纳米复合材料的制备及其在电化学生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学酶生物传感器因具有灵敏度高、选择性好、易于微型化等优点而具有广泛的应用前景,现已成为当前研究的热点之一。在酶生物传感器的研究和开发中,其活性组分的固定化一直是最为关键和重要的技术。纳米复合材料具有比表面积大、吸附力强、催化活性高和生物相容性好等特性,将其用于生物分子的固载,不仅可以提高生物分子(酶)的吸附量和稳定性,还能很好地保持生物分子的生物活性,从而使传感器的性能得到提高。基于此,本文制备了不同形貌的纳米复合材料,并将这些材料用于生物传感界面的构建。所制备的葡萄糖、胆固醇等生物传感器具有较宽的线性范围、较高的灵敏度、较低的检测下限以及较快的响应速度。具体内容如下:
     1.基于普鲁士蓝-金复合膜构建的葡萄糖生物传感器的研究
     在本工作中,研制了一种基于普鲁土蓝-纳米金复合物(PB-Au)以及铂纳米簇(Pt-NCs)的葡萄糖生物传感器。作为电子媒介体的PB,通过与氯金酸一起电聚合到玻碳电极表面而形成一层致密的PB-Au复合膜。接着通过电沉积的方式将Pt-NCs固载到PB-Au修饰电极上。最后,将葡萄糖氧化酶(GOD)组装到修饰电极上并修饰一层Nafion膜,防止GOD的泄漏。制得的电流型葡萄糖传感器表现出快速的响应时间,宽的线性范围,当信噪比为3时检出限低至1.01μmol/L。该传感器具有良好的选择性,其原因是由于选择的工作电位较低,与葡萄糖共存的干扰物如抗坏血酸、尿酸、精氨酸等不会产生干扰。
     2.基于铂纳米簇-多壁碳纳米管复合物构建的葡萄糖生物传感器的研究
     由于具有独特的物理化学性质,铂纳米簇-多壁碳纳米管纳米复合物(PtNCs-MWCNTs)现在已成为极具吸引力的纳米材料。在此工作中,采用一步合成法制得了PtNCs-MWCNTs并以其为固酶基质构建了一种高灵敏的葡萄糖生物传感器。采用循环伏安法(CV),电化学交流阻抗法(EIS)以及原子力显微镜(AFM)表征了传感器的组装过程。在最优条件下,该传感器对葡萄糖表现出良好的催化特性,如线性范围宽(3μmol/L~14.5 mmol/L),检出限低(1.0μmol/L),灵敏度高(12.55μAL/mmol),向应时间短(6s)。更重要的是,此传感器能够用于对人体血.清样品中葡萄糖含量进行分析。该传感器性能优良,是因为PtNCs-MWCNTs具有大的比表面积、良好的导电性、较高的催化活性和良好的生物相容性,从而增大了酶的吸附量且促进电极界面上的电子转移。
     3.一步电沉积法制备生物复合膜及其在胆固醇生物传感器中的应用
     将多壁碳纳米管(MWCNTs)、金铂合金纳米粒子(Au@PtANPs)和壳聚糖(CS)的优势结合起来,采用一种独特的方法构建了一种新的胆固醇生物传感器。首先采用一步电沉积法将CS-MWCNTs-Au@PtANPs复合膜沉积在玻碳电极表面,再用戊二醛做交联剂将胆固醇氧化酶(ChOx)固载在修饰电极上制得胆固醇生物传感器。从CS-MWCNTs-Au@PtANPs复合膜的扫描电镜图像可以看到在CS基质内分散有大量的MWCNTs和Au@PtANPs。用循环伏安和交流阻抗等方法表征了传感器的组装过程。该传感器的线性范同为0.7-477.7μmol/L,校正曲线的斜率即为传感器的灵敏度,可达到224.5μA L/mmol。
     4.基于金铂复合物功能化的氧化锌纳米棒的胆固醇生物传感器的研究
     构建了一种基于多壁碳纳米管(MWCNTs)和金铂复合物功能化的氧化锌纳米棒(Pt@Au-ZnONRs)为基质固载胆固醇氧化酶(ChOx)的生物传感器,并考察了该胆固醇传感器的应用潜力。首先,用化学合成法制备了Pt@Au-ZnONRs。然后将其分散液滴涂到MWCNTs修饰的玻碳电极表面,接着通过纳米材料对ChOx的吸附作用以及正电荷ZnO纳米材料与负电荷ChOx之间的静电作用将ChOx固载到电极上。MWCNTs和Pt@Au-ZnONRs为ChOx提供了良好的微环境,从而有利于传感器分析性能的提高。该传感器对胆固醇响应的线性范围为0.1~759.3μmol/L,检测限为0.03μmol/L,灵敏度为26.8μAL/mmol,米氏常数为1.84mmol/L,并具有响应时间短、灵敏度高、稳定性好等优点。
As electrochemical enzyme biosensors have the advantages of high-sensitivity, high-selectivity as well as easy miniaturization, they have gained wide attention and made much more progress. It is reported that the crucial aspect in the fabrication of a biosensor is the immobilization of bio-recognition molecule. Nano-composite materials, exhibiting large specific surface area, strong adsorption capacity, high catalytic activity and good biocompatibility, are favorable for constructing biosensors, which not only retain the biological activities of biomolecules, but also enhance the performance of the biosensors. In this thesis, nano-composite materials with different morphologies were synthesized by the various methods and employed to construct the electrochemical enzyme biosensors. The fabricated biosensors for glucose and cholesterol showed wide linear range, high sensitivity, low detection limit and rapid response. The main works and conclusions are included as follows:
     1. Glucose biosensor based on prussian blue-gold nanocomposite films
     A glucose biosensor was developed, which was based on prussian blue-gold (PB-Au) nanocomposite films and platinum nanoclusters (Pt-NCs). Prussian blue (PB), as an electron mediator, was electrochemically deposited on the glass carbon electrode (GCE) in the presence of chloroauric acid, forming PB-Au nanocomposite films. Then, Pt-NCs were electrodeposited to construct a bilayer film. At last, glucose oxidase (GOD) was modified on the electrode with the bilayer film and the film of Nafion was used to prevent GOD from leaking off. The resulting amperometric glucose biosensor exhibited a fast response time (within 8 s) and a linear calibration range from 3.0μmol/L to 1.1 mmol/L with a low detection limit of 1.0μmol/L glucose (S/N=3). With the low operating potential, the biosensor showed little interference to the possible interferents, including acetum acid, uric acid and arginine, indicating an excellent selectivity.
