镉致大鼠肝细胞毒性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是许多工业广泛使用的高毒重金属环境污染物,镉对人和其他哺乳动物的肝、肾、肺、胰腺、睾丸、胎盘和骨等许多器官和组织都有毒性。镉所致机体损伤的机制十分复杂且尚不明确,体内外实验研究证明镉可引起细胞氧化应激或凋亡/死亡,且凋亡与线粒体、细胞内钙离子动态平衡、丝裂原活化蛋白激酶(MAPK)的激活等有关。对啮齿动物研究证明,镉最初主要累积在肝脏,所以暴露毒性剂量的镉首先引起肝脏受损。本论文以大鼠肝细胞为模型,采用细胞生物学和分子生物学的方法研究镉致体外培养大鼠肝细胞的毒性作用及机理。
     1.镉对大鼠肝细胞毒性损伤的研究
     采用两步灌流法获得大鼠肝细胞,经过24h培养,换以含2.5、5、10μmol/L醋酸镉的无血清培养基培养12h和24h,测定镉对细胞存活率、细胞培养上清液中LDH、ALT和AST的活性,以及镉对细胞形态、超微结构的影响。
     结果表明,随着镉浓度的增大,肝细胞的存活率逐渐降低,12h和24h时各剂量染镉组细胞存活率均极显著低于对照组(P<0.01);随着镉剂量的增加和作用时间的延长,细胞急剧变形,坏死细胞增多,线粒体肿胀变形,线粒体嵴模糊,内容物皱缩空泡化或最终崩解。LDH、AST和ALT释放量随剂量增加而增加,部分剂量组LDH、AST和ALT活性与对照组相比差异显著或极显著(P<0.05或P<0.01)。
     2.镉对大鼠肝细胞凋亡及氧化损伤的研究
     醋酸镉处理肝细胞,测定镉对细胞凋亡率、氧化应激指标、活性氧(ROS)水平及线粒体膜电位(△Ψm)的变化。
     结果表明,12h时细胞内GSH含量随镉剂量增高而降低,部分剂量组极显著(P<0.01)低于对照组,24h时随剂量增高而升高,5和10μmol/L剂量组显著或极显著(P<0.01)高于对照组,GSH-PX的活性变化与之相反;随着镉剂量的增大和作用时间延长,SOD和CAT活性、MDA含量均升高,部分剂量与对照组相比差异显著或极显著(P<0.05或P<0.01);而GST和GR活性降低,但与对照组无明显差异(P>0.05);细胞凋亡率升高,细胞内ROS水平增加和△Ψm降低,部分剂量组与对照组差异显著或极显著(P<0.05或P<0.01);表明镉可致肝细胞产生氧化应激,且通过线粒体途径引起细胞凋亡。
     3.N-乙酰半胱氨酸对镉致肝细胞损伤的影响
     对肝细胞染毒的同时添加NAC,通过测定肝细胞的存活率、细胞形态和凋亡、△甲m和ROS的变化,观察NAC对镉致大鼠肝细胞损伤的保护作用。
     结果表明,NAC可显著或极显著提高镉处理细胞存活率(P<0.05或P<0.01),呈剂量-效应关系,NAC可使镉处理组皱缩和坏死细胞、凋亡细胞明显减少,显著或极显著降低镉处理细胞ROS生成和阻止△Ψm的降低(P<0.05或P<0.01)。表明NAC可有效保护镉致大鼠肝细胞的毒性损伤。
     4.镉致大鼠肝细胞凋亡的非caspase途径
     用醋酸镉处理肝细胞,观察caspase-3含量变化以及caspases广谱抑制剂Z-VAD-fink对镉致细胞存活率、形态和凋亡变化的影响。
     结果表明,镉暴露的不同时间,肝细胞caspase-3活性无明显变化,与对照组差异不显著(P>0.05); Z-VAD-fmk对镉所致的细胞存活率、细胞形态和细胞凋亡无显著影响。表明caspase途径未参与镉致大鼠肝细胞的凋亡过程。
     5.钙离子超载在镉致大鼠肝细胞凋亡中的作用
     通过不同浓度醋酸镉处理肝细胞,不同时间点测定细胞内钙离子浓度,以及钙离子抑制剂Bapta-AM对镉致细胞内钙离子浓度、细胞存活率、细胞形态、细胞凋亡、细胞内ROS和△Ψm变化的影响。
     结果表明,镉暴露1.5h时细胞内钙离子水平极显著升高(P<0.01),但随着时间的延长,细胞内钙离子水平迅速下降,并接近对照组水平。而Bapta-AM可以显著降低镉引起的钙离子水平升高,并显著提高镉处理细胞的存活率(P<0.05)。另外Bapta-AM可使镉处理细胞形态趋于完整、并使变形细胞和凋亡细胞减少,显著或极显著减少ROS产生和抑制△Ψm降低(P<0.05或P<0.01)。说明镉可致肝细胞内钙离子水平升高,钙离子抑制剂Bapta-AM能有效降低细胞内钙离子水平及细胞损伤,提示钙离子超载在镉致肝细胞凋亡中发挥重要作用。
     6.镉致大鼠肝细胞凋亡的MAPK途径
     在10μmol/L醋酸镉处理肝细胞的同时,用p38抑制剂SB202190、JNK抑制剂SP600125、ERK抑制剂U0126单独或联合作用于肝细胞,测定细胞存活率、细胞形态、细胞凋亡率、△甲m和磷酸化p38蛋白表达的变化。
     结果表明,SB202190可以显著或极显著提高镉处理组细胞的存活率,减少变形细胞和凋亡细胞数量(P<0.05或P<0.01),但SP600125和U0126作用相反。镉可极显著提高肝细胞磷酸化p38的表达量(P<0.01),而SB202190能极显著降低其表达(P<0.01);SB202190还可极显著升高镉引起的△甲m降低(P<0.01)。说明镉暴露使肝细胞产生的ROS引起p38 MAPK途径激活,并通过损伤线粒体引起细胞凋亡。
Cadmium (Cd), an extremely important environment pollutant, was widely used in many industries. In human and other mammals, Cd affects adversely a number of organs and tissues, including the liver, kidney, lung, pancreas, testis, placenta and bone. Cd induced injury is very complex and unclear in the body. Cd induced cellular oxidative stress or apoptosis/death in vitro and in vivo. Apoptosis has relationship with mitochondria, intracellular calcium homeostasis, mitogen-activated protein kinase (MAPK) activitied and so on. Cd mainly accumulate in the liver initialy through rodent studies, so exposure to toxic doses of Cd will cause liver damage first. Therefore, we choose rat hepatocytes to study the mechanism of Cd induced cytotoxicity with cell biology and molecular biology method.
