铂纳米簇/感光性聚酰亚胺杂化膜的制备表征及其在苯催化氢化反应中的探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯部分加氢制环己烯是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。环己烯为苯加氢反应的中间产物,但是由于最终产物环己烷的热力学稳定性比环己烯要高得多(环己烷的标准生成热为-153.4 kJ/mol,环己烯的为-63.9 kJ/mol),所以苯加氢反应很难被控制在环己烯阶段,而是大部分生成最终加氢产物环己烷。目前,关于苯加氢制环己烯催化剂研究的最多的为钌系催化剂,由于铂具有更高的加氢活性,所以更难以获得环己烯,因此相关研究甚少。但铂系催化剂的高催化活性、长使用寿命的特点和钌系催化剂供应不足、制备复杂、重复使用效率低的缺点,使得有必要对铂类催化剂在苯部分加氢中的催化活性做进一步探索。
     本文通过包埋法将有机材料感光性聚酰亚胺(PSPI)和无机材料铂纳米金属簇的特性结合起来形成铂纳米簇/感光性聚酰亚胺(Pt/PSPI)溶胀型膜反应器,对其结构和性能进行表征和分析,并将其应用于苯催化加氢反应中,以期获得高选择性的目标产物环己烯。具体包括以下几个方面的内容:
     1.采用聚乙烯基吡咯烷酮作为稳定剂,通过微波加热法制备了平均粒子直径为3.7 nm的稳定的铂族金属簇。X-射线衍射分析表明制备的铂金属簇具有良好的晶型和稳定性。微波加热具有辐射时间短和加热均匀的特征,可应用于多种纳米金属簇的制备。
     2. PSPI是通过传统的两步法由1,5-二(胺基苯基)-1,4-戊二烯-3-酮、3,3',4,4'-二苯酮四酸二酐和4,4’-二氨基二苯醚经聚合反应制得的。在第一步制得固含量为12 %的聚酰胺酸(PAA)后将分散在N-甲基-2-吡咯烷酮(NMP)中的铂纳米粒子添加至PAA中并搅拌。然后,通过程序升温法分别在80℃、150℃、200℃、250℃、300℃下处理1小时以进一步酰亚胺化得到Pt/PSPI杂化膜。制得的杂化膜Pt含量为5.5 wt.%。由于NMP既是作为制备铂纳米粒子的溶剂,同时也是合成PSPI的溶剂,因此通过包埋法,可将铂纳米粒子高度分散在PSPI膜中。X-射线衍射分析表明,加氢反应前后铂纳米稳定的存在于聚酰亚胺膜中,具有良好的晶型。X-射线光电子能谱分析表明由于铂原子与聚酰亚胺的氮和氧原子发生了络合现象,说明铂与氮、氧原子间存在作用力,减轻了催化活性中心的流失问题。
     3.以Pt/PSPI杂化膜为催化剂时,苯加氢得到产物环己烯和环己烷,环己烯的产率随着时间的延长而增加,在10h达到最大。以Pt/PSPI杂化膜为催化剂时,随着反应时间的延长,苯的转化率逐渐升高,同时环己烯的选择性呈现先升高后降低的趋势,当反应时间为2h,环己烯的选择性最大,达到72.4%。而当催化剂仅为单纯铂纳米金属簇而无聚酰亚胺膜时,唯一的产物为环己烷。由于在其它反应条件相同的情况下,只有当催化剂为Pt/PSPI,而不是单纯Pt金属簇时,才有产物环己烯的出现,这说明此杂化膜对产物环己烯的形成有着至关重要的影响。溶胀实验结果表明环己烯比苯和环己烷更难溶胀于杂化膜中,因此,我们推测一旦反应生成了环己烯,它会较快地从杂化膜中流溢出来,隔断了与催化氢化活性中心的接触,从而避免了进一步加氢成环己烷的可能性。所以,产物中环己烯的选择性要高于环己烷。
Partial hydrogenation of benzene to cyclohexene is a typical organic catalytic reaction and a subject of great interest, from both theoretical and practical aspects. In spite of the fact that cyclohexene is an intermediate product of the benzene hydrogenation, cyclohexane is the end product rather than cyclohexene, owing to the kinetically favouring hydrogenation of cyclohexene to cyclohexane (standard heats of formation of cyclohexane and cyclohexene are -153.4kJ/mol and -63.9kJ/mol respective). At present, ruthenium-based catalysts are the vast majority of catalysts on the benzene hydrogenation to cyclohexene. It is more difficult to obtain cyclohexene as the platinum has a higher hydrogenation activity than ruthenium. So, there are little researchs about it. The platinum-based catalysts have such characteristics as high catalytic activity and long life. And the ruthenium-based catalysts have so many shortcomings like inadequate supply, complexity of preparing, inefficient circular using and so on. Therefore, it is necessary to explore the catalytic activity of the platinum catalyst in the partial hydrogenation of benzene further.
