铜、锌、铅对大豆幼苗生长和子叶光合特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过水培大豆幼苗研究大豆子叶在生理过程中叶绿素a、b和类胡萝卜素含量,光合速率以及碳酸酐酶活性以及重金属(铜、锌、铅)对大豆幼苗生长及其子叶光合特性的影响,为把植物碳酸酐酶活性作为环境监测的一个生物指标提供依据。
     根据论文实验结果,可以得到如下结论:
     (1)大豆子叶中光合色素含量、碳酸酐酶活性和光合能力随着子叶的生理作用变化而变化,开始随着子叶的发育而增加,第7d时达到最大值,然后随着子叶的凋零而不断下降。
     (2)重金属铜、锌、铅直接与大豆子叶中提取的CA液作用时,浓度低于0.0001mmol/L的铜和锌对离体CA活性有一定的促进作用,而浓度高于0.001mmol/L的铜和锌则抑制离体CA活性,铅在低浓度就对离体CA活性有抑制作用。铜、锌、铅对大豆南农493-1和通酥1号子叶碳酸酐酶活性的抑制常数分别约为:0.75μmol/L和0.65μmol/L、1.50μmol/L和1.40μmol/L、1.05μmol/L和1.10μmol/L。
     (3)重金属铜、锌、铅单独处理,浓度低于0.5mmol/L铜、锌处理促进大豆幼苗的生长,提高子叶光合色素含量,增强子叶净光合速率和CA活性,但是5.0mmol/L铜、锌处理却抑制幼苗的生长,降低子叶各个光合特性参数值。浓度低于.005mmol/LPb处理时,大豆子叶中光合色素含量,子叶净光合速率以及CA活性没有显著变化,浓度高于0.05mmol/L铅处理时,阻碍大豆幼苗的生长,大豆子叶叶绿素a、b和类胡萝卜素含量减少,子叶净光合速率和CA活性降低。在铜锌、铜铅和锌铅的复合实验过程中,重金属之间表现出拮抗作用。
     (4)无论是大豆正常生长时还是受到铜、锌、铅影响时,大豆子叶中CA活性,光合色素含量以及子叶净光合速率相互之间都极显著正相关(p<0.01)。
Soybean(Glycogen max (L.) Merr) tender seedlings are cultured in solution culture to research the contents of chlorophyll a, b and carotenoid, photosynthetic rate and carbonic anhydrase activity in the physiology procedure of soybean cotyledon, and the effects of copper, zinc, lead on the growth of soybean seedlings and cotyledon photosynthetical system. All of these provide evidence for regarding the carbonic anhydrase activity as a biological index in the environmental inspection.
     According to the results of these experiments in the paper, the following conclusions can be drawn:
     (1) The photosynthetic pigment contents, carbonic anhydrase activity and photosynthetic rate change according to the physiological functions of cotyledon. At the beginning, they increase with the development of the cotyledon, and achieve the maximum on the seventh day, and descend gradually with the withering of the cotyledon.
     (2) when copper, zinc and lead directly interact with the carbonic anhydrase extracted from the soybean cotyledon, copper or zinc less than 0.0001mmol/L can improve the activity of carbonic anhydrase ex vivo, but that higher than 0.001mmol/L inhibits the carbonic anhydrase ex vivo. But lead inhibits the carbonic anhydrase ex vivo even when the concentration is very low. The inhibiting constants of copper, zinc and lead to CA from Nannong493-1 and Tongsul cotyledon are approximately: 0.75mol/Land0.65mol/L, 1.50mol/Land 1.40mol/L, 1.05mol/Land 1.10mol/L.
     (3) Copper or zinc less than 0.5mmol/L facilitates the growth of the soybean seedlings, increases the contents of photosynthetic pigment, and strengthens the photosynthetic rate of the soybean cotyledon and the cotyledon carbonic anhydrase activity. But copper or zinc of 5.0mmol/L inhibits the growth of tender seedlings and degrades the parameter value of photosynthetic characteristics of the soybean cotyledon. There are not obvious changes in the contents of photosynthetic pigment, photosynthetic rate and carbonic anhydrase activity when seedlings are treated with lead less than 0.005mmol/L,but lead higher than 0.05mmol/L inhibits the growth of tender seedlings, reduces the contents of photosynthetic pigment and photosynthetic rate and carbonic anhydrase activity. In the process of the complex experiments of copper, zinc, lead, there is antagonism between the metals.