     1. Cd-induced cytotoxicity in rat hepatocytes
     Rat hepatocytes were isolated by a two-step perfusion technique. After 24h planting, hepatocytes were treated with cadmium acetate (Cd(AC)2) (2.5,5 and 10μmol/L) for 12 h or 24 h. Cell viability, the leakage of lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) in cell-free medium were measured with MTT assay and spectro photometric assay at the end of incubation. Hepatocytes morphology and ultrastructure were evaluated.
     The results showed that with the dose of Cd increased and long expored, hepatocytes viability was decreased very significantly (P<0.01) after 12 h or 24 h treatment, hepatocytes showed sharp deformation and necrosis, mitochondria swelling and degeneration, mitochondrial cristae blurred, deformed or final collapse.The leakage of LDH, ALT and AST increased with doses increased, there was significant difference in partial groups than the control group (P<0.05 or P<0.01).
     2. Oxidative stress induced by Cd triggers apoptosis in rat hepatocytes
     24 h rat hepatocytes were treated with Cd(AC)2. The effects of Cd on oxidative stress markers, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) collapse were measured.
     The results showed that the GSH content decreased with the dose of Cd increased, there was very significant difference in partial groups than the control group (P<0.01) at 12 h, but GSH content increased with the dose of Cd increased at 24 h. GSH-PX activities was in opposition with GSH content. The activities of CAT and SOD and MDA level increased, there was significant difference in partial groups than the control group (P<0.05 or P<0.01). The GST and GR activities were decreased but have no significant change. Cd induced apoptosis rate increased,ΔΨm collapse and ROS generation. There was significant difference in partial groups than the control group (P<0.05 or P<0.01).
     These results showed that Cd induces ROS generation and oxidative stress. Cd induces apoptosis through mitochondrial pathway.
     3. The effect of NAC on Cd induced cytotoxicity
     Rat hepatocytes were treated with Cd in the presence or absence of NAC. The effects of NAC on Cd-induced cell morphology, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) collapse were measured.
     These results showed that NAC significantly prevented hepatocytes from Cd-induced death (P<0.05 or P<0.01). NAC effectively inhibited Cd-induced alterations in the morphology of hepatocytes. NAC insult effectively protected hepatocytes against apoptosis from Cd. Cd induce ROS generation andΔΨm collapse were blocked by NAC. It showed that NAC can protect Cd-induced cytotoxicity.
     4. Cd-induced apoptosis in rat hepatocytes through caspase-independent way
     24 h rat hepatocytes were treated with Cd. Caspase-3 activities was measured. The effects of Z-VAD-fmk on Cd-induced cell viability, morphology and apoptosis in hepatocytes were evaluated.
     The results showed that caspase-3 activity does not increase, Z-VAD-fmk has no effect on cell survival, morphology and apoptosis. It showed that Cd induced hepatocytes apoptosis involvement of caspase-independent pathway.
     S.Involvement of calcium in Cd-induced apoptosis in rat hepatocytes
     Hepatocytes were treated with Cd for certain time, then intracellular calcium concentration were determinated. And calcium chelator Bapta-AM on the impact of intracellular calcium concentration, cell survival, morphology and apoptosis, ROS generation andΔΨm collapse were evaluated.
     The results showed the level of intracellular calcium was very significantly increased induced by Cd at 1.5 h (P<0.01). However, with time increasing, the level of intracellular calcium levels rapidly decreased to the level of control group. Bapta-AM can attenuate the level of calcium and significant increase the cell viability induced by Cd (P<0.05). Bapta-AM effectively inhibited Cd-induced alterations in the morphology of hepatocytes. Bapta-AM insult effectively protected hepatocytes against apoptosis from Cd. Cd induce ROS generation andΔΨm collapse were blocked by Bapta-AM. It showed that Cd can elevate intracellular calcium levels, then induce apoptosis through mitochondrial pathway.
     6.Cd induced apoptosis throuth p38 MAPK in rat hepatocytes
     Hepatocytes were treated with Cd in the presence or absence of MAPK signaling inhibitors (p38 MAPK inhibitor SB202190, JNK inhibitor SP600125, ERK inhibitor U0126), then their effect on cell viability, morphology and apoptosis were investigated. Immunohistochemistry analysis was performed to recognize the activated phosphorylated forms of p38 MAPK kinases in Cd-treated hepatocytes in the presence or absence SB202190 and NAC. The impact of SB202190 on Cd-inducedΔΨm collapse was resurched.
     The results showed that SB202190 reversed significantly Cd-induced cell death. SB202190 effectively inhibited Cd-induced alterations in the morphology of hepatocytes. SB202190 protected hepatocytes against apoptosis from Cd. While SP600125 and U0126 increased Cd-induced cell death significantly. The phosphorylation of p38 MAPK increased after Cd treatment and these activations were inhibated by the treatment with its inhibitor SB202190 or NAC. SB202190 blocked disruption ofΔΨm. The findings suggested that Cd induction of ROS activated the p38 MAPK pathway, triggering apoptosis through mitochondrial pathway.
引文
[1]Atsdr. Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry [J]. Atlanta,GA,1999.