     In this work, we fabricated Pt nano-cluster /photosensitive polyimide swollen membrane reactor (Pt/PSPI) consisting of inorganic material of monodisperse platinum group nano-clusters and organic material of photosensitive polyimide (PSPI) with the method of embedment. The structure and performance of hybrid membrane were characterized and analyzed. The membrane reactor was used to obtain the high selectivity of cyclohexene in catalytic hydrogenation reaction of benzene.There are three parts to be included in this paper: 1. The stabile platinum metal clusters were obtained with stabilizer Polyvinylpyrrolidone (PVP, K30) and reducing agent glycol by microwave irradiation (MW), which average diameter of particles was 3.7 nm. X-ray diffraction analysis showed the good crystalline form and stability of the platinum metal cluster. The characteristic of MW are short irradiation time and uniform heating. And MW can be applied to prepare a variety of nano-metal cluster.
     2. It was mixed with 1, 5-bisaminophenyl-1, 4-pentadien-3-one ,3,3’,4,4’-benzophenonetetracarboxylic dianhydride and 4,4’-Diaminodiphenyl ether to synthesize PSPI by traditional two-step method. Polyimide acid (PAA,which solid content was 12%) was prepared in first step, and then the catalysts which dispersed in N-methyl-2-pyrrolidone (NMP) were added to PAA by stirring. Lastly, Pt/PSPI hybrid membranes were obtained by heating 1h in 80℃、150℃、200℃、250℃、300℃respectively for further imiding with the method of temperature programmed. The Pt content of hybrid membrane was 5.5 wt.%. Platinum nano-particles were dispersed uniformly in membrane of PSPI by embedding, thanks to the nano-particles could be dissolved in NMP and the NMP was solvent for synthesis of PSPI. X-ray diffraction analysis showed that Pt nano- particles were stably loaded on polyimide film with good crystal form in pre and post reaction. X-ray photoelectron spectroscopy analysis showed that complex phenomena occurred between platinum atoms and nitrogen or oxygen atoms, which was force between atoms. Thereby it would to reduce the question of losing the catalytic active center.
     3. The products of benzene hydrogenation were cyclohexene and cyclohexane when the catalyst was Pt/PSPI hybrid membrane. It can be seen that the conversion of benzene and the yield of cyclohexene getting the peak after 10h increased with the time. The highest selectivity of cyclohexene increased at first and then decreased, which exceeded 72% at 2h. There was no cyclohexene in products when the catalyst was only Pt nano-particles without PSPI, and the only product was cyclohexane. The formation of cyclohexene is influenced deeply by hybrid membrane, because the cyclohexene of production only could be found when the catalysts were Pt/PSPI rather than Pt. The experiment results of swollen show that cyclohexene is hard to swollen in hybrid membrane rather than cyclohexane. Accordingly, we can conjecture that the cyclohexene is separated from active center of catalytic hydrogenation and effused from the hybrid membrane so that they cannot be further hydrogenated to cyclohexane, once they appeared in reaction. So the selectivity of cyclohexene is higher than that of cyclohexane.
