铅锌矿区重金属的富集规律和形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅锌矿产资源的开发和利用引发的环境问题一直备受关注,其重金属的形态和传播方式直接影响了当地居民健康,但是重金属如何由矿石进入环境、污染传播的介质及其作用等仍然不清楚,另外污染物的形态及其与大分子的结合方式也有待研究。
     因此,为揭示重金属迁移转化规律、探讨重金属形态与其耐受性的关系,选取了己开采50多年的南京栖霞山铅锌矿区为主要的研究区,并以开采不足十年的张北蔡家营铅锌矿区和北京周边无矿区为参考,采集了多种类型的生物地球化学样品,利用EDXRF和ICP-MS开展了矿区重金属分布特征和铅同位素污染示踪的研究,运用同步辐射XANES和XRF分析了矿区土壤和植物的重金属形态及其微区分布特征,并综合亲和层析柱、电泳、LC-MS/MS等技术,开展了矿区富铅植物的铅结合蛋白的研究,具体取得了以下几点认识和成果。
     第一,不同地区的调查发现,污染主要集中在南京栖霞山铅锌矿区。该矿区水中的Pb以及土壤中的Pb、As、Cd和Zn均超过了标准值,另外植物中的Pb和As的含量也较高。
     第二,铅同位素示踪表明南京栖霞山铅锌矿区污染主要来自矿山,大气沉降是当地污染传播的主要方式之一
     第三,生物膜中重金属的含量比其周围环境水、土和植物均高,证实了生物膜对重金属的富集功能。
     第四,土壤的XANES分析表明选矿厂表层土壤中铅为硫酸铅和硝酸铅,菜园地下1.0.1-2米的剖面土中铅主要为有机的氯化三甲基铅。然而,选矿厂、矿区排气口以及矿区菜园表层和剖面的土壤中砷形态相同,均为五价砷化合物。
     第五,植物XANES分析表明,矿区浮萍中砷为三价砷,铅为含硫的有机酸铅。另外,实验室培养的黄瓜和花叶笋的铅形态不同于培养液硝酸铅的形态,而与浮萍铅形态相同,且在根、茎和叶中无形态差别,为含硫的有机酸铅,表明植物具有将无机铅转化为有机铅的功能。
     第六,在矿区富含重金属的浮萍植物中,不仅发现了砷元素具有显著的叶脉分布特征,而且成功鉴定了44个铅结合蛋白。其中有7个铅结合蛋白存在的可能性极大,分别是1,5-二磷酸核酮糖羧化酶大亚基、ATP合成酶β亚基、热激蛋白HSP83A和HSP81-1,以及葡萄糖调解蛋白GRP-78、GRP-78.5和GRP-94homologo热激蛋白和葡萄糖调解蛋白是常见的金属结合蛋白,但1,5-二磷酸核酮糖羧化酶大亚基和ATP合成酶β亚基与金属结合的报道不多,它们与铅的结合还未见报道。另外,与这7个铅结合蛋白所匹配的肽段中,含有较多的谷氨酸、天冬氨酸、组氨酸和甲硫氨酸,研究发现这些氨基酸残基易与铅结合。故浮萍富含并耐受铅可能与这些易与铅结合的氨基酸残基大量存在有关。
     总之,随着铅锌矿矿产资源开采以及时间的累积,矿石中的重金属会不断地进入环境,其中大气沉降和生物膜分别在宏观和微观上对重金属的污染传递起着重要的作用。矿区土壤和植物中重金属形态差异显著,其中矿区的水生植物浮萍不仅富含重金属,而且浮萍中的砷元素具有显著的叶脉分布特征,浮萍中的铅结合蛋白也含有较多的易与铅结合的配体。这些认识和发现为理解重金属的传播规律、探讨植物对重金属的耐受机理提供了一定的参考。
Environmental problems from exploitation and utilization of lead-zinc mine have received public attention. Speciation and transmission way of heavy metals have a direct impact on the health of local residents. However, it's not clear that how heavy metals migrate from ore into environment and what the media is. It's also need to deeply study the speciation of pollutants and their binding mode with macromolecules.