    [2]Morselt A. Environmental pollutants and diseases. A cell biological approach using chronic cadmium exposure in the animal model as a paradigm case [J]. Toxicology,1991, 70(1):1-132.
    [3]Elinder C., Lind B., Kjellstr M T., et al. Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Estimation of biological half time in kidney cortex, considering calorie intake and smoking habits [J]. Archives of environmental health,1976,31(6):292-302.
    [4]Lewis G., Coughlin L., Jusko W., et al. Contribution of cigarette smoking to cadmium accumulation in man [J]. Lancet,1972, 1(7745):291-292.
    [5]Diamond G., Cohen J., Weinstein S. Renal handling of cadmium in perfused rat kidney and effects on renal function and tissue composition [J]. American Journal of Physiology- Renal Physiology,1986,251(5):F784-F794.
    [6]Goyer R., Cherian M., Delaquerriere-Richardson L. Correlation of parameters of cadmium exposure with onset of cadmium-induced nephrophathy in rats [J]. Journal of environmental pathology, toxicology and oncology,1984,5(4-5):89-100.
    [7]Habeebu S., Liu J., Klaassen C. Cadmium-induced apoptosis in mouse liver [J]. Toxicology and applied pharmacology,1998,149(2):203-209.
    [8]Jaerup L., Berglund M., Elinder C., et al. Health effects of cadmium exposure-a review of the literature and a risk estimate [J]. Scandinavian Journal of Work and Environmental Health, 1998,24(3):240.
    [9]Kamiyama T., Miyakawa H., Li J., et al. Effects of one-year cadmium exposure on livers and kidneys and their relation to glutathione levels [J]. Research communications in molecular pathology and pharmacology,1995,88:177-177.
    [10]Liu J., Habeebu S., Liu Y., et al. Acute CdMT Injection Is Not a Good Model to Study Chronic Cd Nephropathy: Comparison of Chronic CdC12and CdMT Exposure with Acute CdMT Injection in Rats [J]. Toxicology and applied pharmacology,1998,153(1):48-58.
    [11]Liu J., Liu Y., Habeebu S., et al. Susceptibility of MT-null mice to chronic CdC12-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex [J]. Toxicological Sciences,1998,46(1):197.
    [12]Liu J., Liu Y., Habeebu S., et al. Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-Ⅰ/Ⅱ null mice [J]. Toxicology, 2000,147(3):157-166.
    [13]Min K., Kobayashi K., Onosaka S., et al. Tissue distribution of cadmium and nephropathy after administration of cadmium in several chemical forms [J]. Toxicology and applied pharmacology,1986,86(2):262-270.
    [14]Min K., Onosaka S., Tanaka K. Renal accumulation of cadmium and nephropathy following long-term administration of cadmium-metallothionein [J]. Toxicology and applied pharmacology,1996,141(1):102-109.
    [15]Nordberg M., Nordberg G. Toxicological aspects of metallothionein [J]. Cellular and molecular biology (Noisy-le-Grand, France),2000,46(2):451.
    [16]Oteiza P., Adonaylo V., Keen C. Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake [J]. Toxicology,1999,137(1):13-22.
    [17]Sarkar S., Yadav P., Trivedi R., et al. Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues [J]. Journal of trace elements and electrolytes in health and disease,1995,9(3):144-149.
    [18]Zalups R., Gelein R., Cherian M. Shifts in the dose-effect relationship for the nephropathy induced by cadmium-metallothionein in rats after a reduction in renal mass [J]. Journal of Pharmacology and Experimental Therapeutics,1992,262(3):1256.
    [19]Waalkes M., Coogan T., Barter R. Toxicological principles of metal carcinogenesis with special emphasis on cadmium [J]. CRC Critical Reviews in Toxicology,1992,22(3-4):175-201.
    [20]Iarc. Cadmium and certain cadmium compounds, in: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: Beryllium, cadmium, mercury and exposures in the glass manufacturing industry [J]. IARC monographs, Vol.58, World Health Organization. International Agency for Research on Cancer, Lyon,France, pp.119-146, 210-236,1993.
    [21]Joseph P., Lei Y., Whong W., et al. GENOMICS, PROTEOMICS, AND BIOINFORMATICS-Oncogenic potential of mouse translation elongation factor-1d, a novel cadmium-responsive proto-oncogene [J]. Journal of Biological Chemistry,2002, 277(8):6131-6136.
    [22]Fay R., Mumtaz M. Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database [J]. Food and Chemical Toxicology,1996, 34(11-12):1163-1165.
    [23]Wester R., Maibach H., Sedik L., et al. In vitro percutaneous absorption of cadmium from water and soil into human skin [J]. Toxicological Sciences,1992,19(1):1-5.
    [24]Oberd Rster G. Pulmonary deposition, clearance and effects of inhaled soluble and insoluble cadmium compounds [J]. IARC scientific publications,1992(118):189-204.
    [25]刘宗平.动物中毒病学[M].北京:中国农业出版社,2006,398-402.
    [26]Kjellstrom T., Nordberg G. Kinetic model of cadmium metabolism,in:Friberg, L., CG. Elinder, T. Kjellstrom, Cadmium and health:A toxicological and epidemiological appraisal [J]. CRC Press, Boca Raton,,1985,1:179-197.
    [27]E Refog Lu M., Gul M., Dog Ru M., et al. Adrenomedullin fails to reduce cadmium-induced oxidative damage in rat liver [J]. Experimental and Toxicologic Pathology,2007, 58(5):367-374.
    [28]Haouem S., Hmad N., Najjar M., et al. Accumulation of cadmium and its effects on liver and kidney functions in rats given diet containing cadmium-polluted radish bulb [J]. Experimental and Toxicologic Pathology,2007,59(1):77-80.
    [29]Wahba Z., Coogan T., Rhodes S., et al. Protective effects of selenium on cadmium toxicity in rats:role of altered toxicokinetics and metallothionein [J]. Journal of toxicology and environmental health,1993,38(2):171-182.