     2. The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites
     One-step synthesis method was proposed to obtain the nanocomposites of platinum nanocluster and multiwalled carbon nanotubes (PtNCs-MWCNTs), which were used as a novel immobilization matrix for the enzyme to fabricate the glucose biosensor. The whole fabrication process of the biosensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscope (SEM). Due to the favorable characteristic of PtNCs-MWCNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0μmol/L-12.1 mmol/L), low detection limit (1.0μmol/L), high sensitivity (12.8μA L/mmol), short response time (within 6 s). Finally, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples. The performance of the resulted biosensor was more prominent than that of most of the reported glucose biosensors.
     3. The preparation of the biocomposite film by the method of one-step electrodeposition and its application in the cholesterol biosensor
     We reported an ingenious approach for the fabrication of a promising cholesterol biosensor, which integrated the beneficial characteristics of multiwalled-carbon nanotubes (MWCNTs), gold-platinum alloy nanoparticles (Au@PtANPs) and chitosan (CS). Cholesterol oxidase (ChOx) was immobilized via glutaraldehyde as a cross-linker onto CS-MWCNTs-Au@PtANPs nanobiocomposite film deposited onto glassy carbon electrode. Scanning electron microscopy (SEM) images of CS-MWCNTs-Au@PtANPs revealed that MWCNTs and Au@PtANPs were dispersed in CS matrix. Cyclic voltammetry and impedance spectroscopy were used to characterize the assembly process of the biosensor. The proposed biosensor exhibited a linear current response to glucose concentration (0.7~477.7μmol/L) at the potential of 0.5 V. The sensitivity to the change in the concentration of cholesterol as the slope of the calibration curve was 224.5μA L/mmol.
     4. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods
     A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode was presented and its application for cholesterol biosensor was investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules. The combination of MWCNTs and Pt-Au@ZnONRs provided a favorable environment for ChOx and resulted in the enhanced analytical response of the biosensor. The resulted biosensor exhibited a linear response to cholesterol in the wide range of 0.1-759.3μmol/L with a low detection limit of 0.03μmol/L and a high sensitivity of 26.8μA L/mmol. The calculated apparent Michaelis constant Km was 1.84 mmol/L, indicating a high affinity between ChOx and cholesterol.
引文
[1]汪尔康.21世纪的分析化学.北京:科学出版社,1999,217.
    [2]Gooding J J. Biosensor technology for detecting biological warfare reagents:recent progress and future trends. Anal. Chim. Acta.,2006,559:137-151.
    [3]杨辉,卢文庆.应用电化学.北京:科学出版社,2001,1-11.
    [4]铃木周一编,霍纪文,姜远海译.生物传感器.北京:科学出版社,1988,23-26.
    [5]Martin S P, Lamb D J, Lynch J M. Enzyme-based determination of cholesterol using the quarts crystal acoustic wave sensor. Anal. Chim. Acta.,2003,48:91-100.
    [6]张礼和,王梅样主编.化学生物学进展.北京:化学工业出版社,2005,129.
    [7]Wang J, Lu F. Oxygen-rich oxidase enzyme electrodes for operation in oxygen-free solutions. J. Am. Chem. Soc.,1998,120:1048-1050.
    [8]Kinnear K T, Monbouquette H G. An amperometric fructose biosensor based on fructose dehydrogenase immobilized in a membrane mimetic layer on gold. Anal. Chem.,1997,69: 1771-1775.
    [9]Clark L C, Lyons C. Electrode system for continuous monitoring in cardiovascular surgery. Ann. NYAcad. Sci.,1962,102:29-45.
    [10]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214:986-988.
    [11]Guibault G G, Montalvo J G. Enzyme electrode for the substrate urea. J. Am. Chem. Soc.,1970, 92:2533-2538.
    [12]Cass A E G, Davis G, Francis G D. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem.,1984,56:667-671.
    [13]Wang J. Analytical Electrochemistry, second edition, Wiley-VCH,2000.
    [14]Liu J, Wang J. A novel improved design for the first-generation glucose biosensor. Food. Technol. Biotechnol.,2001,39:55-58.
    [15]Lindy M. Biosensors and bioelectrochemistry. Curr. Opin. Biotech.,2006,10:177-184.