     Therefore, in order to reveal migration and transformation law of heavy metals and investigate the relationship between speciation and tolerance of heavy metals, some studies are carried out. Lead-zinc mining area of Nanjing Qixiashan, which has been exploited over50years, is selected as a main study area, and lead-zinc mining area of Zhangbei Caijiaying with less than a decade exploitation and non-mining area around Beijing are selected as reference areas. Many biogeochemical samples are collected. EDXRF and ICP-MS are used to study the characteristics of heavy metals distribution and pollution tracer of lead isotope. Synchrotron radiation XANES and XRF are used to analyze the speciation and micro-distribution of soil and plants in mining area. Affinity column, electrophoresis, and LC-MS/MS are used to study lead-binding protein of plants with high Pb concentration in mining area. Several results from analyses are concluded as below.
     Studying of different areas, we found that the pollution is mainly distributed in lead-zinc mining area in Nanjing Qixiashan. Lead concentration of water is over the standard value, and concentrations of Pb, As, Cd, and Zn are also over the standard values in soil. Besides, the concentrations of Pb and As are very high.
     Lead isotope analysis shows that the pollution source is mainly from the mine in Qixiashan, and atmospheric deposition is one of the main pathways of pollution spread over there.
     Concentrations of heavy metals in biofilm are higher than the ambient water, soil and plants, which confirmed the enrichment function of heavy metals in biofilm.
     Soil XANES analysis shows that the speciation of lead is lead sulfate and lead nitrate in the surface soil around dressing plant, but mainly organic chloride methyl lead in the underground soil of1.0-1.2m depth in garden. However, soil accumulate arsenic as As(V), no matter the sources of soil from dressing plant, vent, surface or profile soil around mining area.
     Plant XANES analysis shows that duckweeds accumulate arsenic as As(Ⅲ) and lead as sulfur-containing organic acid lead. In addition, the lead speciation in cucumber and mosaic shoot growing in lab is different from Pb(NO3)2that was added for cultivation, but is the same with lead speciation of duckweed. There is no difference of lead speciation among roots, stems and leaves of cultivated plants, which preserved lead as sulfur-containing organic acid lead. This result showed that plants are able to transform the inorganic lead into organic lead.
     Duckweeds from mining area, which is rich in heavy metals, are found the significant distribution of arsenic along veins, and are indentified44lead-binding proteins. There are seven lead-binding proteins of high significance. They are ribulose bisphosphate carboxylase large chain (RuBisCO large subunit), ATP synthase subunit beta, heat shock protein83(HSP83A), heat shock protein81-1(HSP81-1),78kDa glucose-regulated protein homolog (GRP-78),78kDa glucose-regulated protein homolog5(GRP-78-5) and glucose-regulated protein94homolog (GRP-94homolog). Heat shock proteins and glucose-regulated proteins are common metal-binding proteins. However, there is little literature about metal ion binding for RuBisCO large subunit and ATP synthase subunit beta, and there is no literature about lead binding for these two proteins. In addition, there are some amino acid residues of glutamates, aspartates, histidines and methionines in matched peptides for these seven proteins, which were reported to bind with lead easily. Thus, it is suggested that these amino acid residues may play a role for the lead tolerance mechanism of duckweed.
     In conclusion, with the exploitation and utilization of lead-zinc mine for a long time, the heavy metals of ore are transferred into environment continually. Atmospheric deposition and biofilm play an important role in heavy metals migration on macroscopic and microscopic views respectively. The significant difference of speciation is found between soil and plants. The aquatic duckweed from mining area is not only rich in heavy metals but has significant distribution of arsenic along veins. In addition, there are some ligands binding with lead easily in lead-binding proteins of duckweed. These results and discovery provide a certain reference in understanding the propagation law of heavy metals and exploring the tolerance mechanism of heavy metals in plants.
引文
[1]郝晓地,兰荔,张璐平.生物膜对日常生产、生活的影响与作用[J].地球与环境,2008,36(3):251-255.
    [2]刘雨,环境保护,赵庆良,郑兴灿.生物膜法污水处理技术[M]:中国建筑工业出版社,2000:99.111.
    [3]张金莲,吴振斌.水环境中生物膜的研究进展[J].环境科学与技术,2007,30(11):102-106.
    [4]温沁雪,施汉昌,陈志强.生物膜微环境和传质现象研究进展[J].环境污染治理技术与设备,2006,7(006):1-5.
