liu Y.,Chen L.,Hua J. Synhtesis and property of nanosized palladium catalysts protected by chitosan/silica. J.Appl.Polym.Sei.,2002,85:989-994.
    [61]Yang X. T., Tian J. X.,Huang M. Y.,Jinag Y. Y. , Hydrogenation of nitriles catalytic by a silica-supported chitosan-platinum-niekel complexes. Macromol. Chem. Rapid Commun.,1993,14 (8):485-488.
    [62] Wang X.X,Huang M.Y, Jiang Y.Y. Hydrogenation catalytic behaviors of palladium complexes of chitin and chitosan.Macromol.Chem.Macromol.Symp.,1992,59:113-121.
    [63]Tang L.M,Huang M.Y.,Jinag Y.Y. Selective hydrogenation of phenol to cyclohexanone catalyzed by a silica-supported chitosan-palladium complex. Macromol.Rapid Commun., 1994,15:527-529.
    [64]An Y., Yuan D.,Huang M.Y,Jiang Y.Y. Selective hydrogenation of chloronitrobenzenes catalyzed by palladium complexe of silica-supported chitosan.Macromol.Symp.,1994,80:257-263.
    [65]Takagi H.,Kadowaki K. Flocculant production by paecilomyces sp. Taxonomic studies and culture conditions for production.Agric.Biol.Chem.,1985,49:3151-3157.
    [66] ]Yuan G.L.,Yin M.Y.,Jiang T.T.,Huang M.Y.,Jiang Y.Y. Catalytic behaviorsof silica-supported chitin-platinum complex of asymmetric hydrogenation of a-phenylethanol.J.Mol. Catal, A: Chme.,2000, 159:44-50.
    [67]张所信,王为国,江龙法,阂凡键.催化合成咔唑工艺研究.精细石油化,2000,(6) :47-49.
    [68]陈水平,汪玉庭.壳聚糖多孔微球负载PdCl2选择性催化氢化氯代硝基苯的研究.功能高分子学报,2003,16(l):6-12.
    [69] Vincent T.,Guibal E. Chitosan-supported palladium catalyst . I. Synthesis procedure.Ind. Eng. Chem. Res.,2002,40:5158-5164.
    [70] Vincent T.,Spinelli S.,Guibal E. Chitosan-supported palladium catalyst .Ⅱ. Chlorophenol dehalogenation.Ind.Eng.Chem.Res.,2003,41:5968-5976.
    [71] Vincent T.,Guibal E. Chitosan-supported palladium catalyst .Ⅲ. Influence of experimental parameters on nitrophenol degradation.Langmuir,2003,19:8475-8483.
    [72] Guibal E.,Vincent T., Chitosan-supported palladium catalyst .Ⅴ. Nitrophenol degradation on catalytic chitosan hollow fiber.Environ.Sci.Technol., 2004, 37:4133-4139.
    [73] Vincent T., Peirano F.,Guibal E. Chitosan-supported palladium catalyst .Ⅳ. Nitroaniline degradation.J.Appl.Polym.Sci.,2004,94:1634-1641.
    [74] Zhu H., Mizugkai T., Ebitani K., Kaneda K. Dimethylaminoethylated hydorxypropyl-chitosan: preparation and application as polyemeric ligand to form Rh6 cluster complexes for the reduction of benzaldehyde and nirtrobenzene .J.Appl.Polym.Sci.2001,80:447-453.
    [75]刘蒲,王岚,刘一真.壳聚糖钯催化Heck反应合成肉桂酸丁酯得研究.分子催化,2004,18(4):275-280.
    [76]刘蒲,王岚,李利民,王向宇.壳聚糖钯(0)配合物催化Heck芳基化反应研究.有机化学,2004,24(l):59-62.
    [77] Hardy J.J.E.,Hubert S.,Macquarrie D.J.,Wilson A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions.Green Chem.,2004,6:53-56.
    [78] Calo V.,Nacci A.,Monopoli A.,et al,Heck Reaction Catalyzed by Nanosized Palladium on Chitosan in Ionic Liquids.Organometallics,2004,23:5154-5158.
    [79] Wang Y.,Mahler W. Degenerate four-wave of CdS/polylmer composite Opt. Commun.,1987,61(3):23-236.
    [80] Hilinski E.,Lucas P.,Wang Y. A picosecond bleaching study of quantum- con fined cadmium sulfide microcrystallites in a polymer film .J. Chem. Phys.,1988,89(6):3435-3441.
    [81]Auer S.,Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy.Nature,2001,413:711-713.
    [82]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [83] Halperin W.P. Quantum size effects in metal particles. Rev.Modern Phys., 1986,58(3):533-606.
    [84] Henglein A. Small-particle research: physicochemical properties of extremelysmall colloidal metal and semiconductor particles .Chem.Rev.,1989,89:1861-1873.
    [85] MatsumotoT.,Suzuki J.,Ohnuma M., Kanemittsu Y., Masumoto Y. Direct Evidence of Quantum Size Effect in Nanocrystalline Silieon . .Phys Rev. B, 2001,63:195322/1-195322/5.
    [86]Barbara B.,Wernsdorfer W.TI quanttum tunneling Effect in Magnetic particles SO .Curr. Opin.Solid State.Mater Sci.,1997,2:220-225.
    [87]Borsla A.,Wilhelm A.M,Delmas H,Cathl.Today2001,66:389.
    [88]Teranishi T,Miyake M,Chem.Mater.1998,10:594.
    [89]Bonet F.,Delmas V.,Grugeon S.,Herrera Urbina R.,Silvert P. Y.,Tekaia-Elhsissen K.Nanostruct.Mater.2000,11:1277.
    [90]Yu W.,Liu M., Liu H., Zheng J.,J.Colloid.Interface.Sci.1999.210:218.
