新型功能纳米材料信号放大用于可抛式安培免疫传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于纳米材料信号放大的电化学免疫传感,是将电化学免疫传感技术的优点与纳米材料具有的丰富特性相结合的免疫分析方法。多种纳米材料被用于负载信号抗体和高含量的示踪剂,并以此用作免疫分析的信号示踪。这种方法较传统的单标记电化学免疫方法,灵敏度有了很大提高,同时大大降低了检测限,因此在临床诊断、药物分析、环境和食品质量监控等领域得到了广泛的研究应用。本论文基于丝网印刷技术,围绕功能纳米探针的制备,以及纳米信号放大的电化学免疫传感器的研制,开展了以下两个方面的工作:
     1、基于金纳米粒子功能化碳纳米球信号放大的可抛式电化学免疫传感器
     利用金纳米粒子功能化的碳纳米球(CNSs/AuNPs)作为电化学信号放大示踪物,结合丝网印刷技术,发展了一种简便、灵敏、价廉的可抛式电化学免疫传感器。功能化碳纳米球(CNSs),以葡萄糖为原料通过水热反应制备得到,通过静电吸附作用在其表面分别组装金纳米粒子(AuNPs)与信号抗体,该信号示踪物优良的导电性为电化学信号传导提供了良好的电子传递通道。该可抛式免疫传感器以印刷碳电极为基底,通过在电极表面修饰聚乙二醇(PEG)薄膜来固定捕获抗体制备而成。基于夹心免疫分析模式,固定在免疫芯片上的捕获抗体与样品中的抗原特异性结合后,再结合CNSs/AuNPs标记的抗体,通过直接电化学检测标记物上的金纳米粒子,实现对抗原的检测。由碳纳米球大量负载的金纳米粒子首先在0.1M HC1中预电氧化成AuCl4-,然后通过示差脉冲伏安法(DPV)检测AuCl4-在电极表面的还原,实现对人IgG的信号放大检测。电化学响应信号随样品中人IgG浓度的增加成比例升高,在优化的实验条件下,对人IgG检测线性范围为10pg/mL-10ng/mL,在信噪比为3时,检测限约为9pg/mL。该免疫传感器具有良好的稳定性、重复性和准确性,可拓展至多种肿瘤标志物的临床检测。
     2、树状铂纳米簇功能化石墨烯的制备、电催化及其电化学免疫传感应用
     设计了一种树状铂纳米簇(PtNDs)功能化的石墨烯(GS),将其用来标记信号抗体,用作免疫信号放大的示踪标记物,制备了高灵敏的可抛式电化学免疫传感器。该传感器以丝网印刷电极上修饰聚乙二醇(PEG)薄膜为基底,固定捕获抗体制备而成。以PVP还原的石墨烯为载体,原位沉积铂纳米粒子制备成树状PtNDs团簇功能化的石墨烯材料,并利用铂纳米簇对蛋白质的吸附作用,标记信号抗体得到示踪标记物。基于夹心免疫分析模式,将PtNDs/GS结合至免疫复合物上,通过检测铂纳米簇对溶解氧的电催化还原,放大了电化学检测信号;利用石墨烯的电子传递促进作用,实现了对抗原的高灵敏检测。在最优的实验条件下,对人IgG的检测范围可低至pg/mL级别。由于采用溶解氧作为信号来源,实现了无酶检测,并排除了电化学免疫分析中的除氧操作。本工作设计的免疫传感器简便、灵敏、价廉,并具有良好的稳定性、精密度和准确性,在临床分析领域具有良好的潜在应用前景。
The amperometric immunosensors based on functionalized nanomaterials, which combine the highly specific electrochemical immunosensing techniques with the various properties of nanomaterials to carry numerous tags for signal amplification, have been considered to be a promising analytical method due to the advantages of ultrahigh sensitivity and low detection limit. Nowadays, they have been extensively applicated in clinical diagnostics, pharmaceutical analyses, extended to quality control of environment and food field. This thesis focuses on the development of disposable amperometric immunosensors based on screen printed electrodes, and the construction of signal amplification platform on the basis of functionalized nanoprobes.