引文
[1] Ghosh M K, Mittal K L. Polyimides: fundamentals and applications. New York: Marcel Dekker Inc, 1996, 1-4
    [2] Bogert M T, Renshaw R R. 4-Amino-o-phthalic acid and some of its derivatives. J. Am. Chem. Soc., 1908, 30(7): 1135-1144
    [3] Edwards W M, Robison I M. Polyimides of pyromellitic acid. US Patent, 2710853, 1955
    [4] Sroog C E, Endrey A L, Abramo S V, et al. Aronatic polypyromellitimides from aromatic polyamic acids. Journal of Polymer Science Part A: General Papers, 1965, 3(4): 1373-1390
    [5] Endrey A L. Process for preparing polyimides by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides. US Patent, 3179630, 1965
    [6]何天白,胡汉杰.功能高分子与新技术.北京:化学工业出版社,2000
    [7]崔永丽,张仲华,江利等.聚酰亚胺的性能及应用.塑料科技,2005,167(3):50-53
    [8] Endrey A L, Can. Patent 654,073, E.I. DuPont & Co., 1962
    [9] Endrey A L, US Patent 3179 630, 1965
    [10] Jones J I, Ochynski F W, Rackley F A, Chem. Ind. 1962,1686
    [11] Bower G M, Frost L W J, Journal of Polymer Science A, 1963,3135
    [12] Sroog C E, Endrey A L, Avramo S V, et al., Journal of Polymer Science A-3, 1965,1373
    [13] Echigo Y, et al, Proceedings 5th international conference on Polyimides, Ellenville, NY, November 25, 1994
    [14] Endrey, U. S. Patent 3242 136, E. I. DuPont & Co., 1966
    [15] Kerwin R E, Goldrick M R. Thermally stable photoresist polymer. Polymer Engineering and Science, 1971, 11(5): 426-430
    [16] R.Rubner, H.Ahne, E.Kiikn, et al. A photopolymer-The direct way to polyimide patterns. Photogr.Sci.Eng, 1979, 23: 303
    [17] Dubois J C, Bureau J M. Polyimides and Other High-temperature Polymers, edited by Abadie M J M, Sillion B, 1991, 461
    [18] Yoda N, Hiramoto H. New photosensitive high temperature polymers for electronic applications. J Macromol Sci Chem, 1984, A21: 1641-1663
    [19] Hiramoto H. Mat. Res. Soc. Symp. Proc, 1990, 167: 87
    [20] Takasago H, Takada M, Adachi K, et al. Fine-line, multilayer hybrids with wet-processed conductors and thick-film resistors,”in Proc. 34th Electronic Components Conf. New Orleans: 1984, 324
    [21] Ackermann K P, Hug R, BernerG. Proc. International Symp. On Microelectronics, Atlanta: 1986, 519
    [22] Sasaki S, Kon T, Osaki K, et al. A New Multi-Chip Module using a Copper Polyimide Multi-Layer Substrate. in Proc. 39th Electronic Components Conf, 1989, 629-635
    [23] Nishizawa H, Sato K, Kojima M. et al. A photosensitive polyimide using an alkaline aqueous solution as a developer. Polymer Engineering Science, 1992, 32(21):1610-1612
    [24] McKean D R, Wallraff G M, Volksen W, et al. Polym Master Sci Eng, 1992, 66: 237
    [25] Amane Mochizuki, Tadashi Teranishi, Mitsuru Ueda. Novel Photosensitive Polyimide Precursor Based on Polyisoimide Using an Amine Photogenerator. Macromolecules, 1995, 28(1): 365-369
    [26] Kikkawa H, Shoji F, Tanaka J, et al. Negative-type photosensitive polyimide precursors developable with aqueous alkaline solutions. Polym.Adv.Tech, 1993, 4(4): 268-276