    [5]Lewandowski Z, Webb D, Hamilton M,Harkin G. Quantifying biofilm structure[J]. Water science and technology,1999,39(7):71-76.
    [6]Percival S, Knapp J, Edyvean R, Wales D. Biofilms, mains water and stainless steel[J]. Water Research,1998,32(7):2187-2201.
    [7]Wimpenny J. Ecological determinants of biofilm formation[J]. Biofouling, 1996,10(1-3):43-63.
    [8]Hunt A P,Parry J D. The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community[J]. Biofouling,1998, 12(4):287-303.
    [9]Rao T, Rani P, Venugopalan V,Nair K. Biofilm formation in a freshwater environment under photic and aphotic conditions[J]. Biofouling,1997, 11(4):265-282.
    [10]Kropfl K, Vladar P, Szabo K, Acs E, Borsodi A K, Szikora S, Caroli S,Zaray G. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary)[J]. Environmental Pollution,2006, 144(2):626-631.
    [11]董德明,李鱼,花修艺.自然水体中生物膜的主要化学组分与水体中相关化学物质的关系[J].高等学校化学学报,2002,23(8):1507-1509.
    [12]Haack E A,Warren L A. Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage[J]. Environmental Science & Technology,2003,37(18):4138-4147.
    [13]Schorer M,Eisele M. Accumulation of inorganic and organic pollutants by biofilms in the aquatic environment[J]. Water, Air,& Soil Pollution,1997, 99(1):651-659.
    [14]Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H,Tavares T. Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr (Ⅵ), Cd (Ⅱ), Fe (Ⅲ) and Ni (Ⅱ)[J]. Chemical Engineering Journal,2009,152(1):110-115.
    [15]Lameiras S, Quintelas C,Tavares T. Biosorption of Cr (Ⅵ) using a bacterial biofilm supported on granular activated carbon and on zeolite[J]. Bioresource technology,2008,99(4):801-806.
    [16]田超,张园园,邱治国,李学德.自然水体生物膜对铜(Ⅱ),镉(Ⅱ)的吸附研究[J].环境科学学报,2007,27(6):1020-1023.
    [17]花修艺,董德明,费珊珊,郑娜,李鱼.自然水体生物膜各组分吸附铅和镉时共存铅,镉的相互影响[J].环境化学,2005,24(006):669-674.
    [18]郑娜,花修艺,董德明,纪亮.重金属在自然水体生物膜上的竞争吸附[J].吉林大学学报:理学版,2005,43(003):388-393.
    [19]赵庆良,任南琪.水污染控制工程[J].北京:化学工业出版社,2005.
    [20]吴会中,单欣,等.生物膜处理技术的研究与进展[J].中国勘察设计,2005(11):52-54.
    [21]Vis C, Hudon C, Cattaneo A,Pinel-Alloul B. Periphyton as an indicator of water quality in the St Lawrence River (Quebec, Canada)[J]. Environmental Pollution,1998,101 (1):13-24.
    [22]Admiraal W, Blanck H, Buckert-De Jong M, Guasch H, Ivorra N, Lehmann V, Nystrom B, Paulsson M,Sabater S. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream[J]. Water Research, 1999,33(9):1989-1996.
    [23]Ivorra N, Hettelaar J, Tubbing G, Kraak M, Sabater S,Admiraal W. Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers[J]. Archives of environmental contamination and toxicology,1999,37(1):19-28.
    [24]Barranguet C, Plans M, Van Der Grinten E, Sinke J J,Admiraal W. Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river[J]. Environmental toxicology and chemistry,2002, 21(9):1955-1965.
    [25]Khatoon H, Yusoff F, Banerjee S, Shariff M,Bujang J S. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds[J]. Aquaculture,2007, 273(4):470-477.
    [26]Morin S, Duong T, Dabrin A, Coynel A, Herlory O, Baudrimont M, Delmas F, Durrieu G, Schafer J,Winterton P. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France[J]. Environmental Pollution,2008, 151(3):532-542.
    [27]Calow P. Handbook of ecotoxicology[M]:Springer,1993.