     1. Disposable electrochemical immunosensor by using carbon sphere/gold nanoparticles composite as label for signal amplification
     This work designed a simple, sensitive, and low-cost immunosensor for the detection of protein marker by using carbon sphere/gold nanoparticles (CNSs/AuNPs) composite as an electrochemical label. The nanoscale carbon spheres, prepared with a hydrothermal method by using glucose as raw material, were used to load AuNPs for labeling antibody by electrostatic interaction, which provided a feasible pathway for electron transfer due to the remarkable conductivity. The disposable immunosensor was constructed by coating a polyethylene glycol (PEG) film on a screen-printed carbon-working electrode and then immobilizing capture antibody on the film. With a sandwich-type immunoassay format, the analyte and then CNSs/AuNPs-labeled antibody were successively bound to the immunosensor. The bound AuNPs were finally electro-oxidized in0.1M HC1to produce AuCl-4for differential pulse voltammetric (DPV) detection. The high-loading capability of AuNPs on CNS for the sandwich-type immunorecognition led to obvious signal amplification. By using human immunoglobulin G (HIgG) as model target, the DPV signal of AuNPs after electro-oxidized at optimal potential of+1.40V for40s showed a wide linear dependence on the logarithm of target concentration ranging from10pg mL-1to10ng mL-1. The detection limit was around9pg mL-1. The immunosensor showed excellent analytical performance with cost effectivity, good fabrication reproducibility, and acceptable precision and accuracy, providing significant potential application in clinical analysis.
     2. Pt nanodendrites functionalized graphene nanosheet:Preparation, electrocatalysis, and application in immunosensing as electrochemical tag
     Platinum nanodendrites (PtNDs) functionalized graphene nanosheet (GS) was used as an electrochemical label to design a highly sensitive disposable immunosensor. The immunosensor was constructed by coating a polyethylene glycol (PEG) film on a screen-printed carbon-working electrode and then immobilizing capture antibody on the film. The PtNDs/GS, prepared by in-situ deposition of Pt nanoparticles, was labeled to antibody as a detection probe for immunoreaction. With a sandwich-type immunoassay format, the analyte and then PtNDs/GS-labeled antibody were successively captured to the immunocomplex and showed strong electrocatalytic activity toward oxygen reduction. The use of GS carrier offered a high amount of PtNDs on each immunoconjugate and provided a feasible pathway for electron transfer, hence amplified the detectable signal from the electro-reaction of dissolved oxygen. Under optimal conditions, a low limit of detection down to pg/mL was achieved for human IgG. Using dissolved oxygen as signal reporter, the detection process avoided deoxygenation. The immunosensor showed excellent analytical performance with cost effectivity, good fabrication reproducibility, acceptable stability, precision and accuracy, indicating potential applications in clinical diagnostics.
引文
[1]Y. Hayashi, R. Matsuda, T. Maitani, K. Imai, W. Nishimura, K. Ito, M. Maeda, Anal. Chem.2004,76,1295.
    [2]F. Yan, H. X. Ju, Progress in Chemistry 2007,19,1852.
    [3]M. A. Rahman, J. I. Son, M. S. Won, Y. B. Shim, Anal. Chem.2009,81,604.
    [4]S. Prabhulkar, S. Alwarappan, G. Liu, C. Z. Li, Biosens. Bioelectron.2009,24, 3524.
    [5]D. Liu, Z. Gao, Q. Luo, Z. S. Wu, Talanta 2010,82,1175.
    [6]X. Zhang, Y. Teng, Y. Fu, L. Xu, S. Zhang, B. He, C. Wang, W. Zhang, Anal. Chem.2010,82,9445.
    [7]Z. J. Song, R. Yuan, Y. Q. Chai, Y Zhuo, W. Jiang, H. L. Su, X. Che, J. J. Li, Chem. Commun.2010,6750.
    [8]J. Wang, G. Liu, H. Wu, Y. Lin, Small 2008,4,82.
    [9]K. Pinwattana, J. Wang, C. T. Lin, H. Wu, D. Du, Y. Lin, O. Chailapakul, Biosens. Bioelectron.2010,26,1109.
    [10]B. X. Gu, C. X. Xu, C. Yang, S. Q. Liu, M. L. Wang, Biosens. Bioelectron.2011, 26,2702.
    [11]M. Dequaire, C. Degrand, B. Limoges, Anal. Chem.2000,72,5521.
    [12]K. T. Liao, H. J. Huang, Anal. Chim. Acta 2005,535,159.
    [13]J. A. Ho, H. C. Chang, N. Y Shih, L. C. Wu, Y. F. Chang, C. C. Chen, C. Chou, Anal. Chem.2010,82,5944.