     (4) Associativity between the carbonic anhydrase activity, photosynthetic pigment contents in the soybean cotyledon and net photosynthesis rate shows that whether the soybean tender seedlings grow in the normal circumstances or are affected by copper, zinc and lead respectively or together, the correlation is notably positive.
引文
[1] 贾广宁.重金属污染的危害与防治[J].有色矿治,2004.2,20(1):39-42.
    [2] 严平,韦朝领,蒋跃林等.土壤水分对小麦光合作用影响的研究[J].作物杂志,2000(1).
    [3] Gerbaud-A, Andre-M. Down regulation of photosynthesis after CO_2 enrichmem of lettuce: relation to photosynthetic characteristics[J]. Biotronics, 1999.10, (28): 33-44.
    [4] Gunderson C A, ullscbleger SD. Photosynthesis acclimation in trees to rising atmospheric CO_2: A broader perspective[J]. Photosynthesis Res, 1994, 39: 369-388.
    [5] 蒋文智.重金属镉对叶绿体超微结构的影响[J].广西科学,1995,2(2):21-23.
    [6] 杨刚,伍钧,唐亚.铅胁迫下植物抗性机制的研究进展[J].生态学杂志,2005,24(12):1507-1512.
    [7] Rana P. Singh, Rudra D. Tripathi, S. K. Sinha. Response of Higher Plants to Lead Contaminated Environment[J]. Chemosphere,, 1997, Vol.34, No. 11, pp. 2467-2493.
    [8] 周青,黄晓华,La-Gly对Pb胁迫下大豆幼苗生理生化特性的影响[J].中国稀土学报.1999年12月,第17卷第4期:381-384.
    [9] 侯和胜,李凝,吴超元.裙带菜配子体对三种重金属离子毒性耐受力的研究[J].海洋与湖沼,1998年5月,第29卷第3期,280-287.
    [10] 慈敦伟,姜东,戴廷波等.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报,2005,25(5):88-91.
    [11] 李建宏,曾昭琪.Cu~(2+)对蓝藻Spirutina maxima光合作用的抑制机理[J].植物生理学报,1997,23(1):77-82.
    [12] 王继安 宁海龙 罗秋香等.大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其产量间的关系[J].东北农业大学学报,2004,第35卷第2期:129-134.
    [13] 罗立新,孙铁琦,靳月华.锅胁迫对小麦叶片细胞膜过氧化的影明[J].中国环境学报.1998,18(1):72—75.
    [14] 郑曦,肖炜.Cu对小麦种子萌发及幼苗生长的影响[J].徐州师范大学学报(自然科学版),2003.9,第21卷第3期:64-66.
    [15] 周俊义,秦子禹,王喜荣等.Zn,Cu对酸枣种子发芽及幼苗生长的影响[J].河北果树,2002.5,16-16.
    [16] Chettri. M. K., Cook. C. M., Vardaka. E. et. al. The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convolute and Cladonia rangiformis[J]. Environmental and Experimental Botany, 1998, 39: 1-10.
    [17] Ralph P. J., Burchett M. D.. Photosynthetic response of Halophila ovalis to heavy metal stress[J]. Environmental Pollution, 1998, 103: 91-101.
    [18] 常学秀,段昌群,王焕校.根分泌作用于植物对金属毒害的抗性[J].应用生态学报,2000,11(2):315-320.
    [19] 江行玉,赵可大.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [20] Nishizono. H. The role of the root cell wall in metal tolerance of Athyrium Yokoscense[J] Phant and Soil, 1987, (101): 15-20.
    [21] CHR De Vos, Schat H, DeWaal M A M, et al. Increased resisitance to copper induced damage of the root cell plasm Plasmalemma in copper torlent silene cucuhalus[J]. Physiologia plantarum, 1991, (82): 523-528.
    [22] 周长芳,吴国荣,施国新等.水花生抗氧化系统在抵御cu~(2+)胁迫中的作用[J].植物学报,2001,43(4):389-394.
    [23] 储玲,刘登义,王友保,等.铜污染对三野草幼苗生长及活性氧化代谢影响的研究[J].应用生态学报,2004.15(1):119-122.
    [24] Cook, C. M. Vardaka E., Lanaras T.. Concentrations of Cu, Growth, and Chlorophyll Content of Field-Cultivated Wheat Growing in Naturally Enriched Cu Soil[J]. Bull. Environ. Contain. ToxicoL 1997, 58: 248-253.
    [25] Anjum F, Kamla K, Kanti S. Photosynthesis, stomatal response and metal accumulation in Cineraria maritima L. and Centauria moschata L. grown in metal-rich soil[J]. The Science of the Total Environment, 1995, 164: 203-207.