    [16]Padeste C, Grubelnik A, Tiefenauer L. Ferrocene-avidin conjugates for bioelectrochemical applications. Biosens. Bioelectron,2000,15:431-438.
    [17]Bachurin S O, Shumakovich G P, Dubova LG. Monoamine oxidase catalysis on electrodes modified with artificial acceptors of electrons. Bioelctrochem. Bioenerg.,1998,46:185-191.
    [18]Padeste C, Grubelnik A, Fernandez V M. Amperometric mediated carbon paste biosensor based on D-fruetose dehydrogenase for the determination of fructose in food analysis. Biosens. Bioelctron.,1997,12:1233-1243.
    [19]Timothy J O, Ravi R, Adam H. "Wire" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal. Chem.,1994,66:2451-2457.
    [20]Jiang H Q, Yong C L, Hai Y L. Characterization of regenerated silk fibroin membrane for immobilizing peroxidase and construction of an amperometric hydrogen peroxide sensor employing phenazine methosulphate as electron shuttle. J. Electroanal. Chem.,1994,397: 157-162.
    [21]Tapec R, Zhao X J J, Tan W H. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. Nanosc. Nanotechnol,2002,2:405-409.
    [22]Lee K J, Oh J H, Kim Y. Fabrication of photoluminescent-dye embedded poly(methyl methacrylate) nanofibers and their fluorescence resonance energy transfer properties. Adv. Mater.,2006,18:2216-2219.
    [23]Kevin M K, Anna B T. Tetrathiofulvalene tetraeyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines. Anal. Chem.,1987,59: 954-958.
    [24]Chen S H, Yuan R, Chai Y Q. Amperometric third-generation hydrogen peroxide biosensor based on the imbilization of hemoglobin on multiwall cabon nanotubes gold colloidal nanopartieles. Biosens. Bioelectron.,2007,22:1268-1274.
    [25]Zhang L Y, Yuan R, Chai Y Q. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and 1-cysteine film on an Au electrode. Anal. Chim. Acta.,2007,596:99-105.
    [26]Liu Y, Yuan R, Chai Y Q. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sensor. Actuat. B-Chem.,2006, 115:109-115.
    [27]Mirkin C A, Letsinger R L, Mueie R C. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382:607-609.
    [28]张德阳.纳米生物材料学.北京:化学工业出版社,2005,5.
    [29]石士考.纳米材料的特性及其应用.大学化学,2001,6:39-42.
    [30]董树荣,涂江平,王春生,等.纳米管制备的研究.材料科学与工艺,1998,6:31-34.
    [31]丁星兆.纳米材料的结构、性能及应用.材料导报,1997,11:1-5.
    [32]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社,2006,7-10.
    [33]Grabar K C, Allison K J, Baker B E. Two-dimensional arrays of colloidal gold particle flexible approach to macroscopic metal surfaces. Langmuir,1996,12:2353-2361.
    [34]Lyon L A, Musick M D, Smith P C. Surface plasmon resonance of colloidal Au-modified gold film. Sensor. Actuat. B-Chem.,1999,54:118-124.
    [35]Martin C R, Mitchell D T. Nanomaterials in analytical chemistry. Anal. Chem.,1998,70: 322-327.
    [36]Dong S J, Che G L, Xie Y W. Chemically modified electrodes. Chinese Science Press, Beijing, 1995,484.
    [37]Karyakin A A, Karyakin E E. Electroanalytical applications of Prussian blue and its analogs. Russian Chemical bulletin,2001,50:1811-1817.
    [38]Mattos I L, Gorton L, Laurell T, Malinauskas A, Karyakin A A. Development of biosensors based on hexacyanoferrates. Talanta,2000,52:791-799.
    [39]Zhang Q, Zhang L, Li J H. Fabrication and electrochemical study of monodisperse and size controlled prussian blue nanoparticles protected by biocompatible polymer. Electrochimica. Acta.,2008,53:3050-3055.
    [40]Li L, Sheng Q L, Zheng J B, Zhang H F. Facile and controllable preparation of glucose biosensor based on prussian blue nanoparticles hybrid composites. Bioelectrochemistry,2008, 74:170-175.
    [41]Fu G L, Yue X L, Dai Z F. Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with prussian blue/carbon nanotubes hybrid. Biosens. Bioelectron.,2011,26:3973-3976.
    [42]Li J P, Wei X P, Yuan Y H. Synthesis of magnetic nanoparticles composed by prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensor. Actuat. B-Chem.,2009,139:400-406.
    [43]周华,王辉宪,刘登友,罗启枚,蒋小林.基于碳纳米管修饰的酶生物传感器检测有机磷农药.研究与开发2008,14:23-27.
    [44]Ye J S, Wen Y, Zhang W D. Noenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun.,2004,6:66-70.
    [45]Wang J, Li M, Shi Z, Li N, Gu Z. Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis,2002,14: 225-230.
    [46]Wang J, Li M, Shi Z, Li N, Gu Z. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem.,2002,74:1993-1997.
    [47]Musameh M, Wang J, Merkoci A, Lin Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Comm.,2002,4:743-746.
    [48]Britto P J, Santhanam K S V, Rubio A, Alonso J A, Ajayan P M. Improved charge transfer at carbon nanotube electrodes. Adv. Mater.,1999,11:154-157.
    [49]Ding Y, Wang Y, Lei Y. Direct electrochemistry and electrocatalysis of novel single-walled carbon nanotubes-hemoglobin composite microbelts-Towards the development of sensitive and mediator-free biosensor. Biosens. Bioelectron.,2010,26:390-397.