    [28]Sanz-Lazaro C, Navarrete-Mier F,Marin A. Biofilm responses to marine fish farm wastes[J]. Environmental Pollution,2011,159(3):825-832.
    [29]Warren L A. Biofilms and metal geochemistry:the relevance of micro-organism-induced geochemical transformations.2005. Cambridge; Cambridge University Press.
    [30]Smith E, Kempson I M, Juhasz A L, Weber J, Rofe A, Gancarz D, Naidu R, McLaren R G,Grafe M. In Vivo-in Vitro and XANES Spectroscopy Assessments of Lead Bioavailability in Contaminated Periurban Soils[J]. Environmental Science & Technology,2011,45(14):6145-6152.
    [31]Comaschi T, Meneghini C, Businelli D, Mobilio S,Businelli M. XAS study of lead speciation in a central Italy calcareous soil[J]. Environmental Science and Pollution Research,2011,18(4):669-676.
    [32]Barrett J E S, Taylor K G, Hudson-Edwards K A,Charnock J M. Solid-Phase Speciation of Pb in Urban Road Dust Sediment:A XANES and EXAFS Study[J]. Environmental Science & Technology,2010,44(8):2940-2946.
    [33]Sharma N C, Gardea-Torresdey J L, Parsons J,Sahi S V. Chemical speciation and cellular deposition of lead in Sesbania drummondii[J]. Environmental toxicology and chemistry,2004,23(9):2068-2073.
    [34]Sarret G, Vangronsveld J, Manceau A, Musso M, D'Haen J, Menthonnex J-J,Hazemann J-L. Accumulation Forms of Zn and Pb in Phaseolus vulgaris in the Presence and Absence of EDTA[J]. Environmental Science & Technology,2001,35(13):2854-2859.
    [35]Lopez M L, Peralta-Videa J R, Parsons J G, Benitez T,Gardea-Torresdey J L. Gibberellic Acid, Kinetin, and the Mixture Indole-3-Acetic Acid-Kinetin Assisted with EDTA-Induced Lead Hyperaccumulation in Alfalfa Plants[J]. Environmental Science & Technology,2007,41(23):8165-8170.
    [36]Niazi N K, Singh B,Shah P. Arsenic Speciation and Phytoavailability in Contaminated Soils Using a Sequential Extraction Procedure and XANES Spectroscopy[J]. Environmental Science & Technology,2011, 45(17):7135-7142.
    [37]Cances B, Juillot F, Morin G, Laperche V, Alvarez L, Proux O, Hazemann J, Brown Jr G,Calas G. XAS evidence of As (V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant[J]. Environmental Science & Technology,2005, 39(24):9398-9405.
    [38]Cances B, Juillot F, Morin G, Laperche V, Polya D, Vaughan D, Hazemann J L, Proux O, Brown G,Calas G. Changes in arsenic speciation through a contaminated soil profile:A XAS based study[J]. Science of the Total Environment,2008,397(1):178-189.
    [39]Meunier L, Walker S R, Wragg J, Parsons M B, Koch I, Jamieson H E,Reimer K J. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia[J]. Environmental Science & Technology,2010, 44(7):2667-2674.
    [40]Webb S M, Gaillard J F, Ma L Q,Tu C. XAS speciation of arsenic in a hyper-accumulating fern[J]. Environmental Science & Technology,2003, 37(4):754-760.
    [41]黄泽春,陈同斌,雷梅,胡天斗,黄启飞.砷超富集植物中砷化学形态其转化的EXAFS研究[J].中国科学C辑,2003,33(6):488-494.
    [42]Castillo-Michel H, Hernandez-Viezcas J, Dokken K M, Marcus M A, Peralta-Videa J R,Gardea-Torresdey J L. Localization and Speciation of Arsenic in Soil and Desert Plant Parkinsonia florida Using μXRF and μXANES[J]. Environmental Science & Technology,2011,45(18):7848-7854.
    [43]Meirer F, Pepponi G, Streli C, Wobrauschek P, Mihucz V, Zaray G, Czech V, Broekaert J, Fittschen U,Falkenberg G. Application of synchrotron radiation-induced TXRF-XANES for arsenic speciation in cucumber (Cucumis sativus L.) xylem sap[J]. X-Ray Spectrometry,2007, 36(6):408-412.