    [26] Ralph P. J., MBurchett. D.. Photosynthetic response of Halophila ovalis to heavy metal stress[J]. Environmental Pollution, 1998, 103: 91-101.
    [27] Catriona M. O. Macinnis-N, Peter J. R. Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagras, Zostera capricomi[J]. Marine Pollution Bulletin, 2002, 45: 100-106.
    [28] Hsu B and Lee J. Toxic effects of copper on photosystem Ⅱ of spinach chloroplasts[J]. Plant Physiol. 1988, (87): 116-119.
    [29] 李建宏,曾昭琪.cu~(2+)对蓝藻Spimtina maxima光合作用的抑制机理[J].植物生理学报,1997,23(1):77-82.
    [30] Patsikka E, Aro E M, Tyystjarvi E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo[J]. PlantPhysiol., June. 1998, 117(2): 619-627
    [31] 李红敬,谢素霞,李天煌.铜对紫背浮萍的影响[J].广西植物,2003.7,23(4):362-366.
    [32] Zhang J., Yua Z. G.,, Wanga. T., et.al. The Subtropical Zhujiang (Pearl River) Estuary: Nutrient, Trace Species and Their Relationship to Photosynthesis[J]. Estuarine, Coastal and Shelf Science, 1999, 49, 385-400.
    [33] Jeanine L. West A., Karen L, Bruce M. Greenberg. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon contaent[J]. Aquatic Toxicology, 2003, 64: 39-52.
    [34] Leonardo R. A, Mrcos F, Gilberto M. Amado Filho. Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro[J]. Ecotoxicology and Environmental Safety, 2004, 58: 117-125.
    [35] Florence Vinit-D, Daniel E, Badr A. S. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants[J]. Plant Science, 2002, 163: 53-58.
    [36] Tina E, Eva Bg, Michael T. Physiological responses to copper in giant clams: a comparison of two methods in revealing effects on photosynthesis in zooxanthellae[J]. Marine Environmental Research, 2002, 54: 147-155.
    [37] 曾宪东,余龙江,等.西南岩溶地区黄荆叶片碳酸酐酶的稳定性[J].植物学通报,2005,22(2):169-174
    [38] Wang. B, Liu. C. Q, Wu. Y. Y. Effect of Heavy Metals on the Activity of External Carbonic Anhydrase of Microalga Chlamydomonas reinhardtii and Microalgae from Karst Lakes[J]. Environ. Contam. Toxicol, 2005, 74: 227-233.
    [39] 董文轩,沈隽,孟繁静.锌铜处理对苹果属植物叶内碳酸酐酶活性的影响[J].果树科学,1995,12(1);10-14.
    [40] Joseph E Colema. Zinc enzymes[J]. Bio-inorganic chemistry, 1998, 2: 222-234.
    [41] Claudette K, Tomasz H, Roger K. S. Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme[J]. Cellular Signalling 16 (2004) 1177-1185.
    [42] Carvajal. N. et. al. Manganese Is Essential for Catalytic Activity of Escherichia coliAgmatinase[J]. Biochemical and Biophysical Reasearch Communications, Volume: 258, Issue: 3, May 19, 1999, pp. 808-811.
    [43] Jesus M. Mercado, F. Javier L. et. al. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae[J]. Journal of Experimental Marine Biology and Ecology, 1998, 227: 209-220.
    [44] 徐晓燕,杨肖娥,杨玉爱.锌在植物中的形态及生理作用机理研究进展[J].广东徽量元素科学,1999,第6卷第11期:1-6.
    [45] 李芳贤,王金林,李玉兰,等.锌对夏玉米生长发育及产量影响的研究[J].玉米科学,1999,(7):72-77.
    [46] 段光明.硫酸锌对小麦抗干热风的生理效应[J].植物学通报,1985,3(1):34-36.
    [47] 胡哲森,李荣生.铅、锌胁迫对蕹菜光合色素及活性氧代谢的影响[J].江西农业大学学报(自然科学版).2002年4月,第24卷第2期:208-212.
    [48] 曲桂敏,黄天栋,顾曼如.苹果叶片缺锌对有关生理生化指标的影响[J].1994.2,第25卷1期:15-20.
    [49] 冯致,郁继华,领建明.锌对青花菜幼苗生长的影响[J].甘肃农业大学学报,2005年8月,第40卷第4期:471-474.