    [50]Qian L, Yang X R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta,2006,68:721-727.
    [51]Huang W J, Lin Y, Taylor S. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett.,2002,2:231-234.
    [52]Gopalan A I, Lee K P, Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Biosens. Bioelectron.,2009,24:2211-2217.
    [53]Wu H X, Cao W M, Li Y. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochimica. Acta.,2010,55:3734-3740.
    [54]Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater.,2001,13:733-737.
    [55]Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and fieldemission properties of needle like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv. Funct. Mater.,2003,13:811-814.
    [56]Zhu X L, Yuri I, Gan X, Suzuki I, Li G X. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens. Bioelectron.,2007,22:1600-1604.
    [57]Zhang F F, Wang X L, Ai S Y. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta.,2004,519:155-160.
    [58]Dorfman A, Kumar N, Hahm J. Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir,2006,22:4890-4895.
    [59]Liao L, Lu H B, Li J C, Liu C, Fu D J, Liu Y L. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Appl. Phys. Lett.,2007,91: 173110/1-1173110/.
    [60]Al-Hilli S M, Al-Mofarji R T, Willander M. Zinc oxide nanorod for intracellular pH sensing. Appl. Phys. Lett.,2006,89:173119/1-1173119/.
    [61]Feng P, Wan Q, Wang T H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl. Phys. Lett.,2005,87:213111/1-1213111/.
    [62]Topoglidis E, Cass A E G, O'Regan B, Durrant J R. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J. Eledroanal. Chem.,2001,517:20-27.
    [63]Das M, Sumana G, Nagarajan R, Malhotra B D. Application of nanostructured ZnO films for electrochemical DNA biosensor. Thin. Solid. Films.,2010,519:1196-1201.
    [64]Xiang C L, Zou Y J, Sun L X, Xu F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sensor. Actual. B-Chem.,2009,136:158-162.
    [65]Dai Z H, Shao G J, Hong J M, Bao J C, Shen J. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens. Bioelectron.,2009,24:1286-1291.
    [66]Ma W, Tian D. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix. Bioelectrochemistry,2010,78: 106-112.
    [67]Liu J P, Guo C X, Li C M, Li Y Y, Chi Q B, Huang X T, Liao L, Yu T. Carbon-decorated ZnO nanowire array:A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun.,2009,11:202-205.
    [68]Parkm J E, Atobe M, Fuchigami T. Sonochemical synthesis of conducting polymer-metal nanoparticles nanocomposite. Electrochim. Acta.,2005,51:849-854.
    [69]Bandyopadhyay K, Patil V, Vijayamohanan K, Sastry M. Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers. Langmuir,1997,13:5244-5248.
    [70]Horswell S L, Kiely C J, O'Neil I A, Schiffrin D J. Alkyl isocyanide derivatised platinum nanoparticles. J. Am. Chem. Soc.,1999,121:5573-5574.
    [71]Wu S, Liu Y Y, Wu J, Ju H X. Prussian blue nanoparticles doped nanocage for controllable immobilization and selective biosensing of enzyme. Electrochem. Commun.,2008,10: 397-401.
    [72]Feng D, Wang F, Chen Z L. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensor. Actual. B-Chem.,2009,138:539-544.
    [73]Wang X, Hu C G, Liu H, Du G J, He X S, Xi Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensor. Actual. B-Chem.,2010,144:220-225.
    [74]Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal. Biochem.,2007,369: 71-79.
    [75]Ivanov Y, Marinov I, Gabrovska K, Dimcheva N, Godjevargova T. Amperometric biosensor based on a site-specific immobilization of acetylcholinesterase via affinity bonds on a nanostructured polymer membrane with integrated multiwall carbon nanotubes. J. Mol. Catal B-Enzym.,2010,63:141-148.
    [76]Bonnemann H, Waldofner N, Haubold H G, Vad T. Preparation and characterization of three-dimensional Pt nanoparticle networks. Chem. Mater,2002,14:1115-1120.
    [77]El-Deab M S, Ohsaka T. Electrocatalysis by nanoparticles:oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. J. Electroanal. Chem.,2003,553:107-115.
    [78]Mandal S, Roy D, Chaudhari R V, Sastry M. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite:Excellent catalysts for hydrogenation and heck reactions. Chem. Mater, 2004,16:3714-3724.
    [79]Marinov I, Ivanov Y, Gabrovska K, Godjevargova T. Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles. J. Mol. Catal. B-Enzym.,2010,62:66-74.
    [80]Cui H F, Ye J S, Zhang W D, Wang J, Sheu F S. Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode. J. Electroanal. Chem.,2005,577: 295-302.
    [81]Horswell S L, O'Neil I A, Schiffrin D J. Potential modulated infrared reflectence spectroscopy of Pt-diisocyanide nanostructured electrodes. J. Phys. Chem. B.,2001,105:941-947.
    [82]Ye J S, Ottova A, Tien H T, Sheu F S. Nanostructured platinum-lipid bilayer composite as biosensor. Bioelectrochemistry,2003,59:65-72.
    [83]Li J J, Yuan R, Chai Y Q, Che X. Fabrication of a novel glucose biosensor based on Pt nanoparticles-decorated iron oxide-multiwall carbon nanotubes magnetic composite. J. Mol. Catal. B-Enzym.,2010,66:8-14.