    [44]Meharg A A, Lombi E, Williams P N, Scheckel K G, Feldmann J, Raab A, Zhu Y,Islam R. Speciation and localization of arsenic in white and brown rice grains[J]. Environmental Science & Technology,2008,42(4):1051-1057.
    [45]史冬燕.植物金属硫蛋白概述[J].生物学教学,2009,34(7):3-4.
    [46]张晓钰,茹炳根.植物类MT与植物络合肽[J].生命科学,2000,12(4):170-]72.
    [47]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [48]邢树礼,王洪光,赵帅.金属硫蛋白的功能及应用前景[J].生物技术通报,2008(002):45-47.
    [49]Thirumoorthy N, Manisenthil Kumar K, Shyam Sundar A, Panayappan L,Chatterjee M. Metallothionein:an overview[J]. World Journal of Gastroenterology,2007,13(7):993-996.
    [50]Park J D, Liu Y,Klaassen C D. Protective effect of metallothionein against the toxicity of cadmium and other metals[J]. Toxicology,2001,163(2-3):93-100.
    [51]张敬旭,符绍莲,江河,段平,阮明,张宝旭.金属硫蛋白降低铅致新生仔鼠脑组织的氧化损伤[J].工业卫生与职业病,2003,29(4):223-225.
    [52]Qu W, Diwan B A, Liu J, Goyer R A, Dawson T, Horton J L, Cherian M G,Waalkes M P. The Metallothionein-Null Phenotype Is Associated with Heightened Sensitivity to Lead Toxicity and an Inability to Form Inclusion Bodies[J]. The American Journal of Pathology,2002,160(3):1047-1056.
    [53]Waalkes M P, Liu J, Goyer R A,Diwan B A. Metallothionein-Ⅰ/Ⅱ double knockout mice are hypersensitive to lead-induced kidney carcinogenesis:role of inclusion body formation[J]. Cancer research,2004,64(21):7766-72.
    [54]Liu J, Kershaw W C,Klaassen C D. The protective effect of metallothionein on the toxicity of various metals in rat primary hepatocyte culture[J]. Toxicology and Applied Pharmacology,1991,107(1):27-34.
    [55]Zuo P, Qu W, Cooper R N, Goyer R A, Diwan B A,Waalkes M P. Potential role of a-synuclein and metallothionein in lead-induced inclusion body formation[J]. Toxicological Sciences,2009,111 (1):100-108.
    [56]Grill E, Winnacker E L,Zenk M H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins[J]. Proceedings of the National Academy of Sciences,1987, 84(2):439-433.
    [57]Zenk M H. Heavy metal detoxification in higher plants-a review[J]. Gene, 1996,179(1):21-30.
    [58]Cobbett C S. A family of phytochelatin synthase genes from plant, fungal and animal species[J]. Trends in plant science,1999,4(9):335.
    [59]Cobbett C S. Phytochelatin biosynthesis and function in heavy-metal detoxification[J]. Current opinion in plant biology,2000,3(3):211-216.
    [60]徐照丽,吴启堂,依艳丽.重金属植物螯合肽(PC)的研究进展[J].农业环境保护,2001,20(6):468-470.
    [61]Nakazawa R,Takenaga H. Interactions between cadmium and several heavy metals in the activation of the catalytic activity of phytochelatin synthase[J]. Soil Science and Plant Nutrition,1998,44(2):265-268.
    [62]Andra S S, Datta R, Sarkar D, Makris K C, Mullens C P, Sahi S V,Bach S B H. Induction of lead-binding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)][J]. Journal of environmental quality,2009,38(3):868-877.
    [63]Konishi T, Matsumoto S, Tsuruwaka Y, Shiraki K, Hirata K, Tamaru Y,Takagi M. Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase[J]. Journal of Biotechnology,2006,122(3):316-325.
    [64]Knecht J A, Dillen M, Koevoets P L M, Schat H, Verkleij J A C,Ernst W H O. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation)[J]. Plant physiology, 1994,104(1):255-261.
    [65]Ebbs S, Lau I, Ahner B,Kochian L. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator thlaspi caerulescens (J.& C. Presl) [J]. Planta,2002,214(4):635-640.