    [30]Rana S., Verma S. Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats [J]. Biological trace element research,1996,51(2):161-168.
    [31]Jihen E., Imed M., Fatima H., et al. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: Histology and Cd accumulation [J]. Food and Chemical Toxicology,2008,46(11):3522-3527.
    [32]Nemmiche S., Chabane-Sari D., Guiraud P. Role of a-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain [J]. Chemico-Biological Interactions,2007, 170(3):221-230.
    [33]Sk U., Bhattacharya S. Prevention of cadmium induced lipid peroxidation, depletion of some antioxidative enzymes and glutathione by a series of novel organoselenocyanates [J]. Environmental Toxicology and Pharmacology,2006,22(3):298-308.
    [34]Oh S., Lim S. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation [J]. Toxicology and applied pharmacology, 2006,212(3):212-223.
    [35]路浩.铅镉联合对新生大鼠中枢神经系统的毒性损伤及NAC保护效应的研究[J].扬州:扬州大学,2008.
    [36]王林.铅镉联合对大鼠肾脏的毒性研究[D].扬州:扬州大学,2009.
    [37]Amoruso M., Witz G., Goldstein B. Enhancement of rat and human phagocyte superoxide anion radical production by cadmium in vitro [J]. Toxicology letters,1982,10(2-3):133.
    [38]Zhong Z., Troll W., Koenig K., et al. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes [J]. Cancer research(Baltimore), 1990,50(23):7564-7570.
    [39]Ochi T., Otsuka F., Takahashi K., et al. Glutathione and metallothioneins as cellular defense against cadmium toxicity in cultured Chinese hamster cells [J]. Chemico-Biological Interactions,1988,65(1):1.
    [40]Leonard S., Harris G., Shi X. Metal-induced oxidative stress and signal transduction [J]. Free Radical Biology and Medicine,2004,37(12):1921-1942.
    [41]Valko M., Morris H., Cronin M. Metals, toxicity and oxidative stress [J]. Current Medicinal Chemistry,2005,12(10):1161-1208.
    [42]Sugiyama M. Role of cellular antioxidants in metal-induced damage [J]. Cell biology and toxicology,1994,10(1):1-22.
    [43]Meotti F., Stangherlin E., Zeni G., et al. Protective role of aryl and alkyl diselenides on lipid peroxidation [J]. Environmental Research,2004,94(3):276-282.
    [44]Rikans L., Yamano T. Mechanisms of cadmium-mediated acute hepatotoxicity [J]. Journal of biochemical and molecular toxicology,2000,14(2):110-117.
    [45]Shaikh Z., Vu T., Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants [J]. Toxicology and applied pharmacology,1999,154(3):256-263.
    [46]Stohs S., Bagchi D. Oxidative mechanisms in the toxicity of metal ions [J]. Free Radical Biology and Medicine,1995,18(2):321-336.
    [47]Borges L., Brand O R., Godoi B., et al. Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats [J]. Chemico-Biological Interactions,2008, 171(1):15-25.
    [48]Harstad E., Klaassen C. Tumor necrosis factor-α-null mice are not resistant to cadmium chloride-induced hepatotoxicity [J]. Toxicology and applied pharmacology,2002, 179(3):155-162.
    [49]Chatterjee S., Kundu S., Bhattacharyya A. Mechanism of cadmium induced apoptosis in the immunocyte [J]. Toxicology letters,2007.
    [50]Lag M., Refsnes M., Lilleaas E., et al. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells [J]. Toxicology, 2005,211(3):253-264.
    [51]Fujimaki H., Ishido M., Nohara K. Induction of apoptosis in mouse thymocytes by cadmium [J]. Toxicology letters,2000,115(2):99-105.
    [52]Pham T., Marion M., Denizeau F., et al. Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways [J]. Toxicology in Vitro,2006, 20(8):1331-1342.
    [53]Robertson J., Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals [J]. CRC Critical Reviews in Toxicology,2000,30(5):609-627.
    [54]Marzo I., Perez-Galan P., Giraldo P., et al. Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and-independent pathways acting on mitochondria [J]. Biochemical Journal,2001,359(Pt 3):537.
    [55]Loeffler M., Daugas E., Susin S., et al. Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor [J]. The FASEB Journal,2001,15(3):758.
    [56]Ahn H., Kim Y., Kim J., et al. Mechanism of taxol-induced apoptosis in human SKOV3 ovarian carcinoma cells [J]. Journal of cellular biochemistry,2004,91(5):1043-1052.
    [57]Lemarie A., Lagadic-Gossmann D., Morzadec C., et al. Cadmium induces caspase-independent apoptosis in liver Hep3B cells:role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor [J]. Free Radical Biology and Medicine,2004,36(12):1517-1531.
    [58]Beyersmann D., Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells [J]. Toxicology and applied pharmacology,1997,144(2):247-261.
    [59]Shen H., Dong S., Ong C. Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes [J]. Toxicology and applied pharmacology,2001,171(1):12-19.
    [60]Stohs S., Bagchi D., Hassoun E., et al. Oxidative mechanisms in the toxicity of chromium and cadmium ions [J]. Journal of Environmental Pathology Toxicology and Oncology,2000, 19(3):201-214.
    [61]Iryo Y., Matsuoka M., Wispriyono B., et al. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells [J]. Biochemical pharmacology,2000,60(12):1875-1882.
    [62]Kim J., Sharma R. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages [J]. Toxicological Sciences,2004, 81(2):518.
    [63]Jung Y., Jeong E., Park E., et al. Cadmium induces apoptotic cell death through p38 MAPK in brain microvessel endothelial cells [J]. European journal of pharmacology,2008, 578(1):11-18.
    [64]Wada T., Penninger J. Mitogen-activated protein kinases in apoptosis regulation [J]. Oncogene, 2004,23(16):2838-2849.
