连续梁桥橡胶铅芯隔震支座的力学性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来全球高烈度地震发生频率很高,在国内外的多次大地震中,作为生命线工程的桥梁遭受了严重破坏,由地震导致的桥梁破坏引起各国高度重视。传统的桥梁抗震设计,主要是从结构的强度和延性方面考虑,耗费大量材料,在高烈度区桥梁的抗震能力往往还难以满足要求。能有效减小地震作用效应的桥梁减隔震技术得到推广使用。桥梁隔震技术主要针对大量使用的连续梁桥型,通过在桥面底部与桥墩顶部的结合部位放置能起到水平柔性支承和能量耗散作用的隔震支座降低地震响应。橡胶铅芯支座是广泛使用的桥梁隔震支座。适合桥梁使用橡胶铅芯支座的力学性能有必要深入研究。能与目前规范接轨的简化计算方法的研究对隔震技术在桥梁上的应用有实际意义。本文以适合连续梁桥隔震的橡胶铅芯支座为对象,开展了以下几个方面的研究工作:
     1对橡胶铅芯支座的性能进行了理论分析。利用橡胶弹性理论推导的橡胶约束受压时纵向压缩刚度、橡胶弯曲变形时候纵向表观弹性模量,得到叠层橡胶支座竖向刚度计算表达式,叠层橡胶支座水平刚度表达式。推导了叠层橡胶支座在压剪时候底部橡胶的竖向应力分布表达式,利用分析结果,推导了底部钢板应力分布公式,并利用应力分布结果探讨了方形支座和多铅芯支座的设计中相关问题。
     2对橡胶铅芯支座进行了试验分析。试验分析了各种支座在不同使用环境下的力学性能。对方形橡胶铅芯支座进行了不同水平位移,不同频率下的动力力学性能试验、极限剪切变形试验、极限压应力试验、支座疲劳性能试验,验证方形支座是一种可靠的桥梁隔震支座;对多橡胶铅芯隔震支座进行了不同水平位移,不同频率下的动力力学性能试验、极限剪切变形试验、极限压应力试验、支座疲劳性能试验、不同水平加载方向试验,验证多铅芯支座是一种可靠的桥梁隔震支座。对不同直径的隔震支座进行了静力加载模拟试验,试验结果显示隔震支座的静力性能与动力性能存在差异。对隔震支座进行了温度试验,揭示橡胶铅芯支座在不同温度下不同水平位移时力学性能的变化,回归了隔震支座第一刚度、第二刚度、屈服剪力的变化曲线,得出支座温度性能的定量结论。
     3利用三维非线性动态有限元程序分析了橡胶铅芯支座的动力特性。并把分析结果与试验结果对比,发现分析结果与试验结果吻合较好,有限元分析方法可以作为支座研发的一个手段。利用三维非线性动态有限元分析研究了方形橡胶隔震支座的各向异性,研究了多橡胶铅芯隔震支座的铅芯放置位置对支座性能的影响,对支座橡胶应力、支座钢板应力作了分析,并与理论值作了对比。
     4对现阶段不同的支座等效线性化方法作了对比分析,对各个方法的主要区别作总结归纳:发现支座等效阻尼比的确定和结构阻尼影响系数的确定是等效线性化方法要解决的首要问题。对一座实体桥,通过用不同等效线性化方法的算例,与多条地震波时程反应结果对比,对不同等效线性化方法作出对比评价。通过不同温度下隔震支座的试验研究得到的隔震支座的力学参数与温度的曲线关系,利用非线性时程方法计算了隔震桥梁的地震响应,得到需要考虑温度效应对隔震支座性能影响的响应区间。
High intensity earthquakes have happened more frequently since 21st century. As the most significant projections, many bridges have been destroyed in many serious earthquakes. As a result, more and more countries take into account for the damage of bridges caused by earthquakes. The traditional anti-seismic designs of bridge are mainly in accordance with the strength and ductility of the structure, which may consume a large number of materials and are often difficult to meet the anti-seismic requirements in high-intensity zone. However, seismic isolation technology which can can effectively reduce the effect of earthquake is widely used. Seismic isolation technology is mainly fit for the continuous beam bridges that are largely constructed, and to reduce the response through setting bearings which provides flexible support and causes energy dissipation at the junction of the top of pier and the bottom of beam. LRB is the most widely used bearing in bridge bearings. Further in-depth study of the mechanical properties of LRB which is suitable for bridge are quite necessary. Nevertheless, simplified calculation method which integrates with current norms has practical significance to the application of isolating technology in bridge. In this paper, based on LRB which is suitable for seismic isolation of continuous beam bridge, research is carried out in the following areas:
     1 Theoretical analysis of LRB properities. Firstly, getting the calculation expression of longitudinal and horizontal stiffness of LRB through longitudinal compressed stiffness of rubber and the longitudinal apparent elastic modulus which are derived by rubber elasticity theory. Then deriving expression of the lingitudinal stress distribution of the bottom of rubber. Finally, according to the data, deriving the expression of shear distribution at the bottom of steel plate. after that, discussing the questions in the design of the square bearing and multi-lead-bearing according to the distribution of stress.