    [66]周桂凤,刘栋,蒋云生.铅结合蛋白研究进展[J].国外医学:卫生学分册,2006,33:100-104.
    [67]Bergdahl I A, Grubb A, Schutz A, Desnick R J, Wetmur J G, Sassa S,Skerfving S. Lead Binding to δ-Aminolevulinic Acid Dehydratase (ALAD) in Human Erythrocytes[J]. Pharmacology & toxicology,1997, 81(4):153-158.
    [68]Quintanilla-Vega B, Smith D R, Kahng M W, Hernandez J M, Albores A,Fowler B A. Lead-binding proteins in brain tissue of environmentally lead-exposed humans[J]. Chemico-biological interactions,1995, 98(3):193-209.
    [69]Qian Y, Harris E, Zheng Y,Tiffany-Castiglioni E. Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells[J]. Toxicology and Applied Pharmacology,2000,163(3):260-266.
    [70]Smith D, Kahng M, Quintanilla-Vega B,Fowler B. High-affinity renal lead-binding proteins in environmentally-exposed humans[J]. Chemico-biological interactions,1998,115(1):39-52.
    [71]Fowler B A,DuVal G. Effects of lead on the kidney:roles of high-affinity lead-binding proteins[J]. Environmental health perspectives,1991,91:77.
    [72]Fullmer C, Edelstein S,Wasserman R. Lead-binding properties of intestinal calcium-binding proteins[J]. Journal of Biological Chemistry,1985, 260(11):6816-6819.
    [73]Church H J, Day J P, Braithwaite R A,Brown S S. Binding of lead to a metallothionein-like protein in human erythrocytes[J]. Journal of inorganic biochemistry,1993,49(1):55-68.
    [74]Kelada S N, Shelton E, Kaufmann R B,Khoury M J.δ-Aminolevulinic acid dehydratase genotype and lead toxicity:a HuGE review[J]. American journal of epidemiology,2001,154(1):1-13.
    [75]Bergdahl I A, Sheveleva M, Schutz A, Artamonova V G,Skerfving S. Plasma and blood lead in humans:capacity-limited binding to δ-aminolevulinic acid dehydratase and other lead-binding components[J]. Toxicological Sciences, 1998,46(2):247-253.
    [76]Sierra E M, Rowles T K, Martin J, Bratton G R, Womac C,Tiffany-Castiglioni E. Low level lead neurotoxicity in a pregnant guinea pigs model:neuroglial enzyme activities and brain trace metal concentrations[J]. Toxicology,1989,59(1):81-96.
    [77]Qian Y, Zheng Y, Ramos K S,Tiffany-Castiglioni E. GRP78 compartmentalized redistribution in Pb-treated glia:role of GRP78 in lead-induced oxidative stress[J]. Neurotoxicology,2005,26(2):267-275.
    [78]Oskarsson A, Squibb K S,Fowler B A. Intracellular binding of lead in the kidney:the partial isolation and characterization of postmitochondrial lead binding components[J]. Biochemical and biophysical research communications,1982,104(1):290-298.
    [79]Mistry P, Lucier G W,Fowler B A. High-affinity lead binding proteins in rat kidney cytosol mediate cell-free nuclear translocation of lead[J]. Journal of Pharmacology and Experimental Therapeutics,1985,232(2):462-469.
    [80]Fowler B A, Kahng M W,Smith D R. Role of lead-binding proteins in renal cancer[J]. Environmental health perspectives,1994,102(Suppl 3):115-116.
    [81]Silbergeld E K, Waalkes M,Rice J M. Lead as a carcinogen:experimental evidence and mechanisms of action[J]. American journal of industrial medicine,2000,38(3):316-323.
    [82]杨居荣,何孟常.水稻籽实中Pb的分布及其结合形态[J].农业环境保护,2001,20(003):129-132.
    [83]Scheidegger C, Suter M J, Behra R,Sigg L. Characterization of lead-phytochelatin complexes by nano-electrospray ionization mass spectrometry[J]. Frontiers in Microbiology,2012,3:41.
    [84]徐忠发,曾正海.南京栖霞山铅锌银矿床成矿作用与岩浆活动关系探讨[J].江苏地质,2006,30(003):177-182.