    [14]C. Leng, G S. Lai, F. Yan, H. X. Ju, Anal. Chim. Acta 2010,666,97.
    [15]R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, S. M. Brozik, Chem. Commun.2007,2741.
    [16]J. Zhang, B. P. Ting, M. Khan, M. C. Pearce, Y. Yang, Z. Gao, J. Y. Ying, Biosens. Bioelectron.2010,26,418.
    [17]Q. Wei, Y.F. Zhao, B. Du, D. Wu, Y. Y. Cai, K. X. Mao, H. Li, C. X. Xu, Adv. Funct. Mater.2011,21,4193.
    [18]刘预,检验医学与临床2004,1,43.
    [19]王瑞年,分子肿瘤学概论 上海:上海科技教育出版社,2001,75.
    [20]B. Weinstein, A. K. Joe, Nat. Clin. Pract. Oncol.2006,3,448.
    [21]J. Wu, Z. F. Fu, F. Yan, H. X. Ju, TrAC-Trends Anal. Chem.2007,26,679.
    [22]V. N. Morozov, S. Groves, M. J. Turell, C. Bailey, J. Am. Chem. Soc.2007,129, 12628.
    [23]J. Wang, Small 2005,1,1036.
    [24]J. Wang, Analyst 2005,130,421.
    [25]H. Zhang, Q. Zhao, X. F. Li, X. C. Le, Analyst 2007,132,724.
    [26]G. Liu, Y. Lin, Talanta 2007,74,308.
    [27]J. Jeon, D. K. Lim, J. M. Nam, J. Mater. Chem.2009,19,2107.
    [28]S. P. Song, Y. Qin, Y. He, Q. Huang, C. H. Fan, H. Y. Chen, Chem. Soc. Rev. 2010,39,4234.
    [29]L. J. Bai, R. Yuan, Y. Q. Chai, Y. L. Yuan, L. Mao, Y. Wang, Anal. Chim. Acta 2011,698,14.
    [30]J. G Guan, Y. Q. Miao, J. R. Chen, Biosens. Bioelectron.2004,19,789.
    [31]C. Leng, G. S. Lai, F. Yan, H. X. Ju, Anal. Chim. Acta 2010,666,97.
    [32]J. A. Ho, W. L. Hsu, W. C. Liao, J. K. Chiu, M. L. Chen, H. C. Chang, C. C. Li, Biosens. Bioelectron.2010,26,1021.
    [33]J. H. Lin, C. Y. He, L. J. Zhang, S. S. Zhang, Anal. Biochem.2009,384,130.
    [34]J. A. Ho, Y. C. Lin, L. S. Wang, K. C. Hwang, P. T. Chou, Anal. Chem.2009,81, 1340.
    [35]G Kima, K. W. Kim, M. K. Oh, Y. M. Sung, Biosens. Bioelectron.2010,25, 1717.
    [36]J. Zhang, J. P. Lei, C. Xu, L. Ding, H. X. Ju, Anal. Chem.2010,82,1117.
    [37]C. Y. Yean, B. Kamarudin, D. A. Ozkan, L. S. Yin, P. Lalitha, A. Ismail, M. Ozsoz, M. Ravichandran, Anal. Chem.2008,80,2774.
    [38]B. V. M. Silva, I. T. Cavalcanti, A. B. Mattos, P. Moura, M. D. T. Sotomayor, R. F. Dutra, Biosens. Bioelectron.2010,26,1062.
    [39]X. N. Zhang, Y. Q. Teng, Y. Fu, L. L. Xu, S. P. Zhang, B. He, C. G. Wang, W. Zhang, Anal. Chem.2010,82,9455.
    [40]G. S. Lai, F. Yan, J. Wu, C. Leng, H. X. Ju, Anal Chem.2011,83,2726.
    [41]X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde, J. D. Gong, S. N. Kim, J. Gillespie, J. S. Gutkind, F. Papadimitrakopoulos, J. F. Rusling, J. Am. Chem. Soc. 2006,128,11199.
    [42]R. Malhotra, V. Patel, J. P. Vaque, J. S. Gutkind, J. F. Rusling, Anal. Chem.2010, 52,3118.
    [43]R. Malhotra, V. Patel, J. P. Vaque', J. S. Gutkind, J. F. Rusling, Anal. Chem. 2010,82,3118.
    [44]H. Nie, S. Liu, R. Q. Yu, J. Jiang, Angew. Chem. Int. Ed 2009,48,9862.