    [65]Dudley R., Gammal L., Klaassen C. Cadmium-induced hepatic and renal injury in chronically exposed rats:likely role of hepatic cadmium-metallothionein in nephrotoxicity [J]. Toxicology and applied pharmacology,1985,77(3):414-426.
    [66]Kerr J., Wyllie A., Currie A. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. British journal of cancer,1972,26(4):239-257.
    [67]Prindull G. Apoptosis in the embryo and tumorigenesis [J]. European Journal of Cancer,1995, 31(1):116-123.
    [68]Pascal M., Andrew F., Gerard E. Apoptosis in development [J]. Nature,2000,407:796-801.
    [69]Thompson C. Apoptosis in the pathogenesis and treatment of disease [J]. Science,1995, 267(5203):1456-1462.
    [70]Savill J., Fadok V. Corpse clearance defines the meaning of cell death [J]. NATURE,2000, 407:784-788.
    [71]Leist M., Jaattela M. Four deaths and a funeral:from caspases to alternative mechanisms [J]. Nature Reviews Molecular Cell Biology,2001,2(8):589-598.
    [72]Liu Q., Hengartner M. The molecular mechanism of programmed cell death in C. elegans [J]. ANNALS-NEW YORK ACADEMY OF SCIENCES,1999,887:92-104.
    [73]Green D., Knight R., Melino G. Ten years of publication in cell death [J]. Cell death and differentiation,2004,11(1):2-3.
    [74]Ashkenazi A., Dixit V. Death receptors:signaling and modulation [J]. Science,1998, 281(5381):1305-1308.
    [75]Shi Y. Mechanisms of caspase activation and inhibition during apoptosis [J]. Molecular Cell, 2002,9(3):459-470.
    [76]Vogelstein B., Kinzler K. Cancer genes and the pathways they control [J]. Nature medicine, 2004,10(8):789-799.
    [77]Yuan J., Shaham S., Ledoux S., et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 [beta]-converting enzyme [J]. Cell,1993, 75(4):641-652.
    [78]Jin Z., El-Deiry W. Overview of cell death signaling pathways [J]. Cancer biology & therapy, 2005,4(2):139.
    [79]Degterev A., Boyce M., Yuan J. A decade of caspases [J]. Oncogene,2003,22(53):8543-8567.
    [80]Boatright K., Renatus M., Scott F., et al. A unified model for apical caspase activation [J]. Molecular Cell,2003,11(2):529-541.
    [81]Donepudi M., Sweeney A., Briand C., et al. Insights into the regulatory mechanism for caspase-8 activation [J]. Molecular Cell,2003,11(2):543-549.
    [82]Varfolomeev E., Schuchmann M., Luria V., et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally [J]. Immunity,1998,9(2):267-276.
    [83]Kuida K., Haydar T., Kuan C., et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9 [J]. Cell,1998,94(3):325-337.
    [84]Hakem R., Hakem A., Duncan G., et al. Differential requirement for caspase 9 in apoptotic pathways in vivo [J]. Cell,1998,94(3):339-352.
    [85]Thornberry N., Rano T., Peterson E., et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B [J]. Journal of Biological Chemistry,1997, 272(29):17907-17901.
    [86]Woo M., Hakem R., Soengas M., et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes [J]. Genes & development,1998,12(6):806.
    [87]Kuida K., Zheng T., Na S., et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice [J]. nature,1996,384:368-372.
    [88]Zheng T., Hunot S., Kuida K., et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation [J]. Nature medicine,2000,6(11):1241-1247.
    [89]Martinon F., Burns K., Tschopp J. The Inflammasome A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-P [J]. Molecular Cell,2002, 10(2):417-426.
    [90]Mariathasan S., Newton K., Monack D., et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf [J]. Nature,2004,430(6996):213-218.
    [91]Li H., Zhu H., Xu C., et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis [J]. Cell,1998,94(4):491-502.
    [92]Luo X., Budihardjo I., Zou H., et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors [J]. Cell, 1998,94(4):481-490.
    [93]Enari M., Sakahira H., Yokoyama K., et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J]. Nature,1998,391(6662):43-50.
    [94]Sakahira H., Enari M., Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis [J]. Nature,1998,391(6662):96-99.
    [95]Ricci J., Mu Oz-Pinedo C., Fitzgerald P., et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain [J]. Cell,2004,117(6):773-786.
    [96]Lin Y., Devin A., Rodriguez Y., et al. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis [J]. Genes & development,1999,13(19):2514.
    [97]Wen L., Fahrni J., Troie S., et al. Cleavage of focal adhesion kinase by caspases during apoptosis [J]. Journal of Biological Chemistry,1997,272(41):26056-26061.
    [98]Levkau B., Scatena M., Giachelli C., et al. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-&kgr; B loop [J]. Nature Cell Biology,1999, 1(4):227-233.
    [99]Tang G., Yang J., Minemoto Y., et al. Blocking caspase-3-mediated proteolysis of IKKβ suppresses TNF-a-induced apoptosis [J]. Molecular Cell,2001,8(5):1005-1016.
    [100]Coleman M., Sahai E., Yeo M., et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I [J]. Nature Cell Biology,2001,3(4):339-345.
    [101]Rudel T., Bokoch G. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2 [J]. Science,1997,276(5318):1571-1574.
    [102]Deak J., Cross J., Lewis M., et al. Fas-induced proteolytic activation and intracellular redistribution of the stress-signaling kinase MEKK1 [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(10):5595-5560.
    [103]Kothakota S., Azuma T., Reinhard C., et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis [J]. Science,1997,278(5336):294-298.
    [104]Rao L., Perez D., White E. Lamin proteolysis facilitates nuclear events during apoptosis [J]. Journal of Cell Biology,1996,135(6):1441.
    [105]Ku N., Liao J., Omary M. Apoptosis generates stable fragments of human type Ⅰ keratins [J]. Journal of Biological Chemistry,1997,272(52):33197-33203.