    [85]肖振民,蔡彩文,郭晓山等.南京栖霞山铅锌银锰硫矿床层控及二源二次成矿问题的探讨[J].华东冶金地质,1980(2):1-7.
    [86]谢树成,殷鸿福.南京栖霞山多金属矿床的有机成矿作用[J].矿床地质,1997,16(004):289-297.
    [87]钟庆禄.南京栖霞山大型铅锌银多金属矿床的发现及其找矿远景[J].江苏地质,1998,22(1):56-61.
    [88]曹执庸,孙南圭,隋增震,廖永璋.栖霞山矿床物质成分的多元统计分析[J].中国地质科学院南京地质矿产研究所文集(9),1983,4(1):27-44.
    [89]真允庆,陈金欣.南京栖霞山铅锌矿床硫铅同位素组成及其成因[J].桂林工学院学报,1986,6(4):319-328.
    [90]褚桂棠.南京栖霞山环境地质问题的研究[J].江苏地质,1986,10(4):38-42.
    [91]项长兴,董雅文.南京栖霞山铅锌矿区土壤环境质量评价[J].土壤,1993,25(6):319-322.
    [92]储彬彬,罗立强.南京栖霞山铅锌矿地区土壤重金属污染评价[J].岩矿测试,2010,29(1):5-8,13.
    [93]王晓芳,罗立强.铅锌银矿区蔬菜中重金属吸收特征及分布规律[J].生态环境学报,2009,18(1):143-148.
    [94]刘颖,罗立强.南京栖霞矿区居民血铅水平及相关因素分析[J].中国公共卫生,2008,24:20-21.
    [95]胡小蝶,沈保丰,毛德宝,钟长汀.冀北蔡家营铅锌矿床成因探讨[J].地质调查与研究,2005,28(4):221-227.
    [96]张长江.河北蔡家营铅锌(金银)矿床地质特征[J].矿床地质,1990,9(4):301-308.
    [97]黄典豪,吴澄宇.蔡家营铅-锌-银矿床的稳定同位素地球化学研究[J].地球化学,1997,26(4):24-25.
    [98]Ravel B,Newville M. ATHENA, ARTEMIS, HEPHAESTUS:data analysis for X-ray absorption spectroscopy using IFEFFIT[J]. Journal of Synchrotron Radiation,2005,12(4):537-541.
    [99]Komarek M, Ettler V, Chrastny V,Mihaljevic M. Lead isotopes in environmental sciences:A review[J]. Environment International,2008, 34(4):562-577.
    [100]Bollhofer A,Rosman K. Isotopic source signatures for atmospheric lead:the Southern Hemisphere[J]. Geochimica et Cosmochimica Acta,2000, 64(19):3251-3262.
    [101]Veysseyre A M, Bollhofer A F, Rosman K J R, Ferrari C P,Boutron C F. Tracing the Origin of Pollution in French Alpine Snow and Aerosols Using Lead Isotopic Ratios[J]. Environmental Science & Technology,2001, 35(22):4463-4469.
    [102]S(?)ndergaard J, Asmund G, Johansen P,Elberling B. Pb isotopes as tracers of mining-related Pb in lichens, seaweed and mussels near a former Pb-Zn mine in West Greenland[J]. Environmental Pollution,2010,158(5):1319-1326.
    [103]Hosono T, Su C-C, Okamura K,Taniguchi M. Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan[J]. Journal of Geochemical Exploration,2010,107(1):1-8.
    [104]常向阳,陈永亨,刘敬勇,陈南,吴颖娟,付善明.粤西云浮含铊硫化物矿产利用对环境的影响:元素一铅同位素示踪研究[J].地球学报,2008,29(6):765-768.
    [105]Notten M J M, Walraven N, Beets C J, Vroon P, Rozema J,Aerts R. Investigating the origin of Pb pollution in a terrestrial soil-plant-snail food chain by means of Pb isotope ratios[J]. Applied Geochemistry,2008, 23(6):1581-1593.
    [106]Ellam R M. The graphical presentation of lead isotope data for environmental source apportionment[J]. Science of the Total Environment,2010, 408(16):3490-3492.
    [107]Tomasevic M, Vukmirovic Z, Rajsic S, Tasic M,Stevanovic B. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere,2005,61(6):753-760.