     2 Experimental Analysis of LRB. The experiments reveal the mechanical properties of varieties of bearings in different circumstances. Using different horizontal displacement, different frequencies in the dynamic mechanical properties test, ultimate shear deformation test, ultimate stress test, bearing fatigue test, verifying square bearings is a reliable bearing in the isolatation of bridge; Using different horizontal displacement, different frequencies in the dynamic mechanical properties test, ultimate shear deformation test, ultimate stress test, bearing fatigue test, verifying multiple lead core rubber bearings is a reliable bearing in the isolatation of bridge; Doing simulated static load test on the bearings in different diameters, and the results shows that there are something different between the static properties and the dynamic properties of bearing. Doing temperature test on the bearings, and the results reveals the changes of mechanical properties at different temperatures and different horizental displacement. Getting the fisrt and the second stiffness, and yield force variation curve of bearing, then draw quantitative conclusions of temperature properity of bearing.
     3 Analysis of dynamic characteristics of LRB, based on three-dimensional nonlinear dynamic finite element program. Compared with the experimental results and find that the results agree well with the experimental results, so finite element analysis can be developed as a means of the research and invention of bearings. The anisotropy of square rubber bearings is researched by using three-dimensional nonlinear dynamic finite element analysis, and researched the bearing porperity, stress on the rubber bearings, stress on steel plate when lead is located in different parts, and make a comparation with the theoretical value.
     4 Compared analysis between the different current equivalent linear method. Summary the main difference between the various methods and find that the equivalent damping ratio and the structure damping coefficient are the primary problem of equivalent linear method. When it comes to a bridge, compared with some seismic response time history results, assess different equivalent linearization methods through examples of different equivalent linearization method. According to the mechanical parameters and the temperature curve obtained by test and using equivalent linearization methods and elastic response spectrum method of seismic response of compute the response of isolated bridge, get the response range that bearing may be effected by temperature.
引文
[1]Yang, Q. S., Chen, Y. J. A practical coherency model for spatially varying ground motions[J]. Structural Engineering and Mechanics,2000,9(2):141-152.
    [2]Soyluk, K., Dumanoglu, A. A. Spatial variability effects of ground motions on cable-stayed bridges[J]. Soil Dynamics and Earthquake Engineering Structures, 2004,24:241-250.
    [3]耿波.桥梁船撞安全评估[博士学位论文].上海:同济大学,2007:2.
    [4]Davernport, A. G. Note on the distribution of the largest value of a random function with application to gust loading[J]. In:Proc Inst Civil Eng,1961,28: 187-196.
    [5]Bonganoff, J. L., Goldberg, J. E., Schiff, A. J. The effect of ground transmission time on the response of long structures[J]. Bull Seism Soc Am,1965,55:627-640.