    [106]Rja S., Hammond E. Specific cleavage of gamma catenin by caspases during apoptosis [J]. FEBS Letters,1998,433(1-2):51-57.
    [107]Hotti A., J Rvinen K., Siivola P., et al. Caspases and mitochondria in c-Myc-induced apoptosis: identification of ATM as a new target of caspases [J]. Oncogene,2000,19(19):2354-2362.
    [108]Zong W., Ditsworth D., Bauer D., et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death [J]. Genes & development,2004,18(11):1272-1282.
    [109]Levkau B., Koyama H., Raines E., et al. Cleavage of p21Cipl/Wafl and p27Kipl mediates apoptosis in endothelial cells through activation of Cdk2:role of a caspase cascade [J]. Molecular Cell,1998, 1(4):553-563.
    [110]Zhou B., Li H., Yuan J., et al. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells [J]. Proceedings of the National Academy of Sciences,1998,95(12):6785-6790.
    [I11]J Nicke R., Walker P., Lin X., et al. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis [J]. The EMBO Journal,1996,15(24):6969-6978.
    [112]Nahle Z., Polakoff J., Davuluri R., et al. Direct coupling of the cell cycle and cell death machinery by E2F [J]. Nature Cell Biology,2002,4(11):859-864.
    [113]Konishi Y., Lehtinen M., Donovan N., et al. Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery [J]. Molecular Cell,2002,9(5):1005-1016.
    [114]Maclachlan T., El-Deiry W. Apoptotic threshold is lowered by p53 transactivation of caspase-6 [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(14):9492-9497.
    [115]Rikhof B., Corn P., E1-Deiry W. Caspase 10 levels are increased following DNA damage in a p53-dependent manner [J]. Cancer biology & therapy,2(6):707-712.
    [116]Cardone M., Roy N., Stennicke H., et al. Regulation of cell death protease caspase-9 by phosphorylation [J]. Science,1998,282(5392):1318-1321.
    [117]Irusta P., Chen Y., Hardwick J. Viral modulators of cell death provide new links to old pathways [J]. Current opinion in cell biology,2003,15(6):700-705.
    [118]Baud V., Karin M. Signal transduction by tumor necrosis factor and its relatives [J]. Trends in Cell Biology,2001,11(9):372-377.
    [119]Chan F., Chun H., Zheng L., et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling [J]. Science,2000, 288(5475):2351-2354.
    [120]Walczak H., Krammer P. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems [J]. Experimental Cell Research,2000,256(1):58-66.
    [121]Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling [J]. Cell Death & Differentiation,2003,10(1):45-65.
    [122]Lee S., Reichlin A., Santana A., et al. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival [J]. IMMUNITY-CAMBRIDGE MA-,1997,7:703-714.
    [123]Tournier C., Dong C., Turner T., et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines [J]. Genes & development, 2001,15(11):1419-1426.
    [124]Zong W., Lindsten T., Ross A., et al. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak [J]. Genes & development, 2001,15(12):1481-1486.
    [125]Cheng E., Wei M., Weiler S., et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis [J]. Molecular Cell,2001, 8(3):705-711.
    [126]Korsmeyer S. Regulators of cell death [J]. Trends in Genetics,1995,11(3):101-105.
    [127]Kinloch R., Treherne J., Furness L., et al. The pharmacology of apoptosis [J]. Trends in Pharmacological Sciences,1999,20(1):35-42.
    [128]Danial N., Korsmeyer S. Cell death critical control points [J]. Cell,2004,116(2):205-219.
    [129]Veis D., Sorenson C., Shutter J., et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair [J]. Cell,1993,75(2):229-240.
    [130]Strasser A., Harris A., Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship [J]. Cell,1991,67(5):889-899.
    [131]Schuler M., Green D. Mechanisms of p53-dependent apoptosis [J]. Biochemical Society Transactions,2001,29:684-688.
    [132]Chipuk J., Green D. p53's believe it or not: lessons on transcription-independent death [J]. Journal of clinical immunology,2003,23(5):355-361.
    [133]Newmeyer D., Ferguson-Miller S. Mitochondria Releasing Power for Life and Unleashing the Machineries of Death [J]. Cell,2003,112(4):481-490.
    [134]Green D., Kroemer G. The pathophysiology of mitochondrial cell death [J]. Science,2004, 305(5684):626-629.
    [135]Suzuki Y., Imai Y., Nakayama H., et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death [J]. Molecular Cell,2001, 8(3):613-621.
    [136]Deng Y., Lin Y., Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO [J]. Genes & development,2002,16(1):33.
    [137]Katoh I., Tomimori Y., Ikawa Y., et al. Dimerization and processing of procaspase-9 by redox stress in mitochondria [J]. Journal of Biological Chemistry,2004,279(15):15515.
    [138]Joza N., Susin S., Daugas E., et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death [J]. Nature,2001,410(6828):549-554.
    [139]Donovan M., Cotter T. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death [J]. BBA-Molecular Cell Research,2004, 1644(2-3):133-147.
    [140]Rao R., Peel A., Logvinova A., et al. Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78 [J]. FEBS Letters,2002,514(2-3):122-128.
    [141]Nutt L., Pataer A., Pahler J., et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores [J]. Journal of Biological Chemistry,2002, 277(11):9219-9225.
    [142]Zong W., Li C., Hatzivassiliou G., et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis [J]. Journal of Cell Biology,2003,162(1):59-69.
    [143]Chang L., Karin M. Mammalian MAP kinase signalling cascades [J]. Nature,2001, 410(6824):37-40.
    [144]Davis R. Signal transduction by the JNK group of MAP kinases [J]. Cell,2000, 103(2):239-252.
    [145]Yang D., Kuan C., Whitmarsh A., et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene [J]. Nature,1997,389(6653):865-870.
    [146]Whitmarsh A., Kuan C., Kennedy N., et al. Requirement of the JIP1 scaffold protein for stress-induced JNK activation [J]. Genes & Development,2001,15(18):2421-2432.