    [91]Louis D.,Rampino F.F.Nord,J,Am.Chem.Soc.1941,63(12):3268.
    [92] Boutonnet M., Kizling J., Stenius P., Maire G., Colloids Suef .1982,5:209.
    [93] Yu W., Liu H., Chem.Mater.1998,10:1205.
    [94]Aiken J. D.,Ⅲ,Finke R. G., J.Am.Chem.Soc.1999,121:8803.
    [95]Ozkar S.,Finke R. G.,J.Am.Chem.Soc.2002.
    [96]Mucalo M. R., Cooney R. P.,J. Chem.Soc. Chem.Commum.1989,94.
    [97]Hirai H,Wakabayashi H, Komiyama M, Bull Chem Soc,Jpn,1986,59:367.
    [98]刘汉范,中国科学院院刊,2001,(1):36.
    [99]刘汉范,靳包平,于泳伟,刘漫红,化学研究与应用,1999,11(5):533.
    [100]Yu W, Liu H., Tao Q.,J.Mol.Catal.A:Chem. 1996,138:273.
    [101]Yang X.,Liu H.,Appl.Catal.A:General,1997,164:197.
    [102]刘甘梅,环己烯的合成及其下游产品的开发进展,医药化工,2006,(6) :27-32.
    [103]姜波,赵立芳,固体酸催化环己醇脱水制备环己烯,精细石油化工, 2005, (5) :52-54.
    [104]赵立芳,郭进宝,环己烯合成方法研究,精细石油化工进展,2004,5(7) :19-23.
    [105]陈平,环己醇脱水制备环己烯催化剂综述,应用化工,2004,33(3) :3-5.
    [106]李继忠,硫酸氢钠催化合成环己烯,合成化学,2004,12(3) :311-312.
    [107]R.Truflult.Catalytic hydrogenation of aromatic hydrocarbons in liquid media in the Presence of nickel black and phosphoric anhydride.Bull.Soc.Chem.1934,l:391-406.
    [108] J R Anderson,C Kemball. Catalytic exchange and deuteration of benzene over evaporated metallic films in a static system .Austarlina J.Chem.1957,10:409-412.
    [109]F. Hartog & P. Zwietering. Letter to the editors Olefins as intermediates in the hydrogenation of aromatic hydrocarbons,J.Catal.1963,2:79-81.
    [110]Stmaicarbon N.V. Belgian Patent660742,1965.
    [111]Drikard W.C.Ger.Offen22211391972
    [112]H Nagahara,M Konishi,U.S.Patent 4,734,536 to Asahi chem. Co. 1988.
    [113]J. Struijk, M. Dangremond, W. J. M. Lucasderegt, J. J. F. Scholten, Partial Liquid-Phase Hydrogenation Of Benzene To Cyclohexene Over Ruthenium Catalysts In The Presence Of An Aqueous Salt Solution.1.Preparation, Characterization Of The Catalyst And Study Of A Number Of Process Variables, Applied Catalysis A-General, 1992,83(2) :263-295.
    [114]P. T. Suryawanshi, V. V. Mahajani, Liquid-phase hydrogenation of benzene to cyclohexene using ruthenium-based heterogeneous catalyst, Journal Of Chemical Technology And Biotechnology,1997,69(2) :154-160.
    [115]S. C. Hu, Y. W. Chen, Liquid phase hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on zinc oxide-based binary oxides, Journal Of Chemical Technology And Biotechnology,2001,76(9) :954-958.
    [116]v.G.P.C.,v.d.B.F.T.B.,Process for the preparation of cyclohexanol and/or cyclohexanone ,US 4927974,1990
    [117] Ronchin L, Toniolo L. Selective hydrogenation of benzene to cyclohexene using a suspended Ru catalyst in a mechanically agitated tetraphase reactor . Catal Today, 1999, 48: 255-264.
    [118] Hu S C, Chen Y W. Effect of Preparation on Ru-Zn Ultrafine Catalysts in Partial Hydrogenation of Benzene . Ind Eng Chem Res, 2001, 40 (14): 3127-3132.
    [119] Nagahara H, Ono M, Konishi M, Fukuoka Y. Partial hydrogenation of benzene to cyclohexene . Appl Surf Sci, 1997, 121/122: 448-451.
    [120] Liu S C, Liu Z Y, Liu Y L, Wu Y M, Wang Z. Effect of Lanthanum onPerformance of RuB Amorphous Alloy Catalyst for Benzene Selective Hydrogenation . Journal of Rare Earths, 2006, 24: 456-460.
    [121] Huang Z J, Fang D Y. Chemical Technology. Beijing: High Edu Press, 2001. 181.
    [122] Dini P, Dones D, Montelatici S, Giordano N. A study of platinum-polyamide catalysts. Catalytic behaviour in the benzene hydrogenation reaction . J Catal, 1973, 30(1): 1-12.
    [123] Harrison D P, Rase H F. Nylon-Platinum Catalysts with Unusual Geometric and Selective Characteristics [J]. Ind Eng Chem Fundam, 1967, 6(2): 161-169.
    [124] Domínguez F, Sánchez J, Arteaga G, Choren E. Gallia as support of Pt in benzene hydrogenation reaction . J Mol Catal A, 2005, 228: 319-324.
    [125] Long S, Zhang A Q, Liu H F, Li L, Ding L Q. Fabrication of a Pt Nano-cluster/ Photosensitive Polyimide Hybrid Membrane Reactor and Its Partial Hydrogenation of Benzene . Chinese Journal of Catalysis, 2009, 30(4): 276-278.
    [126] R. R. Navarro and K. Tatsumi, Water Sci. Technol. 2001,9:43.
    [127] M. Chellapandian and M. R. V. Krishnan, Process Biochem. 1998,33:595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700