    [50] Price G D, Caemmerer S, Evans J R, et al. Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants as a minor effect on photosynthetic CO_2 assimilation [J]. Planta, 1994, 193: 331-340.
    [51] Stiborova M, Ditrichova M, Brezinva A. Mechanism of function of Cu~(2+) and Zn~(2+) on ribulose-1, 5-biphosphate carboxylase from barley(Hordeum:vulgare L) [J]. Photosynthetica, 1997, 21: 161-165.
    [52] 王永勤,赵鸿钧.施锌对青花菜产量品质影响机理的研究[J].山西农业大学学报,199917(3):218-221.
    [53] 施木田,陈如凯.锌硼营养对苦瓜叶片碳氮代谢的影响[J].植物营养与肥料学报,2004,10(2):198-201.
    [54] 施木田,陈如凯.锌对苦瓜叶片碳代谢及相关酶活性的影响研究.中国生态农业学报, 2004.1,第12卷第1期:56-58.
    [55] Salt D E_Prince R C, Baker A J M., Raskin, et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy[J]. Environmental Science and Technology, 1999, 33: 713-717.
    [56] 熊愈辉,杨肖娥,叶正钱,等.两种生态型东南景天锌吸收与分布特性的研究[J].浙江人学学报(农业与生命科学版),2003,29(6):614-620.
    [57] Assuncaa A G L, Martins P D, Folter R, et.al. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulcsccns[J]. Plant Cell Environ, 2001, 24: 217-226.
    [58] 李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631.
    [59] Zhao F J, McGrath S P. Cellular compartmentation of Znic in leaves of the hyperaccumulator Thlaspi cacrulcsccns [J]. Plant Physiol, 1999, 119: 305-311.
    [60] Lasat M M, Baker A J M, Kocbian L V. Physiological characterization of root Zn~(2+) absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlapi[J]. Plant Pbysiol, 1996, 112: 1715-1722.
    [61] Matbys W. The role of malate, oxalate, and mustard oil glycosides in the evolution of zinc resistance in herbage plants[J]. Plant Physiol, 1977, 40: 130-136.
    [62] 赵永学,齐国民,马嘉琦.Cu~(2+)和Zn~(2+)对小麦幼苗生长生理的影响[J].河西学院学报,2005,第21卷第2期:40-41.
    [63] 赵殊,施晓东,常学秀.Cd,Zn复合污染对小麦叶绿素含量的影响[J].曲靖师范学院学 ,2004年5月,第23卷第3期:18-19.
    [64] 王山杉,刘永定,等.Zn~(2+)浓度对固氮鱼腥藻(Anabaenaazotica Ley)光能转化特性的影响[J].湖泊科学,2002.12,第14卷第4期,351-357.
    [65] Galia N. Lazova, Tsveta Naidenova, Katya Velinova. Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves[J]. Plant Physiol, 2004, 161: 295-301.
    [66] Tater E, Mihucz VG, Varga A, et. al. Determination of organic acids in xylem sap of cucumber: Effect of lead contamination[J]. Microchemical Journal, 1998, 58: 306-314.
    [67] Singh, R. P., Maheshwari, R. & Sinha, S. K. Recovery of lead caused decreased in biomass accumulation of mung bean (Vigna radiata L.) seedlings of K_2HPO_4 and CaCl_2[J]·Indian J. Exp. Biology, 1994, 32: 507-510.
    [68] 刘小梅,吴启堂,李秉滔.超积累植物治理重金属污染土壤研究进展[J].农业环境科学,2003,22(5):636-640.
    [69] 贺卫国,褚德萤,杨静岳等.一种新型结构的金属硫蛋白—Pb-MT[J].高等学校化学学报,1999,20:248-250.
    [70] Gupta, M., Rai, U. N., Tripathi, R. D. and Chandra, P. Lead induced changes in glutathione and phytochelatin in hydrilla verticillata[J]. Chemosphere, 1995, 30(10): 2011-2020.
    [71] 张义贤.汞、镉、铅胁迫对油菜的毒害效应[J].山西大学学报(自然科学版),2004,27(4):410-413.
    [72] 周朝彬,胡庭兴,胥晓刚等.铅胁迫对草木樨叶中叶绿素含量和几种光合特性的影响[J].四川农业大学学报,2005.12,第23卷第4期:432-435.
    [73] Rebechini H M, Hanzely L. Lead-induced ultrastructural changes in chloroplasts of the hydrophyte Ceratophyllumdemersum[J]. Z P Flanzenphysiol, 1974, 73: 377-386.