    [6]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [7]Skinner, R. I., Robinson, W.H., Mcverry, C.H.工程隔震概论[M].北京:地震出版社,1996.
    [8]日本隔震构造协会.隔震结构入门[M].东京:OHM出版社,1995.
    [9]Tyler, R. G. R., W. H.. HIGH-STRAIN TESTS ON LEAD-RUBBER BEARINGS FOR EARTHQUAKE LOADINGS.[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1984,17(2):90-105.
    [10]唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中科技大学出版社,1993.
    [11]Fujita, K. K., S.; Shimomura, T.; Aoyagi, S.; Rodwell, E. Dynamic characteristics of elastomer with lead plug[J]. ASME Pressure Vessels Piping Div Publ PVP,1989, 181:17-22.
    [12]Cooke, N. C., A. J.; Moss, P. J.; Kwai, Tan Fun. INFLUENCE OF NON-GEOMETRIC FACTORS ON THE SEISMIC BEHAVIOUR OF BRIDGES ON ISOLATING BEARINGS.[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1986,19(4):263-271.
    [13]Asher, J. W. H., S.N.; Ewing, R.D.; Mayes, R.L.; Button, M.R.; Van Volkinburg, D.R.. Performance of seismically isolated structures in the 1994 Northridge and 1995 Kobe earthquakes [J]. Structures Congress-Proceedings,1997,2:1128-1132.
    [14]Skinner, T. I., Mcverry, G. H.工程隔震概论[M].地震出版社,1996.
    [15]Turkington, D. H. C., N.; Moss, P.J.; Carr, A.J.. Development of a design procedure for bridges on lead-rubber bearings[J]. Engineering Structures,1989, 11(1):2-8.
    [16]Hwang, J. S. S., L.H. Effective stiffness and equivalent damping of base-isolated bridges[J]. Journal of Structural Engineering,1993,119(10):3094-3101.
    [17]Kikuchi, M. A., Ian D.. Analytical hysteresis model for elastomeric seismic isolation bearings[J]. Earthquake Engineering & Structural Dynamics,1997,26(2).
    [18]Ali, H.-E. M. A.-G., Ahmed M.. Seismic energy dissipation for cable-stayed bridges using passive devices[J]. Earthquake Engineering & Structural Dynamics, 1994,23(8):877-893.
    [19]周剑光,丁汉山.桥梁支座类型及其应用[J].工程结构,2006,26(2):105-106.
    [20]Mattheck, C. E., D.. Shape optimization of a rubber bearing[J]. International Journal of Fatigue,1991,13(3):206-208.
    [21]Bjarni, B. R., Sigbjornsson Earthquake induced response of a seismically isolated bridges-a simplified stochastic approach[J]. Acta Polytech Scand Civ Eng Build Constr Ser,1998, (110):5-25.
    [22]李军.超大吨位球型支座的结构设计[博士学位论文]重庆:重庆大学,2006.
    [23]Roberts, J. E. Caltrans structural control for bridges in high-seismic zones[J]. Earthquake Engineering and Structural Dynamics,2005,34(4-5):449-470.
    [24]A.N. Gent, P. B. L. The Compression of Bonded Rubber Blocks[J]. Proc InstnMechEngrs,1959,173(3).
    [25]AN Gent, E. M. Compression, bending, and shear of bonded rubber blocks[J]. Polymer Engineering and Science,1970,10(1).
    [26]多田英之、安西胜彦、高山峰夫等.隔震支座相关研究之6-7[C][J].日本建筑学会学术讲演梗概集,1982,B-2(783-786).
    [27]Ali, H.-E. M. A.-G., Ahmed M.. Modeling of rubber and lead passive-control bearings for seismic analysis[J]. Journal of Structural Engineering,1995,121(7): 1134-1144.
    [28]P.B.Lindley. Natural Rubber Structural Bearings[J]. Joint Sealing and Bearings Systems for Concrete Structures,1981,1(1):353~378.