    [45]G. S. Lai, F. Yan, H. X. Ju, Anal. Chem.2009,81,9730.
    [46]Z. Zhong, W. Wu, D. Wang, J. Shan, Y. Qing, Z. Zhang, Biosens. Bioelectron. 2010,25,2379.
    [47]D. Du, L. Wang, Y. Shao, J. Wang, M. H. Engelhard, Y. Lin, Anal. Chem.2011, 83,746.
    [48]M. H. Yang, A. Javadi, H. Li, S. Q. Gong, Biosens. Bioelectron.2010,26,560.
    [49]D. Du, Z. Zou, Y. Shin, J. Wang, H. Wu, M. H. Engelhard, J. Liu, I. A. Aksay, Y. Lin, Anal. Chem.2010,82,2989.
    [50]R. J. Cui, C. Liu, J. N. Shen, D. Gao, J. J. Zhu, H. Y. Chen, Adv. Funct. Mater. 2008,18,2197.
    [51]H. F. Dong, F. Yan, H. X. Ji, D. K. Y. Wong, H. X. Ju, Adv. Funct. Mater.2010, 20,1173.
    [52]J. Peng, L. N. Feng, K. Zhang, J. J. Li, L. P. Jiang, J. J. Zhu, Chem. Eur. J.2011, 17,10916.
    [53]D. P. Tang, B. L. Su, J. Tang, J. J. Ren, G. N. Chen, Anal. Chem.2010,82,1527.
    [54]B. S. Munge, A. L. Coffey, J. M. Doucette, B. K. Somba, R. Malhotra, V. Patel, J. S. Gutkind, J. F. Rusling, Angew. Chem. Int. Ed.2011,50,7915.
    [55]R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, S. M. Brozik, Chem. Commun.2007,2741.
    [56]J. Zhang, B. P. Ting, M. Khan, M. C. Pearce, Y Yang, Z. Gao, J. Y. Ying, Biosens. Bioelectron.2010,26,418.
    [1]S. Krishnan, A. Abeykoon, J. B. Schenkman, J. F. Rusling, J. Am. Chem. Soc.2009, 131,16215.
    [2]J. H. Jung, D. S. Cheon, F. Liu, K. B. Lee, T. S. Seo, Angew. Chem.2010,122, 5844; Angew. Chem. Int. Ed.2010,49,5708.
    [3]J. S. Erickson, F. S. Ligler, Nature 2008,456,178.
    [4]J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, F. S. Ligler, Anal. Chem.2009,81,5426.
    [5]M. Riskin, R. Tel-Vered, O. Lioubashevski, I. Willner, J. Am. Chem. Soc.2009,131, 7368.
    [6]D. L. Lu, J. Wang, L. M. Wang, D. Du, C. Timchalk, R. Barry, Y. H. Lin, Adv. Funct. Mater.2011,21,4371.
    [7]J. Rishpon, I. Rosen, Biosensors 1989,4,61.
    [8]V. Mani, B. V. Chikkaveeraiah, V. Patel, J. S. Gutkind, J. F. Rusling, ACS Nano 2009,3,585.
    [9]Y. Y. Cai, H. Li, B. Du, M. H. Yang, Y. Li, D. Wu, Y. F. Zhao, Y. X. Dai, Q. Wei, Biomaterials 2011,32,2117.
    [10]B. S. Munge, A. L. Coffey, J. M. Doucette, B. K. Somba, R. Malhotra, V. Patel, J. S. Gutkind, J. F. Rusling, Angew. Chem.2011,123,8061; Angew. Chem. Int. Ed. 2011,50,7915.
    [11]H. F. Dong, F. Yan, H. X. Ji, D. K. Y. Wong, H. X. Ju, Adv. Funct. Mater.2010, 20,1173.
    [12]J. Peng, L. N. Feng, K. Zhang, J. J. Li, L. P. Jiang, J. J. Zhu, Chem. Eur. J.2011, 17,10916.
    [13]G. F. Jie, L. Wang, S. S. Zhang, Chem. Eur. J.2011,17,641.
    [14]H. Nie, S. Liu, R. Yu, J. Jiang, Angew. Chem.2009,121,10046; Angew. Chem. Int. Ed.2009,48,9862.
    [15]M. H. Yang, H. Li, A. Javadi, S. Gong, Biomaterials 2010,31,3281.