    [84]Li J, Lin X Q. Electrocatalytic reduction of nitrite at polypyrrole nanowire-platinum nanocluster modified glassy carbon electrode. Microchem. J.,2007,87:41-46.
    [85]Karyakin A A. Prussian blue and its analogues:electrochemistry and analytical applications. Electroanalysis,2001,13:813-819.
    [86]Karyakin A A, Karyakina E E, Gorton L. Amperometric biosensor for glutamate using prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. Anal. Chem.,2000,72: 1720-1723.
    [87]Li T, Yao Z H, Ding L. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto prussian blue modified electrode. Sensor. Actuat. B-Chem.,2004,101:155-160.
    [88]Ahmadalinezhad A, Kafi A K M, Chen A. Glucose biosensing based on the highly efficient immobilization of glucose oxidase on a prussian blue modified nanostructured Au surface. Electrochem. Commun.,2009,11:2048-2051.
    [89]O'Halloran M P, Pravda M, Guilbault G G. Prussian blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta,2001,55:605-611.
    [90]Garjonyte R, Malinauskas A. Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sensor. Actuat. B-Chem.,1999,56:93-97.
    [91]Malinauskas A, Araminaite R. Evaluation of operational stability of prussian blue and cobalt hexacyanoferrate-based amperometric hydrogen peroxide sensors for biosensing application. Mater. Sci. Eng. C.,2004,24:513-519.
    [92]Zhang J, Yang W, Zhu H, Li J, Yang F, Zhang B L, Yang X R. Synthesis and characterization of prussian blue@platinum nanoparticle hybrids from a mixture solution of platinum nanocatalyst and ferric ferricyanide. J. Colloid. Interf. Sci.,2009,338:319-324.
    [93]Kumar S S, Joseph J, Lakshminarasimha P K. Novel method for deposition of gold prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: characterization and application to electrocatalysis. Chem. Mater.,2007,19:4722-4730.
    [94]Wang X Y, Gua H F, Yin F, Tu Y F. A glucose biosensor based on prussian blue/chitosan hybrid film. Biosens. Bioelectron.,2009,24:1527-1530.
    [95]Liu Y, Chu Z Y, Zhang Y N, Jin W Q. Amperometric glucose biosensor with high sensitivity based on self-assembled prussian blue modified electrode. Electrochim. Acta.,2009,54: 7490-7494.
    [96]Haghighi B, Hamidi H, Gorton L. Electrochemical behavior and application of prussian blue nanoparticle modified graphite electrode. Sensor. Actuat. B-Chem.,2010,147:270-276.
    [97]Wang Y, Ren J W, Deng K, Gui L L, Tang Q Y. Preparation of tractable platinum, rhodium, and ruthenium. Nanoclusters with small particle size in organic media. Chem. Mater.,2000,12: 1622-1627.
    [98]Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of prussian blue modified electrodes. Biosens. Bioelectron.,2005,21:389-407.
    [99]Zhang D, Zhang K, Yao Y L, Xia X H, Chen H Y. Multilayer assembly of prussian blue nanoclusters and its enzyme-immobilized ploy (toluidine blue) films and its application in glucose biosensor construction. Langmuir,2004,20:7303-7307.
    [100]Ferreira M, Fiorito P A, Oliveira Jr. O N, Torresi S I C D. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosens. Bioelectron.,2004,19:1611-1615.
    [101]Zhu L D, Zhai J L, Guo Y G, Tian C Y, Yang R L. Amperometric glucose biosensors based on integration of glucose oxidase onto prussian blue/carbon nanotubes nanocomposite electrodes. Electroanalysis,2006,18:1842-1846.
    [102]Zou Y J, Sun L X, Xu F. Biosensor based on polyaniline-prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens. Bioelectron.,2007,22:2669-2674.
    [103]Xian Y Z, Hu Y, Liu F, Xian Y, Wang H T, Jin L T. Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite. Biosens. Bioelectron.,2006,21: 1996-2000.
    [104]Liu X Q, Shi L H, Niu W X, Li H J, Xu G B. Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens. Bioelectron.,2008,23:1887-1890.
    [105]Fu Y C, Chen C, Xie Q J, Xu X H, Zou C, Zhou Q M, Tan L, Tang H, Zhang Y Y, Yao S Z. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance. Anal. Chem.,2008,80:5829-5838.
    [106]Sljukic B, Banks C E, Salter C, Crossley A, Compton R G. Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes:Application to glucose sensing. Analyst,2006,131:670-677.
    [107]Ballerstadt R, Kholodnykh A, Evans C, Boretsky A, Motamedi M, Gowda A, McNichols R. Affinity-based turbidity sensor for glucose monitoring by optical choherence tomography: toward the development of an implantable sensor. Anal. Chem.,2007,79:6965-6974.
    [108]Diem P, Kalt L, Haueter U, Krinelke L, Fajfr R, Reihl B, Beyer U. Clinical performance of a continuous viscometric affinity sensor for glucose. Diabetes. Technol. The.,2004,6:790-799.
    [109]Malitesta C, Losito I, Zambonin P G. Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors. Anal. Chem.,1999,71:1366-1370.
    [110]Chuang C W, Shih J S. Preparation and application of immobilized C60-glucose oxidase enzyme in flullerence C60-coated piezoelectric quartz crystal glucose sensor. Sens. Actuat. B-Chem.2001,81:1-8.