    [29]WH Robinson, A. T. Test results for lead-rubber bearings for the william m. clayton building, toe toe bridge, and waiotukupuna bridge[J]. Bull New ZealandNatl Soc Eng,1983,14(1):21-33.
    [30]Kelly, J. M. A., Ian D.. Recent developments in testing base isolation systems[J]. 1989.
    [31]Ohtori, Y. I., K.; Mazda, T.. Dynamic characteristics of lead rubber bearings with dynamic two-dimensional test equipment[J]. ASME Pressure Vessels Piping Div Publ PVP,1994:145-153.
    [32]Mori, A. M., Peter J.; Cooke, Nigel; Carr, Athol J.. Behavior of bearings used for seismic isolation under shear and axial load[J]. Earthquake Spectra,1999,15(2): 199-224.
    [33]Chang, S.-P. M., Nicos; Whittaker, Andrew S.; Thompson, Andrew C.T. Experimental and analytical studies on the performance of hybrid isolation systems[J]. Earthquake Engineering and Structural Dynamics,2002,31(2): 421-443.
    [34]Robinson, W. H., and Tuker,A.G The results for Lead-Rubber Bearings for the William M.Clayton Building,Toe Toe Bridge,and Waiotukupuna Bridge Bull.New Zealand Natl[J]. SocEng,1983,14(1):21-23.
    [35]Derham, C. J., Thomas,A.G (1980). The Design of Seismic Isolation Bearings. Paper presented at:Century 2-Emerings Technology Conference's (San Francisco).
    [36]赵威,齐.桥梁的减震、隔震方法[J].世界地震工程,1991,3(3):31~37.
    [37]J.A.Haringx. On Highly Compressible Helical Springs and Rubber Rods,and Their Application for Vibration-Free Mountings[J]. Philips Research Reports,1949,1(4).
    [38]Derham, C. J., Thomas, A.G. The Design of Seismic Isolation Bearings[J]. Century 2-Emerging Technology conference (San Francisco),2000.
    [39]藤田隆史,藤.,铃木重信,等(1988).建筑隔震用橡胶隔震支座相关试验研究.Paper presented at:日本机械学会论文集.
    [40]瓜生满,西.隔震用橡胶隔震支座刚度、变形和界限特性相关研究[C].日本建筑学会构造系论文集,东京.丸善出版社,1999:119-128.
    [41]李黎,唐家祥.工程结构的基础隔震与隔震系统[J].钢结构,1993,8(19):11-15.
    [42]朱宏平,唐家祥.叠层橡胶支座的震动传递特性[J].工程力学,1995,12(4):109-115.
    [43]许斌,唐家祥.基础隔震叠层橡胶支座耐久性试验研究[J].工程抗震,1995,(4):41-44.
    [44]江宜城,唐家祥.单层框架建筑模型基础隔震实验研究[J].世界地震工程,1999,15(3):74-78.
    [45]李黎,熊世树.叠层橡胶隔震支座动力特性试验研究[J].华中理工大学学报,1998,26(2):74-76.
    [46]唐家祥,裴若娟,崔世杰,张朝新.无粘结叠层橡胶隔震器[专利]中国:杨为国:7.
    [47]张俊平,禹奇才,周福霖.结构振动控制系统最优控制力及控制作用最优分布的一般算法[J].工程力学,1999,16(6):54-61.
    [48]周庆文,周福霖,王清敏,丰定国.叠层橡胶垫隔震性能及设计[J].工业建筑,2000,30(8):23-25.
    [49]杨巧荣,庄学真,刘文光,周福霖.夹层橡胶隔震支座全刚性性能、回转刚性及高压缩应力性能试验研究[J].地震工程与工程振动,2000,20(4):118-125.
    [50]张俊平,周福霖,廖蜀樵.桥梁隔震体系振动台试验研究(Ⅰ)——试验意义与模型设计[J].地震工程与工程振动,2001,32(4):40-44.