    [27] Kubota S, Moriwaki T, Ando T, et al. J Macromol. Sci Chem., 1987, A24: 1497
    [28] Takano K, Mikogami Y, Nakano Y, et al. Photosensitive polyimides developable with basic aqueous solutions (II). Journal of Applied Polymer Science, 1992, 46(7):1137-1146
    [29] Hayase R, Kihara N, Pyasato N, et al., Polymer Preprints 1991, 40(10): 3715
    [30] Omote T, Koseki K, Yamaoka T. Soluble and optically transparent fluorine-containing photoreactive polyimide precursors: Spectral sensitization by organic peroxide and organic dye combination. Polymer Eng. Sci., 1989, 29(14): 945-949
    [31] Nakano T, Proceedings of the 2nd International Conference on Polyimides, , New York: Ellenville, 1985, 163
    [32] Omote T, Mochizuki H, Koseki K, et al. Fluorine-containing photoreactive polyimide. 7. Photochemical reaction of pendant 1,2-naphthoquinone diazide moieties in novel photoreactive polyimides. Macromolecules, 1990, 23: 4796-4802
    [33] Moore J, Dasheff A N. An intrinsically photosensitive polyimide Chemistry of Materials, 1989, 1:163-166
    [34] Ghosh M K, Mittal K L. Polyimides: fundamentals and applications. New York: Marcel Dekker Inc, 1996, 122
    [35] Sillion B, Verdet L. Polyimides and Other High-temperature Polymers, Amsterdam: 1991, 372
    [36]丁孟贤,何天白.聚酰亚胺新型材料.北京:科学出版社,1998, 167
    [37] Rames-Langlade G, Monjol P, Sekiguchi H. et al. Negative-type soluble photosensitive polyimides derived from benzhydroltetracarboxylic dianhydride: synthesis and characterization. Polymer, 1997, 38(19): 4965-4972
    [38] Seino Hiroshi, Haba Osamu, Ueda Mitsuru, et al. Photosensitive polyimide precursor based on polyisoimide: dimensionally stable polyimide with a low dielectric constant. Polymer, 1999, 40(3): 551-558
    [39] Kosuke Morita, Kazuya Ebara, Yuji Shibasaki, et al. New positive-type photosensitivepolyimide having sulfo groups. Polymer, 2003, 44(20): 6235-6239
    [40] Amane Mochizuki, Tadashi Teranishi, Mitsuru Ueda. Novel Photosensitive Polyimide Precursor Based on Polyisoimide Using an Amine Photogenerator. Macromolecules, 1995, 28(1): 365-369
    [41] J A Moore, A N Dasheff. An intrinsically photosensitive polyimide. Chemistry of Materials, 1989, 1(1): 163-166
    [42] Jia-Shen Li, Zuo-Bang Li, Pu-Kun Zhu. Modification of negative auto-photosensitive polyimide. Journal of Applied Polymer Science, 2000, 77(4): 943-947
    [43] Pukun Zhu, Zuobang Li, Qiang Wang, et al. Synthesis and characterization of photosensitive copolysiloxaneimides. Journal of Applied Polymer Science, 1997, 64(8): 1463-1468
    [44] Aiqing Zhang, Xiangdan Li, Changwoon Nah, et al. Facile modifications of a polyimide via chloromethylation I: Novel synthesis of a new photosensitive polyimide. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(1): 22-29
    [45] J O Choi, J C Rosenfeld, J A Tyrell, et al. Photosensitive polyimidesiloxanes. Polymer Engineering & Science, 1992, 32(21): 1630-1633