    [147]Tournier C., Hess P., Yang D., et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway [J]. Science,2000,288(5467):870-874.
    [148]Z Ren N., El-Deiry W. Defining characteristics of Types Ⅰ and Ⅱ apoptotic cells in response to TRAIL [J]. Neoplasia (New York, NY),2002,4(6):551-557.
    [149]Zou H., Yang R., Hao J., et al. Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP [J]. Journal of Biological Chemistry,2003,278(10):8091-8098.
    [150]Tang D., Lahti J., Kidd V. Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis [J]. Journal of Biological Chemistry,2000,275(13):9303-9307.
    [151]Kasibhatla S., Brunner T., Genestier L., et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1 [J]. Molecular Cell,1998,1(4):543-551.
    [152]Shankar S., Srivastava R. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation:mechanisms and clinical implications [J]. Drug Resistance Updates,2004,7(2):139-156.
    [153]Pelengaris S., Khan M., Evan G. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression [J]. Cell,2002, 109(3):321-334.
    [154]Stancovski I., Baltimore D. NF-kappaB Activation: The IkappaB Kinase Revealed? [J]. CELL-CAMBRIDGE MA-,1997,91:299-302.
    [155]Du L., Lyle C., Chambers T. Characterization of vinblastine-induced Bcl-xL and Bcl-2 phosphorylation: evidence for a novel protein kinase and a coordinated phosphorylation/dephosphorylation cycle associated with apoptosis induction [J]. Oncogene, 2004,24(1):107-117.
    [156]Shaulian E., Schreiber M., Piu F., et al. The Mammalian UV Response c-Jun Induction Is Required for Exit from p53-Imposed Growth Arrest [J]. Cell,2000,103(6):897-907.
    [157]Voll R., Herrmann M., Roth E., et al. Immunosuppressive effects of apoptotic cells [J]. Nature, 1997,390(6658):350-351.
    [158]Fadok V., Voelker D., Campbell P., et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages [J]. The Journal of Immunology,1992,148(7):2207-2216.
    [159]Ishimoto Y., Ohashi K., Mizuno K., et al. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6 [J]. Journal of Biochemistry,2000,127(3):411-417.
    [160]Vandivier R., Ogden C., Fadok V., et al. Role of surfactant proteins A, D, and Clq in the clearance of apoptotic cells in vivo and in vitro:calreticulin and CD91 as a common collectin receptor complex [J]. The Journal of Immunology,2002,169(7):3978-3986.
    [161]Sambrano G., Steinberg D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine [J]. Proc Natl Acad Sci USA,1995,92(5):1396-1400.
    [162]Brown S., Heinisch I., Ross E., et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment [J]. Nature,2002,418(6894):200-203.
    [163]Lauber K., Bohn E., Kr Ber S., et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal [J]. Cell,2003,113(6):717-730.
    [164]Guimaraes C., Linden R. Programmed cell death:apoptosis and alternative deathstyles [J]. European journal of biochemistry(Print),2004,271(9):1638-1650.
    [165]卞建春,路浩,梅莉.铅镉联合染毒对大鼠大脑皮质神经细胞的氧化损伤及NAC的保护效应[J].中国兽医科学,2008,38(9):805-809.
    [166]卞建春,王富民,李慧敏.铅、镉染毒对SD大鼠的氧化损伤及乙酰半胱氨酸的保护作用[J].中国兽医学报,2008,28(7):828-831.
    [167]Seglen P. Preparation of isolated rat liver cells [J]. Methods Cell Biol,1976,13(1):29-83.
    [168]贾珍容,邱银生,王大菊.比较两种消化酶对分离大鼠肝细胞的影响[J].中国药师,2006,9(7):590-592.
    [169]Pathak N., Khandelwal S. Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium [J]. Toxicology,2006,220(1):26-36.
    [170]Pathak N., Khandelwal S. Influence of cadmium on murine thymocytes:potentiation of apoptosis and oxidative stress [J]. Toxicology letters,2006,165(2):121-132.
    [171]Li Y., Lim S. Cadmium-induced apoptosis of hepatocytes is not associated with death receptor-related caspase-dependent pathways in the rat [J]. Environmental Toxicology and Pharmacology,2007,24(3):231-238.
    [172]Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis [J]. Annual Review of Physiology,1998,60(1):619-642.
    [173]Belyaeva E., Dymkowska D., Wieckowski M., et al. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells [J]. Toxicology and applied pharmacology,2008,231(1):34-42.
    [174]Muller L. Consequences of cadmium toxicity in rat hepatocytes:mitochondrial dysfunction and lipid peroxidation [J]. Toxicology,1986,40(3):285-295.
    [175]张英.镉对体外培养大鼠大脑皮质神经细胞的毒性损伤及NAC保护效应的研究[J].2009.
    [176]叶记林,毛伟平,吴爱莲,etal.镉诱导HEK293细胞凋亡及其线粒体凋亡途径[J].分子细胞生物学报,2007,40(1):7-16.
    [177]王捍东,邢华,卞建春.镉对原代培养大鼠肝细胞的损伤作用[J].中国兽医学报,2000,20(6):580-583.
    [178]Godt J., Scheidig F., Grosse-Siestrup C., et al. The toxicity of cadmium and resulting hazards for human health [J]. Journal of Occupational Medicine and Toxicology,2006,1(1):22.
    [179]Elez D., Dundjerski J., Mati G. Cadmium affects the redox state of rat liver glucocorticoid receptor [J]. Cell biology and toxicology,2001,17(3):169-177.
    [180]Figueiredo-Pereira M., Li Z., Jansen M., et al. N-acetylcysteine and celecoxib lessen cadmium cytotoxicity which is associated with cyclooxygenase-2 up-regulation in mouse neuronal cells [J]. Journal of Biological Chemistry,2002,277(28):25283-25289.