    [51]张俊平,周福霖,闫维明,廖蜀樵.桥梁隔震体系振动台试验研究(Ⅱ)——主要测试结果介绍[J].地震工程与工程振动,2002,23(1):42-46.
    [52]周锡元,韩.,曾德民等.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].振动工程学报,1999,12(2):157-165.
    [53]周锡元,阎.,杨润林.建筑结构的隔震、减振和振动控制.[J].建筑结构学报,2002,23(2):2-12.
    [54]吕西林,朱玉华,施卫星等.组合基础隔震房屋模型振动台试验研究[J].土木工程学报,2001,34(2):35-40.
    [55]朱玉华,吕西林,杜芳,施卫星,冯德民.组合隔震系统滑动支座的滑移系数研究[J].结构工程师,2001,(2):34-38.
    [56]朱玉华,吕西林.滑移摩擦隔震系统在多向地面运动作用下的试验研究[J].地震工程与工程振动,2002,(05).
    [57]朱玉华,吕西林.滑移摩擦隔震系统在多向地面运动作用下的试验研究[J].地震工程与工程振动,2002,22(5):77-84.
    [58]华培忠,韩新民,李佩林等.橡胶隔震支座力学性能试验研究[J].地震研究,2000,18(1):34-38.
    [59]熊立红,陆钦年,丁世文.钢管混凝土短柱支座隔震性能研究[J].地震工程与工程振动,2001,(04).
    [60]潘开名,刘斌,刘之洋,李振波.叠层橡胶支座隔震结构的原型测试结果分析[J].工业建筑,2002,25(1):18-22.
    [61]王庆水.橡胶隔震支座稳定性的试验研究[J].世界桥梁,2003,(3):19-23.
    [62]刘文光,杨巧荣,周福霖,冯德民.橡胶座非线性弹性拉伸特性的理论和试验研究[J].地震工程与工程振动,2004,24(2):158-167.
    [63]高伟.橡胶支座上梁体稳定性的理论分析及实验研究[J].铁道工程学报,2005,(2):12-15.
    [64]韩强,刘文光,杜修力,赵建锋.桥梁隔震支座压缩剪切变形状态的竖向刚度研究[J].世界桥梁,2006,(1):52-55.
    [65]韩强,刘文光,杜修力,赵建锋.橡胶隔震支座竖向性能试验研究[J].辽宁工程技术大学学报,2006,25(2):217-219.
    [66]奚勇.桥梁橡胶支座应用中的质量问题分析及对策[J].世界桥梁,2006,(4):68-70.
    [67]韩强,杜修力,刘晶波,刘文光.多维地震作用下隔震桥梁地震反应(Ⅰ)——模型结构振动台试验[J].振动与冲击,2008,27(09):59-65.
    [68]袁涌,熊世树,朱昆.橡胶隔震支座对桥梁隔震性能的实时子结构拟动力实验研究[J].华中科技大学学报(城市科学版),2008,25(1):35-38.
    [69]陈永祁,杨风利,刘林.摩擦摆隔震桥梁的设计及应用[J].工业建筑,2009,39(S1):256-261.
    [70]李正升,施卫星.一种叠层橡胶支座动态性能试验研究[J].同济大学学报,1999,27(4):417-421.
    [71]由世歧,刘斌,楼永林.低温环境对叠层橡胶支座变形特性影响的试验研究[J].东北大学学报(自然科学版),2005,26(3):297-299.
    [72]徐慧莹,步启军,韩强.铅芯橡胶支座桥梁隔震试验研究现状及展望[J].路基工程,2007,(1):3-5.
    [73]江宜城,叶志雄,聂肃非,李黎.方形铅芯橡胶支座力学性能试验研究及隔震桥梁地震响应分析[J].公路交通科技,2007,24(10):94-98.
    [74]李黎,聂肃非,孔德怡.桥梁隔震支座静力性能试验分析[J].工程抗震与加固改造,2009,31(3):21-25.