    [111]Gallego R G, Haseley S R, van Miegem V F L, Vliegenthart J F G, Kamerling J P. Identification of carbohydrates binding to lectins by using surface plasmon resonance in combination with HPLC profiling. Glycobiology,2004,14:373-386.
    [112]Shi Q F, Han E, Shan D, Yao W J, Xue H G. Development of a high analytical performance amperometric glucose biosensor based on glucose oxidase immobilized in a composite matrix: layered double hydroxides/chitosan. Bioproc. Biosyst. Eng.,2008,31:519-526.
    [113]Li F, Feng Y, Yang L M, Li L, Tang C F, Tang B. A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode. Biosens. Bioelectron.,2011,26:2489-2494.
    [114]Xu Y, Lin X. Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis. Electrochimica. Acta.,2007,52:5140-5149.
    [115]Welch C M, Compton R G. The use of nanoparticles in electroanalysis:a review. Anal. Bioanal. Chem.,2006,384:601-619.
    [116]Raimondi F, Scherer G G, Kotz R, Wokaun A. Nanoparticles in energy technology:Examples from electrochemistry and catalysis. Angew. Chem. Int. dit.,2005,44:2190-2209.
    [117]Lin Y, Finke R G. Novel polyoxoanion- and Bu4N+-stabilized, isolable, and redissolvable, 20-30-.ANG. Ir300-900 nanoclusters:the kinetically controlled synthesis, characterization, and mechanism of formation of organic solvent-soluble, reproducible size, and reproducible catalytic activity metal nanoclusters. J. Am. Chem. Soc.,1994,116:8335-8353.
    [118]Li W J, Yuan R, Chai Y Q, Chen S H. Reagentless amperometric cancer antigen 15-3 immunosensor based on enzyme-mediated direct electrochemistry. Biosens. Bioelectron.,2010, 25:2548-2552.
    [119]Zhao Z W, Chen X J, Tay B K, Chen J S, Han Z J, Khor K A. A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosens. Bioelectron.,2007, 23:135-139.
    [120]Balasubramanian K, Burghard M. Biosensors based on carbon nanotubes. Anal. Bioanal. Chem.,2006,385:452-468.
    [121]Xiong W, Du F, Liu Y, Perez A J, Supp M, Ramakrishnan T S, Dai L M, Jiang L.3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc.,2010,132:15839-15841.
    [122]Iijiman S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [123]Wang J, Gu M, Di J, Gao Y, Wu Y, Tu Y. A carbon nanotube/silica sol-gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Bioproc. Biosyst. Eng.,2007,30:289-296.
    [124]Ishikawa F N, Stauffer B, Caron D A, Zhou C W. Rapid and label-free cell detection by metal-cluster-decorated carbon nanotube biosensors. Biosens. Bioelectron.,2009,24: 2967-2972.
    [125]Chu X, Duan D X, Shen G L, Yu R Q. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta,2007,71:2040-2047.
    [126]Yang M H, Yang Y H, Liu Y L, Shen G L, Yu R Q. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron.,2006,21:1125-1131.
    [127]Lin Y H, Cui X L, Yen C, Wai C M. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B.,2005, 109:14410-14415.
    [128]Kim S, Jung Y, Park S J. Preparation and electrochemical behaviors of platinum nanocluster catalysts deposited on plasma-treated carbon nanotube supports. Colloid. Surface. A.,2008, 313-314:189-192.
    [129]Liu Y, Wang M K, Zhao F, Xu Z A, Dong S J. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron.,2005, 21:984-988.
    [130]Wen D, Zou X Q, Liu Y, Shang L, Dong S J. Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing. Talanta,2009,79:1233-1237.
    [131]Yang J, Zhang R Y, Xu Y, He P G, Fang Y Z. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose. Electrochem. Commun.,2008,10:1889-1892.
    [132]Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta,2008,74: 879-886.
    [133]Yuan L, Yang M H, Qu F L, Shen G L, Yu R Q. Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors. Electrochimica. Acta.,2008,53:3559-3565.
    [134]Guo S J, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim.Acta.,2007,598:181-192.
    [135]Pumera M, Sanchez S, Ichinose I, Tang J. Electrochemical nanobiosensors. Sensor. Actuat. B-Chem.,2007,123:1195-1205.
    [136]Zhao S, Zhang K, Sun Y Y, Sun C Q. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode:Direct electrochemistry and electrocatalysis. Bioelectrochemistry,2006,69:10-15.
    [137]Wang S F, Xie F, Hu R F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sensor. Actuat. B-Chem.,2007,123:495-500.
    [138]Wang W M, Zheng D, Du C, Zou Z Q, Zhang X G, Xia B J, Yang H, Akins D L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J. Power. Sources.,2007,167:243-249.
    [139]You T Y, Niwa O, Tomita M, Hirono S. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal. Chem.,2003, 75:2080-2085.
    [140]Kumar R, Maitra A N, Patanjali P K, Sharma P. Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials,2005,26:6743-6753.
    [141]Grace A N, Pandian K. Pt, Pt-Pd, and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes: A potent electrocatalyst towards the oxidation of glycerol. Electrochem. Commun.,2006,8: 1340-1348.
    [142]Lang H, Maldonado S, Stevenson K J, Chandler B D. Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc.,2004,126: 12949-12956.
    [143]Devarajan S, Bera P, Sampath S. Bimetallic nanoparticles:A single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates. J. Colloid. Interface. Sci.,2005,290:117-129.