    [46] J V Crivello, J L Lee, D A Conlon. Synthesis and characterization of photosensitive polyimides. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25(12): 3293-3309
    [47] Kim K H, Jang S, Harris F W. Synthesis and Characterization of Photosensitive Polyimides for Optical Applications. Macromolecules, 2001, 34(26): 8925-8933
    [48] Oh Se Young, Park Joon-Kyu, Ko Chang-Bum, et al. Patterning of photosensitive polyimide LB film and its application in the fabrication of biomolecular microphotodiode array. Biosensors and Bioelectronics, 2003, 19(2): 103– 108
    [49]刘寿长,苯部分加氢制环己烯催化技术研究进展,精细与专用化学品,2004,12(24),4-5
    [50]曹声春,黄孟光,汪卫斌.Ni/海泡石催化苯选择加氢为环己烯研究.湖南大学学报(自然科学版),1997,24(4):36-39
    [51]刘寿长,罗鸽,韩民乐.浸渍法制备苯部分加氢制环己烯催化剂的表征,催化学报,2001 ,22 (6) :559~562
    [52]刘寿长,罗鸽,谢云龙.沉淀法制备苯选择加氢制环己烯Ru-Zn催化剂的研究,分子催化,2002 ,16 (5) :349~354
    [53]杨新丽,郭益群,刘寿长,非晶Ru-Co-B/ ZrO2催化苯加氢制备环己烯,应用化〔J〕,2003 ,21 (4) :379~381
    [54]刘寿长,郭益群,杨新丽,液相法苯选择加氢制环己烯催化反应动力学方程,催化学报,2003 ,24 (1) :42~47
    [55]刘寿长,李利民,王向宇,苯选择加氢制环己烯催化剂及其制造方法,中国专利01122208. 5
    [56]刘寿长,李利民,王向宇,高选择性苯部分加氢制环己烯工业催化剂的研究.科学技术成果鉴定证书.豫科鉴委字〔2001〕第105号
    [57] Van der Steen P J, Scholten J J F. The influnce of modified on the selectivity to cyclohexene in the gas– phase hydrogenation of benzene over ruthenium[A] . In : Int . Congr. Catal., 8th , 1984. Verlag chemie. weinheim, Fed Rep Ger : 1985 , 659 - 670
    [58] Nagahara Hajime, Ono Mitsuji, Fukuoka Yohei. Partial hydrogenation of benzene to cyclohexene. Studies in Surface Science Catalysis, 1995 , 92 : 375~378
    [59] Konishi Mitsuo, Nagahara Hajime. Partial hydrogenation of monocyclic aromatic hydrocarbons. JP Patent, 62108826.1987
    [60] Nagahara Hajime, Konishi Mitsuo. Partial hydrogenation of monocyclic aromatic hydrocarbons. JP Patent, 6281331.1987
    [61] Nagahara Hajime, Konishi Mitsuo. Preparation of cycloolefins as synthetic interme diates. JP Patent, 6281332. 1987
    [62] Nagahara Hajime, Konishi Mitsuo. Microcrystalline ruthenium and solid basic zinc sulfates for manufacture of cyclohexene from benzene. JP Patent, 62205037. 1987
    [63] Deguchi Ryoji, Fukuoka Yohei. Preparation of cycloolefins by ruthenium - catalysed reduction of monocylic aromatic hydrocarbons. JP Patent, 63243039. 1988
    [64] Maguire John A, Petrillo Angelo, Goldman Alan S. Efficient transfer - dehydrogenation of alkanes catalyzed by rhodium trimethylphosphine complexes under dihydrogen atmosphere. Journal of the American Chemical Society. , 1992 , 114 (24) : 9 492~9 498
    [65] Oro Luis A, Campo Marina, Carmona Paniel. Hydrogenation catalysts based on pentamethyl cyclopentadienyl rhodium complexes with pyrazole– type ligands. Journal of Molecular catalysis A-Chemical, 1987 , 39 (3) :341~346
    [66] Galvagno S , Donato A , Neri G, Pietropaolo D , et al. Rhodium/ nylon catalysts for partial hydrogenation of benzene to cyclohexene. Reaction Kinetics and Catalysis. Letter. , 1988 , 37 (2) : 443~449