    [75]江宜城,叶志雄,聂肃菲,李黎.四铅芯橡胶支座显式有限元分析及试验研究[J].中国市政工程,2007,(3):41-43.
    [76]李慧,邓学晶,杜永峰等.寒区叠层橡胶隔震支座拟静力试验研究[J].结构设计与施工技术,2003,20(3):33-35.
    [77]Vulcano, A. Comparative study of the earthquake and wind dynamic responses of base-isolated buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76(Apr-Aug):751-764.
    [78]Tena-Colunga, A. G-S., Consuleo; Munoz-Loustaunau, Abel Seismic isolation of buildings subjected to typical subduction earthquake motions for the Mexican Pacific Coast[J]. Earthquake Spectra,1997,13(3):505-532.
    [79]Gardonio P. Elliott S J. [J].,121.,482—487. Study of the control strategies for the reduction of structure vibration transmission[J]. Transaction of the ASME-Journal of Vibration and Acoustic,1999,12(1):482-487.
    [80]江宜城,杨德喜,李黎,胡亮.LRB隔震桥梁空间变异性地震随机响应分析[J].振动与冲击,2007,26(1):104-107.
    [81]Bray J. D., R.-M. A. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering,2004,24(11): 815-828.
    [82]Ryan K. L., C. A. K. Estimating the seismic displacement of friction pendulum isolators based on non-linear response history analysis[J]. Earthquake Engineering and Structural Dynamics,2004,33(3):359-373.
    [83]李黎,吴景,叶志雄.隔震曲线桥梁碰撞研究[J].工程抗震与加固改造,2008,30(5):48-54.
    [84]A.A.Shama. Simplified procedure for simulating spatially correlated earthquake ground motion [J]. Engineering Structures,2007,18(7):248-258.
    [85]Qiao Pizhong, Y. M. Mosallam Ayman S. Impact Analysis of I-lam Sandwich System for Over2height Collision Protection of Highway Bridges[J]. Engineering Structures,2004,26(7):1003-1012.
    [86]叶志雄,李黎,夏正春.LRB隔震桥梁遭受超高车辆撞击时的响应分析[J].武汉理工大学学报,2008,30(11):117-121.
    [87]K., M. B. A Review of Computer Simulation of Tumbling Mills by the Discrete Element Method:Part Ⅰ—Contact Mechan-ics[J]. International Journal of Mineral Processing,71(1):73-79.
    [88]Nagarajaiah, S. F., Keith; Buckle, Ian. Stability of elastomeric seismic isolation bearings in buildings[J]. Structures Congress-Proceedings,1997,2:1138-1142.
    [89]樊爱武,李黎,杨军,张行.摩擦力的双向相互作用对滑移位移的影响分析[J].华中科技大学学报(城市科学版),20051,22(1):44-48.
    [90]Iwan W D, G. N. C. Estimating Earthquake Response of Simple Hysteretic Structures[J]. Journal of the Engineering Mechanics Division, ASCE,1979,105(3): 391-405.
    [91]Tsai, H. C., Kelly, J. M. Dynamic parameter identification for nonlinear isolation systems in response spectrum analysis [J]. Earthquake Engineering and Structural Dynamics,1989,18:1119-1132.
    [92]Huang, J. S. Evaluation of equivalent linear analysis methods of bridge isolation[J]. ASCE Journal of Structural Engineering,1996,122(8):972-986.
    [93]Manuel Jara, J. R. C. A direct displacement-based method for the seismic design of bridges on bi-linear isolation devices[J]. Engineering Structure,2006,28(4): 869-879.
    [94]Chen, K. H., Loh, C. H. Simplified inelastic analysis of bridge pier considering isolation system[J]. Techniacl Council on Lifeline Earthquake Engineering Monograph,1996:371-378.
    [95]周锡元,李钟锡.规则型桥隔震桥梁结构的简化分析方法[J].土木工程学报,2001,34(3):53-56.