    [144]Qian L, Yang X. Polyamidoamine dendrimers-assisted electrode-position of gold-platinum bimetallic nanoflowers.J. Phys. Chem. B.,2006,110:16672-16678.
    [145]Luo J, Njoki N, Lin Y, Wang L, Zhong C. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir,2006,22: 2892-2898.
    [146]Zhou S, Mcllwrath K, Jackson G, Eichhorn B. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc.,2006,128:1780-1781.
    [147]Yogeswaran U, Thiagarajan S, Chen S M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal. Biochem.,2007,365: 122-131.
    [148]Niedziolka J, Murphy M A, Marken F, Opallo M. Characterisation of hydrophobic carbon nanofiber-silica composite film electrodes for redox liquid immobilization. Electrochim. Acta., 2006,51:5897-5903.
    [149]Baker S E, Tse K Y, Lee C S, Hamers R J. Fabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications. Diam. Relat. Mater.,2006,15: 433-439.
    [150]Ly S Y. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry,2006,68:227-231.
    [151]Wang S F, Xu Q. Electrochemical parameters of ethamsylate at multi-walled carbon nanotubemodified glassy carbon electrodes. Bioelectrochemistry,2007,70:296-300.
    [152]Wu K B, Wang H, Chen F, Hu S S. Electrochemistry and voltammetry of procaine using a carbon nanotube film coated electrode. Bioelectrochemistry,2006,68:144-149.
    [153]Janes A, Kurig H, Lust E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon,2007,45:1226-1233.
    [154]Zhao G, Xu J J, Chen H Y. Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film. Anal. Biochem.,2006,350:145-150.
    [155]Niu J J, Wang J N. Activated carbon nanotubes-supported catalyst in fuel cells. Electrochim. Acta.,2008,53:8058-8063.
    [156]Cui H F, Ye J S, Zhang W D, Li C M, Luong J H T, Sheu F S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Anal. Chim. Acta.,2007,594:175-183.
    [157]Zou Y J, Xiang C L, Sun L X, Xu F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosens. Bioelectron.,2008,23:1010-1016.
    [158]Xue M H, Xu Q, Zhou M, Zhu J J. In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Elctrochem. Commun.,2006,8:1468-1474.
    [159]Song Y H, Wang L, Ren C B, Zhu GY, Li Z. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sensor. Actuat. B-Chem.,2006,114:1001-1006.
    [160]Kaushik A, Khan R, Solanki P R, Pandey P, Alam J, Ahmad S, Malhotra B D. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelctron.,2008,24: 676-683.
    [161]Li F, Li X M, Zhang S S. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol-gel process. J. Chromatogr. A.,2006,1129, 223-230.
    [162]Fernandes R, Wu L Q, Chen T H, Yi H, Rubloff G W, Ghodssi R, Bentley W E, Payne G F. Electrochemically-induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir,2003,19:4058-4062.
    [163]Sorlier P, Denuziere A, Viton C, Domard A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules,2001,2:765-772.
    [164]Huang H, Yuan Q, Yang X. Preparation and characterization of metal-chitosan nanocomposites. Colloid. Surface. B.,2004,39:31-37.
    [165]Guo M L, Chen J H, Nie L H. Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride. Electrochim. Acta.,2004,49:2637-2643.
    [166]Zhao C Z, Wan L, Jiang L, Wang Q, Jiao K. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin. Anal. Biochem.,2008,383:25-30.
    [167]Safavi A, Farjami F. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens. Bioelectron.,2011,26:2547-2552.
    [168]Gomathi P, Ragupathy D, Choi J H, Yeum J H, Lee S C, Kim J C, Lee S H, Ghim H D. Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensor. Actuat. B-Chem.,2011,153:44-49.
    [169]Saxena U, Chakraborty M, Goswami P. Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens. Bioelectron.,2011,26:3037-3043.
    [170]Umar A, Rahman M M, Vaseem M, Hahn Y B. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun.,2009,11:118-121.
    [171]MacLachlan J, Wotherspoon A T L, Ansell R O, Brooks C J W. Cholesterol oxidase:sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol.,2000,72: 169-195.
    [172]Aghaei A, Hosseini M R M, Najafi M. A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochim. Acta.,2010,55: 1503-1508.
    [173]Zhang R Z, Li L, Liu S T, Chen R M, Rao P F. An improved method of cholesterol determination in egg yolk by HPLC.J. Food. Biochem.,1999,23:351-361.
    [174]Hojo K, Hakamata H, Ito A, Kotani A, Furukawa C, Hosokawa Y Y, Kusu F. Determination of total cholesterol in serum by high-performance liquid chromatography with electrochemical detection. J. Chromatogr.A.,2001,1166:135-141.
    [175]Lin K W, Huang Y K, Su H L, Hsieh Y Z. In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis. Anal. Chim. Acta.,2008, 619:115-121.
    [176]Tsai Y C, Chen S Y, Lee A C. Amperometric cholesterol biosensors based on carbon nanotube-chitosan-platinum-cholesterol oxidase nanobiocomposite. Sensor. Actuat. B-Chem., 2008,135:96-101.
    [177]Wang Y, Wei W Z, Liu X Y, Zeng X D. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Mater. Sci. Eng. C.,2009,29: 50-54.
    [178]Zhu L D, Zhai J L, Yang R L, Tian C Y, Guo L P. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Biosens. Bioelectron.,2007,22: 2768-2773.