    [67] Elemesor E , Zanozina P P , Zhanabaev B , et al. Selective hydrogenation of benzene on a ruthenium catalyst. Zh. Fiz. Khim (Russ) . , 1988 , 62 (9) : 2 515~2 517
    [68] Galicia E, Diaz G, Fuentes S. High pressure benzene hydrogenation on small rhodium particles. Studies Surface Science Catalysis, 1987 (pub , 1988) 38 : 11~19
    [69] Nagahara Hajime, Fukuoka Yohei. Regeneration of catalysts. JP Patent, 6265751. 1987
    [70] Ichihashi Hiroshi, Yoshioka Hiroshi. A process for the preparation of cycloolefins by partial hydrogenatuin of aromatic hydrocarbons. JP Patent, 62142126. 1987
    [71] Dini P, Dones D, Montelatici S, et al. Journal of Catalysis, 1973, 30(1):1
    [72] Harrison D P, Rase H F. Ind Eng Chem Fundam, 1967, 6:161
    [73] Domínguez F, Sánchez J, Arteaga G, Choren E. Journal of Molecular catalysis A-Chemical, 2005, 228(1-2):319 [74 ] Ono Mitsuji , Nagahara Hajime. JP Patent, 0368453, 1991
    [75]梁红玉,张连红,姜恒.苯部分加氢制备环己烯研究的进展[J] .抚顺石油学院学报. 2000, 20 (2) : 34-39
    [76]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002,66
    [77]阎子峰.纳米催化技术.北京:化学工业出版社,2003,24-27
    [78] Lu Chang Qin, S Iijima. Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation. Chem. Phys.Lett, 1997, 269(1):65-71
    [79] Yuval Ebenstein, Eyal Nahum,Uri Banin..Tapping Mode Atomic Force Microscopy for Nanoparticle Sizing: Tip-Sample Interaction Effects. Nanoletters, 2002, 2(8):3445-3446
    [80] R. F. Marzke, Catal. Rev. Sci. Eng., 19, 43 (1979).
    [81] L. J. de Jongh, J. Baak, H. B. Brom, D. van der Putten, Physics and Chemistry of Finite System: From Clusters to Crystals; P. Jena, S. N. Khamma, B. K. Rao, Eds., Kluwer Academic: Dordrecht, 1992, Vol. II, p839-851.
    [82] A. Roucoux, J. Schulz, H. Patin, Chemical Review. 102, 3757-3778 (2002).
    [83] Marcel Mulder ,Basic Principles of Membrane Technology. 1996 Khuwer Academic Publishers :34
    [84]石跃红,杨炯,马桂萍.无机膜制备技术的进展.山西化工, 1999, 19(4): 14-19.
    [85]彭峰,黄仲涛.无机膜的制备技术进展.石油化工, 1996, 25(9): 662-667.
    [86]黄仲涛,曾昭槐钟邦克等.无机膜技术及其应用.北京:中国石化出版社, 1999. 15-20.
    [87] Rodemann K, Staude E. Synthesis and characterization of affinity membranes made from polysulfone. Journal of Membrane Science, 1994, 88: 271-275.
    [88] Rodemann K, Staude E. Polysulfone affinity membranes for the treatmeat of amino acid mixtures. Biotechnol Bioeng, 1995, 46: 503-509.
    [89] Derick A, Trangiang N, et al. Evaluation of the permeability and blood-compatibility properties of membranes formed by physical interpenetration of chitosan with PEO/PPO/PEO triblock copolymers. Journal of Applied Polymer Science, 2001, 80: 1274-1284.
    [90] Senay AC, Nursevin H O. Immobilization of catalase on chitosan film. Enzyme and Micribial Technology, 2000, 26: 497-501.
    [91] Erol A, Erhan D, A new enzyme electrode based on ascorbaze oxidase immobilized in gelatin for specific determination of l-ascorbic acid. Talanta, 1999, 50: 87-93.