    [96]Yang, Y. B., Chen, Y. C. Design of sliding-type base isolators by the concept of equivalet damping[J]. Shock and Vibration Digest,2000,32(1):39.
    [97]Salomon, O. O., Sergio; Barbat, Alex Finite element analysis of base isolated buildings subjected to earthquake loads[J]. International Journal for Numerical Methods in Engineering,1999,46(10):1741-1761.
    [98]Chen, Q. D., Bruce M.; Maragakis, Emmanuel A.; Buckle, Ian G.. Extraction of hysteretic properties of seismically isolated bridges from quick-release field tests[J]. Earthquake Engineering and Structural Dynamics,2002,31(2):333-351.
    [99]Nagrajaiah, S., Reinhorn, Constantinou, M. C. Nonlinear dynamic analysis of 3-D base-isolated structures[J]. ASCE Journal of Structural Engineering,1991,117(7): 2035-2054.
    [100]Sevket, A., A.Aydin, D., Alemdar, B. Stochastic response of seismically isolated highway bridges with friction pendulum systems to spatially varying earthquake ground motions[J]. Engineering Structures,2005,27:1843-1858.
    [101]朱东生,劳远昌,沈大元,李乔.LRB隔震桥梁的地震反应特点[J].工程力学,2000,33(4):119-125.
    [102]王丽,阎贵平,孙立.LRB隔震桥梁减震效果分析[J].工程力学,2003,20(5):124-129.
    [103]曾攀,闫贵平,郑云.地震激励特性对隔振桥梁动力响应的影响研究[J].噪声与振动控制,2001,(2):9-13.
    [104]Palazzo, B., Petti, L. Stochastic response comparison between base isolated and fixed-base structure.[J]. Earthquake Spectra,1997,13(1):77-96.
    [105]洪峰,王前信.滞变-摩擦基底隔震系统地随机地震反应分析[J].地震工程与工程振动,1997,17(3):1-8.
    [106]李立,李子青.滞回型装置减震桥梁的随机反应分析[J].西安公路交通大学学报,2001,21(4):40-42.
    [107]Jangid, R. S., Datta, T. K. Seismic reliability of base-isolated building frames[J]. Proceedings of 11th European Conference on Earthquake Engineering,Elsevier Science Led,Acapulco,Mexico,1996:491.
    [108]李大望,王东炜.滑动隔震结构的非线性动力可靠性分析[J].世界地震工程,2000,16(1):28-31.
    [109]陈永祁,王静,刘林.国外减隔震桥梁的失效分析[J].工程抗震与加固改造,2008,30(5):41-46.
    [110]Katsaras, C. P. K., V.K.. Optimal design of lead rubber bearing seismic isolators in buildings[J]. Proc of 3rd Internat Conf on Eng Comput Technol,2002:167-168.
    [111]Makris, N. B., Cameron J.. Dimensional analysis of bilinear oscillators under pulse-type excitations [J]. Journal of Engineering Mechanics,2004,130(9): 1019-1031.
    [112]Yoo, B. K., Yang-Hann Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure[J]. Earthquake Engineering and Structural Dynamics,2002,31(10).
    [113]Chang, K. C. T., M.H.; Hwang, J.S.; Wei, S.S.. Field testing of a seismically isolated concrete bridge[J]. Structural Engineering and Mechanics,2003,16(3): 241-257.
    [114]Matsuda, A. A Numerical Model of Lead Material and Its Applicability to Simulation of Isolation Devices[J]. ASME Pressure Vessels Piping Div Publ PVP, 2003,466:55-63.
    [115]J.M.Kelly. The Influence of Plate Flexibility on the Buckling Load of Elastomeric Isolators[J]. UBC/ERRC,1994,94(3):1225-1237.
    [116]Buckle, I. G a. L., H. Stablility of Elastomeric Seismic Isolation System[J]. Passive Energy Dissipation and Active Control,1993,1(1):101-107.