    [74] 赵士禹,姚民昌,赵树仁.铅对玉米幼苗影响机制的初步研究[J].辽宁师范大学学报(自然科学版),1994年,第17卷第3期:238-241.
    [75] 周长芳,吴国荣,陆长梅等.铅污染对钝顶螺旋藻生长及某些生理性状的影响.湖泊科学[J].1999年6月,第11卷第2期,135-140.
    [76] Rana P. Singh, Rudra D. Tripathi, S.K. Sinha. Response of Higher Plants to Lead Contaminated Environment[J]. Chemosphere,, 1997, Vol. 34, No. 11, pp. 2467-2493.
    [77] 周桂凤,刘栋,蒋云生.铅结合蛋白研究进展[J].国外医学卫生学分册,2006年,第33卷第2期:100-105
    [78] I. Oncel, Y. Keles, A. S. Ustun. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings[J]. Environmental Pollution, 2000, 107: 315-320.
    [79] Chettri M. K., Cook C. M., Vardaka E.. The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convolute and Cladonia rangiformis[J]. Environmental and ExperimentalBotany, 1998, 39: 1-10.
    [80] 余剑东、倪吾钟、杨肖娥.土壤重金属污染评价指标的研究进展.广东微量元素科学.2002年,第9卷第5期:11-16.
    [1] 徐锦海.扁豆子叶对其幼苗形成的生理效应研究[J].西江大学学报,1997年,53-54.
    [2] 汤浩茹,王乔春,周光蓉.子叶与外施蔗糖对豌豆幼苗生长及插条生根的影响[J].四川农业大学学报1994年12(4):458-463.
    [3] 于洪波.花生子叶对植株生长发育及产量的影响[J].花生科技,1996年第2期:31-32.
    [4] 陈年来,李浩霞.甜瓜不同基因型子叶与真叶光合特性的比较[J].中国西瓜甜瓜,2004,1-4
    [5] Galia N. Lazoval, Tsveta Naidenova, Katya Velinova. Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves[J]. J. Plant Physiol, 2004, 161: 295-301.
    [6] Wu Y. Y, Wu X. M, Li P. P. Comparison of photosynthetic activity of Orychophragrnus violaceus and oil-seed rape[J]. Photosynthetic, 2005, 43 (2): 299-302.
    [7] Jiao D. M, Li X , Ji B. H. Photoprotective effects of high level expression of C_4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition[J].Photosynthetica, 2005, 43 (4): 501-508.
    [8] Jiao D.M, Li X , Ji B.H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition[J]. Photosynthetica, 2005, 43 (4): 501-508.
    [9] S. Hortensteiner, Chlorophyll breakdown in higher plants and algae[J].CM LS, Cell. Mol.Life Sci, 1999, (56) 330-347.
    [10] Wu Yanyou, Li Xiteng, Li Pingping. Comparison of carbonic anhydrase activity among various species of plantlets[J].Plant Cell, Tissue and Organ Culture , 2005.
    [1].常红岩,孙百哗,刘春生.植物铜素毒害研究进展[J].山东农业大学学报(自然科学版),2000,31(2):227-230
    [2]. Sandmann G. P, Boger. Copper deficiency and toxicity in scenedesmus[J]. L. Z. Pflanzen Physiol. 1980, (98): 53-59.
    [3].刘文彰,孙典兰.铜对黄瓜幼苗生长及过氧化氢酶和吲哚乙酸氧化酶活性的影响[J].植物生理学通报,1985,3:22-24
    [4]. Arthur W, Jong W C. Interactions involving copper toxicity and phosphorus deficiency in bush bean plants grown in solutions of low and high pH[J]. Soil Sci., June 1989, (147) 6: 430-431.
    [5].谷巍,施国新,张超英.Hg~(2+)、Cd~(2+)、Cu~(2+)对值草光合系统及保护酶系统的毒害作用[J].植物生理与分子生物学学报,2002,28(1):69-74.
    [6].邵云,姜丽娜,李春喜.Cu~(2+)对小麦种子萌发和幼苗生长的影响[J].河南农业科学,2005年第1期:13-16.
    [7].丁佳红,刘登义,李征.土壤不同浓度铜对小飞蓬毒害及耐受性研究[J].应用生态学报,2005年4月,第16卷第4期,668-672.
    [8].张树清,张夫道,刘秀梅等.重金属元素Cu Zn对大白菜幼苗的毒性效应[J].农业环境科学学报,2005,24(5):838-842.