    [108]Uzu G I, Sobanska S, Sarret G r, Munoz M,Dumat C. Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts[J]. Environmental Science & Technology,2010,44(3):1036-1042.
    [109]Hu X, Zhang Y, Luo J, Xie M, Wang T,Lian H. Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus)[J]. Chemosphere,2011,82(10):1351-1357.
    [110]Klaminder J, Bindler R, Laudon H, Bishop K, Emteryd O,Renberg I. Flux Rates of Atmospheric Lead Pollution within Soils of a Small Catchment in Northern Sweden and Their Implications for Future Stream Water Quality[J]. Environmental Science & Technology,2006,40(15):4639-4645.
    [111]林植芳,彭长连,徐信兰,林桂珠.两种浮萍植物的叶绿体超微结构对模拟酸雨的敏感性[J].热带亚热带植物学报,2005,13(3):217-223.
    [112]Wang W. Literature review on duckweed toxicity testing[J]. Environmental Research,1990,52(1):7-22.
    [113]Alvarado S, Guedez M, Lue-Meru M P, Nelson G, Alvaro A, Jesus A C,Gyula Z. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor)[J]. Bioresource technology,2008,99(17):8436-8440.
    [114]Samardakiewicz S,Wozny A. The distribution of lead in duckweed (Lemna minor L.) root tip[J]. Plant and Soil,2000,226(1):107-111.
    [115]种云霄,胡洪营,崔理华,吴启堂,钱易.浮萍植物在污水处理中的应用研究进展[J].环境污染治理技术与设备,2006,7(3):14-18.
    [116]Zhang X, Zhao F-J, Huang Q, Williams P N, Sun G-X,Zhu Y-G. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa[J]. New Phytologist,2009,182(2):421-428.
    [117]Salt D E, Prince R C,Pickering I J. Chemical speciation of accumulated metals in plants:evidence from X-ray absorption spectroscopy[J]. Microchemical Journal,2002,71(2-3):255-259.
    [118]Tiemann K J, Gamez G, Dokken K, Parsons J G,Gardea-Torresdey J L. Chemical modification and X-ray absorption studies for lead(II) binding by Medicago sativa (alfalfa) biomass[J]. Microchemical Journal,2002, 71(2-3):287-293.
    [119]Feng C H, Chou C H, Chuang L Y,Lu C Y. Protein identification from two-dimensional gel electrophoresis by connecting ZipTip with a home-assembled nanoflow system[J]. Microchimica Acta,2010, 170(1):179-185.
    [120]She Y M, Narindrasorasak S, Yang S, Spitale N, Roberts E A,Sarkar B. Identification of metal-binding proteins in human hepatoma lines by immobilized metal affinity chromatography and mass spectrometry[J]. Molecular & Cellular Proteomics,2003,2(12):1306-1318.
    [121]Nielsen P A, Olsen J V, Podtelejnikov A V, Andersen J R, Mann M,Wisniewski J R. Proteomic mapping of brain plasma membrane proteins[J]. Molecular & Cellular Proteomics,2005,4(4):402-408.
    [122]陈亚琼,肖调江,周浙昆.热激蛋白与生物环境适应及进化的关系[J].自然科学进展,2006,16(9):1066-1073.
    [123]Wang G,Fowler B A. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic[J]. Toxicology and Applied Pharmacology,2008,233(1):92-99.
    [124]陈为钧,顾月华.RubisCO的研究进展[J].生物化学与生物物理进展,1999,26(005):433-436.
    [125]Polatajko A, Feldmann I, Hayen H,Jakubowski N. Combined application of a laser ablation-ICP-MS assay for screening and ESI-FTICR-MS for identification of a Cd-binding protein in Spinacia oleracea L. after exposure to Cd[J]. Metallomics:integrated biometal science,2011,3(10):1001-8.
    [126]Herald V, Heazlewood J, Day D,Millar A. Proteomic identification of divalent metal cation binding proteins in plant mitochondria[J]. FEBS letters,2003, 537(1-3):96-100.
    [127]Kirberger M,Yang J J. Structural differences between Pb2+-and Ca2+-binding sites in proteins:Implications with respect to toxicity[J]. Journal of inorganic biochemistry,2008,102(10):1901-1909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700