    [117]Park, J. G., Otsuka,H. Optimal Yield Level of Bilinear Seismic Isolation [J]. Earthquake Engineering & Structural Dynamics,1999,28(1):941-945.
    [118]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究[博士学位论文].北京:北京工业大学,2003.
    [119]A.N. Gent, E. M. Compression, bending, and shear of bonded rubber blocks[J]. Polymer Engineering and Science,1970,10(1).
    [120]藤田聪.采用橡胶隔震支座的产业设施的隔震结构相关研究.东京大学博士论文,1987:78-111.
    [121]杜修力,刘文光等.方形多铅芯橡胶支座力学性能研究[J].地震工程与工程振动,2006,26(2):125-130.
    [122]刘云贺,张俊发,王克成,俞茂宏.铅芯橡胶支座的非线性动力性态研究[J].西安交通大学学报,1999,33(12):73-77.
    [123]GB/T20688.1-2007.建筑隔震橡胶支座[S].
    [124]GB20688.2-2006桥梁隔震橡胶支座[S].
    [125]吴彬,庄.,臧晓秋.铅芯橡胶支座的非线性动态分析力学参数试验研究[J].工程力学,2004,21(5):144-149.
    [126]林佳,魏陆顺等.橡胶隔震支座疲劳试验研究[J].广州大学学报(自然科学版)2005,4(3):258-260.
    [127]Samali, B. W., Yi Min; Li, Jianchun Shake table tests on a mass eccentric model with base isolation[J]. Earthquake Engineering and Structural Dynamics,2007, 32(9):1353-1372.
    [128]Takhirov, S. M. K., James M.. Numerical study on buckling of elastomeric seismic isolation bearings[J]. Proceedings of the Structures Congress and Exposition,2006: 2.
    [129]Xiaoqiu, Z. Study of isolated bridges with the lead-rubber bearing [C]. Master's Dissertation of Acadmy of Railway Science, Beijing.1999.
    [130]Anonymous. LS-DYNA user's manual[M]. Liver more Software Technology Corporation,2001,3.
    [131]叶志雄,李.,聂肃非等.铅芯橡胶支座非线性动态特性的显式有限元分析[J].工程抗震与改造加固,2006,6(6):23-27.
    [132]郑明军,王.,陈政南等.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工业,2003,50(8):462-465.
    [133]熊世树等.铅芯橡胶隔震支座恢复力模型的分析方法, [J].华中科技大学学报[城市科学版],2003,20(2):28-31.
    [134]张雄等.铅胶隔震支座的三维非线性动态特性分析[C].北京市振动工程学会学术会议论文集.1996.
    [135]朱东生,劳远昌,沈大元,李乔.LBR隔震桥梁的等效线性化设计方法[J].工程力学,2000,S:462-466.
    [136]孔德怡,李黎,江宜城,刘文静.桥梁隔震设计中几种等效线性化方法比较研究[J].公路交通科技,2008,25(2):73-78.
    [137]Hwang J S, C. J. M. An Equivalent Liner Model of Lead-Rubber Seismic Isolation Bearings[J]. Engineering Structure,1995,18(7).
    [138]Iwan W D, G. N. C. Estimating Earthquake Response of Simple Hysteretic Structures[J]. Journal of the Engineering Mechanics Division, ASCE,1979,105(3): 391-405.
    [139]Manuel Jara, J. R. C. A direct displacement-based method for the seismic design of bridges on bi-linear isolation devices [J]. Engineering Structure 2006,28:869-879.
    [140]朱东生.LRB隔震桥梁地震反应初探[J].中国公路学报,2001,14(4):47-51.
    [141]J. S. Hwang, K. C. C. M. H. T. Composite damping ratio of seismically isolated regular bridge[J]. Engineering Structure,1997,19(1):55-62.
    [142]Eurocode8. Design provisions for earthquake resistance of structures. Part 2-Bridge[S].1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700