    [92]吴雪妹,膜催化反应器及其应用研究,浙江化工,2002,(33):3-4
    [93]王芳,孙淑英,膜催化技术的应用与展望,金山油化纤,2001,(3):14-18
    [94] William W.Yu, Hanfan Liu,Singular modificationg effect of metal cantions and metal complex ions on the catalytic properties of metal colloidal nanocatalysts, Journal of Molecular catalysis A-Chemical, 243, (2006)120-140B.
    [95] Baolin He, Yao Ha, Hanfan Liu, et al. Size control synthesis of polymer-stabilized water souble platinum oxide nanoparticles, Journal of Colloid Interface Science, 308/1, (2007), 105-111
    [96] W. Yu, W. Tu, H. Liu, Langmuir, 15, 6 (1999)
    [97] Tu W X, Liu H F. Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chemistry of Materials, 2000, (122): 564-567
    [98] Tu W X, Liu H F. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 2000, 10(9): 2207-2211
    [99] Grace A N, Pandian K. One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol-A comparative study. Materials Chemistry and Physics. 2007, 104(1):191-198
    [100] Lee H, Habas S E, Kweskin S et al. Morphological control of catalytically active platinum nanocrystals. Angew Chem Int. Ed. 2006, 45(46):7824-7828
    [101] Hou H Q, Jiang J G, Ding M X. Ester-type precursor of polyimide and photosensitivity. European Polymer Journal, 1999, 35: 1993-2000
    [102] Amane M, Tadashi T, Mitsuru U. Mitsuru. Positive-working alkaline-developable photosensitive polyimide precursor based on polyisoimide using diazonaphthoquinone as a dissolution inhibitor. Polymer, 1995, 36(11): 2153-2158
    [103] Han H, Seo J, Ree M, et al. Water sorption and diffusion behaviours in thin films of photosensitive polyimides. Polymer, 1998, 39(13): 2963-2972
    [104] Yang S Y, Park C E, Jung M S. Effects of reactive end-capper on mechanical properties of chemical amplified photosensitive polyimide. Polymer, 2003, 44: 3243-3249
    [105] Liu L, Lu Q H, Yin J, et al. Photosensitive polyimide (PSPI) materials containing inorganic nanoparticles (I)PSPI/TiO2 hybrid materials by sol–gel process. Materials Chemistry and Physics, 2002, 74: 210-213
    [106] Sui Y, Wang D, Yin J, et al. Side-chain second-order nonlinear optical poly?urethane-imide/photosensitive polyimide blends with the improved dipole orientation stability by photo-crosslinking. Materials Letters 2002, 52: 53-56
    [107] Feng K, Tsushima M, Matsumoto T, et al. Synthesis and properties of novel photosensitive polyimides containing chalcone moiety in the main chain. Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36: 685-693
    [108]王维,张爱清,杨志兰, et al.含氧膦结构的可溶性感光聚酰亚胺合成与表征.高分子学报, 2006, (3): 545-548
    [109]丁丽琴,王维,张爱清.含戊二烯酮结构新型光敏聚酰亚胺的合成与表征.高分子材料科学与工程. 2008, 24(3): 48-51
    [110]丁丽琴,张群朝,龙帅,张爱清.含1,42戊二烯-3-酮结构的光敏性二胺合成.功能材料, 2007, 38(5): 856-858
    [111]王笑花,王林格,黄勇.乙基氰乙基纤维素P交联聚丙烯酸复合物膜的溶胀行为.高分子学报. 2005, (1): 66-70
    [112] Huang Zh J, Fang D Y. Chemical Technology. Beijing: High Edu Press, 2001. 181.
    [113] Nagahara H, Ono M, Konishi M, et al. Partial hydrogenation of benzene to cyclohexene. Applied Surface Science. 1997, 121/122: 448-451
    [114] Harrison D P, Rase H F. Ind Eng Chem Fundam, 1967, 6: 161
    [115] Domínguez F, Sánchez J, Arteaga G, et al. Gallia as support of Pt in benzene hydrogenation reaction. Journal of Molecular Catalysis A: Chemical. 2005, 228 (1-2): 319-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700