    [9].李影,刘登义.铜对节节草生理代谢及抗氧化酶活性的影响[J].应用生态学报,2006年3月,第17卷第3期,498-501.
    [10].吴沿友,刘丛强,王世杰等.诸葛菜的喀斯特适生性研究.贵州科技出版社,2004,36
    [1] 刘建新.镉锌交互作用对玉米幼苗生理生化特性的影响[J].宜春学院学报(自然科学),2004.12,第26卷第6期:55-60.
    [2] 李博文 郝晋珉.土壤镉、铅、锌污染的植物效应研究进展[J].河北农业大学学报.2002.5,第25卷增刊,74-76.
    [3] 魏孝荣,郝明德,邱莉萍等.干旱条件下锌肥对玉米生长和光合色素的影响.西北农林科技大学学报(自然科学版),2004.9,第32卷第9期:111-114.
    [4] 魏孝荣,郝明德,张春霞等.土壤干旱条件下外源锌、锰对夏玉米光合特性的影响[J].作物学报,2005年8月,第31卷第8期:1101-1104.
    [5] 付宝荣,李法云,减树良等.锌营养条件下福污染对小麦生理特性的影响[J].辽宁大学学报(自然科学版),2000年,第27卷第4期,366-370.
    [6] 侯和胜,李凝,吴超元.裙带菜配子体对三种重金属离子毒性耐受力的研究[J].海洋与 湖沼,1998年5月,第29卷第3期,280-287.
    [7] Ralph P. J., Burchett M. D.. Photosynthetic response of Halophila ovalis to heavy metal stress[J]. Environmental Pollution, 1998, 103: 91-101.
    [8] Fabien M, Nathalie V, Philippe V. Relationship between PS Ⅱ activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress[J]. J. Plant Physiol. 2001, 158: 1137-1144.
    [9] Seok J K, Zahid N R, Robin T V , Egbert O, Mark W D, ZeljkoV , Michael J K. Carbonic Anhydrase Ⅸ in Early-Stage Non - Small Cell Lung Cancer. Clinical Cancer Research, 2004, 10: 7925-7933
    [1].严重玲,洪业汤,付舜珍.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997年9月,第17卷第5期:489-493.
    [2].任安芝,杨焕婷.铅,汞对细绿萍的生物效应[J].天津农学院学报,1996.6,第3卷第2期:22-25.
    [3].宋勤飞,樊卫国.铅胁迫对番茄生长及叶片生理指标的影响[J].山地农业生物学报,2004,23(2):134-138.
    [4].何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J].农业环境科学学报,2003,22(3):274-278.
    [5].魏海英,方炎明,尹增芳.Pb,Cd单一及复合污染对弯叶灰鲜某些生理特性的影响[J].广西植物,23(1):69-72.
    [6]. Seok J K, Zahid N R, Robin T V , Egbert O, Mark W D, Zeljko V, Michael J K. Carbonic Anhydrase Ⅸ in Early-Stage Non - Small Cell Lung Cancer. Clinical Cancer Research, 2004, 10: 7925-7933
    [1] Adriano D C. Trace elements in the terrestrial environment[M]. New York, Springer-Verlag Inc, 1998: 517.
    [2] 陈怀满,郑春荣.复合污染与交互作用研究.农业环境保护中研究的热点与难点[J].农业环境保护,2002.21:192.
    [3] ETCS(European Topic Centre Soils) 1998 Topic report-Contaminated sites [R]. European Environment Agency. P: 142.
    [4] 孙铁桁,周启星.污染生态学研究的回顾与展望[J].应用生态学报.2002,13:221-223.
    [5] 陈树元,徐和宝,谢明云,等.铜、砷在水稻下上壤体系中的迁移及其对水稻影响的研究.农村生态环境,1995,11(3):15-18.
    [6] 吴燕玉.土壤砷复合污染及其防治研究[J].农业环境保护,1994,13(3):21-23.
    [7] 李惠英,陈素英,王豁.铜、锌对土壤-植物系统的生态效应及临界含量[J].农村生态环境, 1994,10(2):22-24.
    [8] 涂从..紫色土中铜对莴苣生长的影响及其临界指标的研究[J].农业环境科学学报,1996,9(4):13-17.
    [9] 杨景辉.上壤中的铜[J].农业环境科学学报,1996,(3):1-4.
    [10] 蔡土悦.北京地区土壤铜对农科物生态效应及其临界含量的研究[J].环境科学学报,1997,(2):61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700