    [16]L. N. Cella, W. Chen, N. V. Myung, A. Mulchandani, J. Am. Chem. Soc.2010, 132,5024.
    [17]J. Tang, D. P. Tang, B. L. Su, J. X. Huang, B. Qiu, G. N. Chen, Biosens. Bioelectron.2011,26,3219.
    [18]J. A. Ho, Y. C. Lin, L. S. Wang, K. C. Hwang, P. T. Chou, Anal. Chem.2009,81, 1340.
    [19]S. C. Tang, S. Vongehr, X. K. Meng, J. Mater. Chem.2010,20,5436.
    [20]D. Du, Z. X. Zou, Y. S. Shin, J. Wang, H. Wu, M. H. Engelhard, J. Liu, I. A. Aksay, Y. H. Lin, Anal. Chem.2010,82,2989.
    [21]X. M. Sun, Y. D. Li, Angew. Chem.2004,116,607; Angew. Chem. Int. Ed.2004, 43,597.
    [22]L. R. Kong, X. F. Lu, X. J. Bian, W. J. Zhang, C. Wang, Langmuir 2010,26,5985.
    [23]J. Das, M. A. Aziz, H. Yang,J.Am. Chem. Soc.2006,128,16022.
    [24]A. Ambrosi, M. T. Castaneda, A. J. Killard, M. R. Smyth, S. Alegret, A. Merkoci, Anal. Chem.2007,79,5232.
    [25]Y. Zhu, J. I. Son, Y. B. Shim, Biosens. Bioelectron.2010,26,1002.
    [26]Y. J. Song, X. H. Wang, C. Zhao, K. G. Qu, J. S. Ren, X. G. Qu, Chem. Eur. J. 2010,16,3617.
    [27]L. B. Zhang, T. Li, B. L. Li, J. Li, E. K. Wang, Chem. Commun.2010,46,1476.
    [28]R. Malhotra, V. Patel, J. P. Vaque, J. S. Gutkind, J. F. Rusling, Anal. Chem.2010, 82,3118.
    [29]A. De La Escosura-Muniz, C. Parolo, F. Maran, A. Mekoci, Nanoscale 2011,3, 3350.
    [30]J. A. Ho, H. C. Chang, N. Y. Shih, L. C. Wu, Y. F. Chang, C. C. Chen, C. Chou, Anal. Chem.2010,82,5944.
    [31]C. Leng, G. S. Lai, F. Yan, H. X. Ju, Anal. Chim. Acta 2010,666,97.
    [32]G. S. Lai, F. Yan, J. Wu, C. Leng, H. X. Ju, Anal. Chem.2011,83,2726.
    [33]B. P. Ting, J. Zhang, M. Khan, Y. Y. Yang, J. Y. Ying, Chem. Commun.2009, 6231.
    [34]G. S. Lai, J. Wu, H. X. Ju, F. Yan, Adv. Fund. Mater.2011,21,2938.
    [35]J. Wu, Z. J. Zhang, Z. F. Fu, H. X. Ju, Biosens. Bioelectron.2007,23,114.
    [36]C. H. Yao, Y. S. Shin, L. Q. Wang, C. F. Windisch, W. D. Samuels, B. W. Arey, C. M. Wang, W. M. Risen, G. J. Exarhos,.J. Phys. Chem. C 2007,111,15141.
    [37]L. Yuan, Y. F. Wu, H. Y. Shi, S. Q. Liu, Chem. Eur. J.2011,17,976.
    [38]G. L. Wang, P. P. Yu, J. J. Xu, H. Y. Chen, J. Phys. Chem. C 2009,113,11142.
    [1]X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde, J. D. Gong, S. N. Kim, J. Gillespie, J. S. Gutkind, F. Papadimitrakopoulos, J. F. Rusling,J. Am. Chem. Soc. 2006,128,11199.
    [2]R. Malhotra, V. Patel, J. P. Vaque, J. S. Gutkind, J. F. Rusling, Anal. Chem.2010, 82,3118.
    [3]J. F. Rusling, C. V. Kumar, J. S. Gutkind, V. Patel, Analyst 2010,135,2496.
    [4]J. A. Ho, Y. C. Lin, L. S. Wang, K. C. Hwang, P. T. Chou, Anal. Chem.2009,81, 1340.
    [5]G. Kima, K. W. Kim, M. K. Oh, Y. M. Sung, Biosens. Bioelectron.2010,25,1717.