    [179]Hrapovic S, Liu Y L, Male K B, Luong J H T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem.,2004,76:1083-1088.
    [180]Jeykumari D R S, Narayanan S S. Fabrication of an amperometric bienzyme biosensing system with neutral red functionalized carbon nanotubes. Analyst,2009,134:1618-1622.
    [181]Zhang M N, Gong K P, Zhang H W, Mao L Q. Layer by layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens. Bioelectron., 2005,20:1270-1276.
    [182]Li G, Liao J M, Hu G Q, Ma N Z, Wu P J. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens. Bioelectron.,2005,20:2140-2144.
    [183]Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens. Bioelectron.,2006,21:2195-2201.
    [184]Tan X C, Li M J, Cai P X, Luo L J, Zou X Y. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal. Biochem.,2005,337:111-120.
    [185]Solanki P R, Kaushik A, Ansari A A, Tiwari A, Malhotra B D. Multi-walled carbon nanotubes/sol-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensor. Actuat. B-Chem.,2009,137:727-735.
    [186]Li J F, Yao L Z, Cai W L, Mo J M. Photoluminescence study of ZnO nanocrystallites with BN capsules. Acta. Phys. Sin.,2001,50:1623-1626.
    [187]Navale S C, Gosavi S W, Mulla I S. Controlled synthesis of ZnO from nanospheres to micro-rods and its gas sensing studies. Talanta,2008,75:1315-1319.
    [188]Greene L E, Yuhas B D, Law M, Zitoun D, Yang P. Solution-grown zinc oxide nanowires. Inorg. Chem.,2006,45:7535-7543.
    [189]Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater.,2003,13:9-24.
    [190]Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc.,2003,125:4430-4431.
    [191]Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano. Lett.,2007,7:2183-2187.
    [192]Liu B, Zeng H C. Hollow ZnO microspheres with complex nanobuilding units. Chem. Mater, 2007,19:5824-5826.
    [193]Gregory J E, Aimee R, Li Q W, Jr. Charles F W. Postdeposition reduction of noble metal doped ZnO films. J. Vac. Sci. Technol. A.,1998,16:1926-1933.
    [194]Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensor. Actuat. B-Chem.,2006,115:247-251.
    [195]Wang L Y, Sun Y, Wang J, Wang J, Yu A M, Zhang H Q, Song D Q. Water-soluble ZnO-Au nanocomposite-based probe for enhanced protein detection in a SPR biosensor system. J. Colloid. Interf. Sci.,2010,351:392-397.
    [196]Wang Q, Zheng J B. Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim. Acta.,2010,169:361-365.
    [197]Ahmad M, Pan C F, Gan L, Nawaz Z S, Zhu J. Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. J. Phys. Chem. C.,2010, 114:243-250.
    [198]Manjunatha R, Nagaraju D H, Suresh G S, Melo J S, D'Souza S F, Venkatesha T V. Direct electrochemistry of cholesterol oxidase on MWCNTs. J. Electroanal. Chem.,2011,651: 24-29.
    [199]Guo M L, Chen J H, Li J, Nie L H, Yao S Z. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis,2004,16: 1992-1998.
    [200]Umara A, Rahman M M, Al-Hajry A, Hahn Y B. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta,2009,78:284-289.
    [201]Shi Q C, Peng T Z, Zhu Y N, Yang C F. An electronchemical biosensor with cholesterol oxidase/sol-gel film on a nanoplatinum/carbon nanotube electrode. Electroanalysis,2005,17: 857-861.
    [202]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.,2003,15:1957-1962.
    [203]Vengurlrkar A S. Chandorkar A N, Ramanathan K V. X-ray photoelectron spectroscopy study of chlorine incorporation in thermally grown HCl oxides on silicon. Thin. Solid. Film.,1984, 114:285-290.
    [204]Gimxwhki J K, Veprck S. Investigation of the initial stages of oxidation of microcrystalline silicon by means of X-ray photoelectron spectroscopy. Solid. State. Commun.,1983,47: 747-751.
    [205]Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E. Handbook of X-ray photoelectron spectroscopy, Physical Electronics Division, Perkin Elmer Corporation, Eden Prairie, Minn,1979.
    [206]Singh S, Solanki P R, Pandey M K, Malhotra B D. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Anal. Chim. Acta.,2006,568:126-132.
    [207]Yao T, Takashima K.. Amperometric biosensor with a composite membrane of sol-gel derived enzyme film and electrochemically generated poly (1,2-diaminobenzene) film. Biosens. Bioelectron.,1998,13:67-73.
    [208]Allain C C, Poon L S, Chan C S G, Richmond W, Fu P C. Enzymatic determination of total serum cholesterol. Clin. Chem.,1974,20:470-475.
    [209]Suman C S P. Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase onto alkylamine glass beads for measurement of total cholesterol in serum. Curr. Appl. Phys., 2003,3:129-133.
    [210]Lin Y T, Wu S S, Wu H L. Highly sensitive analysis of cholesterol and sitosterol in foods and human biosamples by liquid chromatography with fluorescence detection. J. Chromatogr. A., 2007,1156:280-287.
    [211]Dhand C, Arya S K, Datta M, Malhotra B D. Polyaniline-carbon nanotube composite film for cholesterol biosensor. Anal. Biochem.,2008,383:194-199.
    [212]Dey R S, Raj C R. Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J. Phys. Chem. C.,2010,114:21427-21433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700