    [6]J. Zhang, J. P. Lei, C. Xu, L. Ding, H. X. Ju, Anal. Chem.2010,82,1117.
    [7]C. Y. Yean, B. Kamarudin, D. A. Ozkan, L. S. Yin, P. Lalitha, A. Ismail, M. Ozsoz, M. Ravichandran, Anal. Chem.2008,80,2774.
    [8]B. V. M. Silva, I. T. Cavalcanti, A. B. Mattos, P. Moura, M. D. T. Sotomayor, R. F. Dutra, Biosens. Bioelectron.2010,26,1062.
    [9]H. F. Dong, F. Yan, H. X. Ji, D. K. Y. Wong, H. X. Ju, Adv. Funct. Mater.2010,20, 1173.
    [10]J. Peng, L. N. Feng, K. Zhang, J. J. Li, L. P. Jiang, J. J. Zhu, Chem. Eur. J.2011, 17,10916.
    [11]G. F. Jie, L. Wang, S. S. Zhang, Chem. Eur. J.2011,17,641.
    [12]J. Wang, G. Liu, M. R. Jan, J. Am. Chem. Soc.2004,126,3010.
    [13]G. S. Lai, F. Yan, H. X. Ju, Anal. Chem.2009,81,9730.
    [14]L. Chen, C. Chen, R. Li, Y. Li, S. Q. Liu, Chem. Commun.2009,2670.
    [15]J. M. Nam, C. S. Thaxton, C. A. Mirkin, Science 2003,301,1884.
    [16]W. Cai, I. R. Gentle, G. Q. Lu, J. J. Zhu, A. Yu, Anal. Chem.2008,80,5401.
    [17]D. Du, Z. Zou, Y. Shin, J. Wang, H. Wu, M. H. Engelhard, J. Liu, I. A. Aksay, Y. H. Lin, Anal. Chem.2010,82,2989.
    [18]C. Leng, J. Wu, Q. N. Xu, G. S. Lai, H. X. Ju, F. Yan, Biosens. Bioelectron.2011, 27,71.
    [19]J. B. Liu, S. H. Fu, B. Yuan, Y. L. Li, Z. X. Deng, J. Am. Chem. Soc.2010,132, 7279.
    [20]S. Bi, H. Zhou, S.S. Zhang, Biosens. Bioelectron.2009,24,2961.
    [21]R. J. Cui, H. P. Huang, Z. Z. Yin, D. Gao, J. J. Zhu, Biosens. Bioelectron.2008, 23,1666.
    [22]D. P. Tang, R. Yuan, Y. Q. Chai, Anal. Chem.2008,80,1582.
    [23]C. Leng, G. S. Lai, F. Yan, H. X. Ju, Anal Chim Acta 2010,666,91.
    [24]B. P. Ting, J. Zhang, M. Khan, Y. Y. Yang, J. Y. Ying, Chem. Commun.2009, 6231.
    [25]S. J. Guo, D. Wen, Y. M. Zhai, S. J. Dong, E. K. Wang, ACSNano 2010,4,3959.
    [26]S. Yan, Y. T. Ma, Y. Wang, J. W. Di, Y. F. Tu, Electrochim. Acta 2010,55, 4909.
    [27]R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, S. M. Brozik, Chem. Commun.2007,2741.
    [28]S. J. Guo, S. J. Dong, E. K. Wang, ACSNano 2010,4,574.
    [29]Q. Wei, Y.F. Zhao, B. Du, D. Wu, Y. Y. Cai, K. X. Mao, H. Li, C. X. Xu, Adv. Funct. Mater.2011,21,4193.
    [30]J. A. Ho, H. C. Chang, N. Y. Shih, L. C. Wu, Y. F. Chang, C. C. Chen, C. Chou, Anal. Chem.2010,82,5944.
    [31]Q. N. Xu, F. Yan, J. P. Lei, C. Leng, H. X. Ju, Chem. Eur. J.2012,18,499.
    [32]W.S. Hummers, R. E. Offeman, J. Am. Chem. Soc.1958,80,1339.
    [33]J. Wu, Z. J. Zhang, Z. F. Fu, H. X. Ju, Biosens. Bioelectron.2007,23,114.
    [34]P. L. He, N. F. Hu, G. Zhou, Biomacromolecules 2002,3,139.
    [35]J. Zhang, J. P. Lei, C. L. Xu, L. Ding, H. X. Ju, Anal. Chem.2010,82,1117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700