    [181]Poliandri A., Cabilla J., Velardez M., et al. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants [J]. Toxicology and applied pharmacology,2003,190(1):17-24.
    [182]Chen L., Liu L., Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5 [J]. Free Radical Biology and Medicine,2008.
    [183]路浩,梅莉,达剑森,et al.低剂量铅对大鼠大脑皮质神经细胞的毒性效应[J].中国兽医学报,2008,28(5):576-580.
    [184]王林,曹瑾,陈大伟,et al.铅镉联合对体外培养大鼠肾小管上皮细胞存活及凋亡的影响[J].中国兽医科学,2008,38(4):327-331.
    [185]Fotakis G., Timbrell J. Role of trace elements in cadmium chloride uptake in hepatoma cell lines [J]. Toxicology letters,2006,164(2):97-103.
    [186]Tweeddale H., Kondo M., Gebicki J. Proteins protect lipid membranes from oxidation by thiyl radicals [J]. Archives of Biochemistry and Biophysics,2007,459(2):151-158.
    [187]Ercal N., Gurer-Orhan H., Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage [J]. Current topics in medicinal chemistry,2001, 1(6):529-539.
    [188]Pulido M., Parrish A. Metal-induced apoptosis:mechanisms [J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2003, 533(1-2):227-241.
    [189]Melendez J., Davies K. Manganese superoxide dismutase modulates interleukin-lalpha levels in HT-1080 fibrosarcoma cells [J]. Journal of Biological Chemistry,1996,271(31):18898.
    [190]Kowaltowski A., Netto L., Vercesi A. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition [J]. Journal of Biological Chemistry,1998, 273(21):12766.
    [191]Shih C., Ko W., Wu J., et al. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts [J]. Journal of cellular biochemistry, 2004,91(2):384-397.
    [192]Ikediobi C., Badisa V., Ayuk-Takem L., et al. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells [J]. International journal of molecular medicine,2004,14(1):87-92.
    [193]Bolduc J., Denizeau F., Jumarie C. Cadmium-induced mitochondrial membrane-potential dissipation does not necessarily require cytosolic oxidative stress:studies using rhodamine-123 fluorescence unquenching [J]. Toxicological Sciences,2004,77(2):299.
    [194]Aronis A. Potentiation of Fas-mediated apoptosis by attenuated production of mitochondria-derived reactive oxygen species [J]. Cell Death & Differentiation,2003, 10(3):335-344.
    [195]L G M., Westly S., Lerstad T., et al. Cadmium-induced apoptosis of primary epithelial lung cells:involvement of Bax and p53, but not of oxidative stress [J]. Cell biology and toxicology,2002,18(1):29-42.
    [196]Hatcher E., Chen Y., Kang Y. Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities [J]. Free Radical Biology and Medicine,1995,19(6):805-812.
    [197]Funakoshi T., Ueda K., Shimada H., et al. Effects of dithiocarbamates on toxicity of cadmium in rat primary hepatocyte cultures [J]. Toxicology,1997,116(1-3):99-107.
    [198]Nzengue Y., Steiman R., Garrel C., et al. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line:Role of glutathione in the resistance to cadmium [J]. Toxicology,2008,243(1-2):193-206.
    [199]Lopez E., Arce C., Oset-Gasque M., et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture [J]. Free Radical Biology and Medicine,2006,40(6):940-951.
    [200]Green D., Reed J. Mitochondria and apoptosis [J]. Science,1998,281(5381):1309-1312.
    [201]Gillissen A., Sch Irling B., Jaworska M., et al. Oxidant scavenger function of ambroxol in vitro: a comparison with N-acetylcysteine [J]. Research in experimental medicine. Zeitschrift f r die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie, 1997,196(6):389-393.
    [202]Baynes J. Role of oxidative stress in development of complications in diabetes [J]. Diabetes, 1991,40(4):405.
    [203]Bowie A., O'neill L. Oxidative stress and nuclear factor-[kappa] B activation*::A reassessment of the evidence in the light of recent discoveries [J]. Biochemical pharmacology,2000,59(1):13-23.
    [204]Mao W., Ye J., Guan Z., et al. Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and-independent pathways acting on mitochondria [J]. Toxicology in Vitro,2007,21(3):343-354.
    [205]Aruoma O., Halliwell B., Hoey B., et al. The antioxidant action of N-acetylcysteine:its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid [J]. Free Radical Biology and Medicine,1989,6(6):593-597.
    [206]Kelly G. Clinical applications of N-acetylcysteine [J]. Alternative medicine review: a journal of clinical therapeutic,1998,3(2):114-127.
    [207]Blanusa M., Varnai V., Piasek M., et al. Chelators as antidotes of metal toxicity:Therapeutic and experimental aspects [J]. Current Medicinal Chemistry,2005,12(23):2771-2794.
    [208]Tandon S., Singh S., Prasad S., et al. Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat* 1 [J]. Toxicology letters,2003, 145(3):211-217.
    [209]Robertson J., Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals [J]. Critical reviews in toxicology,2000,30(5):609-627.
    [210]Carmody R., Cotter T. Signalling apoptosis:a radical approach [J]. Redox Report,2001, 6(2):77-90.
    [211]Marzo I., Perez-Galan P., Giraldo P., et al. Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and-independent pathways acting on mitochondria [J]. Biochemical Journal,2001,359(Pt 3):537-546.
    [212]Susin S., Lorenzo H., Zamzami N., et al. Molecular characterization of mitochondrial apoptosis-inducing factor [J]. Nature,1999,397(6718):441-446.
    [213]Kim M., Kim B., Woo H., et al. Cadmium induces caspase-mediated cell death:suppression by Bcl-2 [J]. Toxicology,2000,145(1):27-37.
    [214]Li M., Kondo T., Zhao Q., et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways [J]. Journal of Biological Chemistry,2000,275(50):39702.
    [215]Ishido M., Homma S., Leung P., et al. Cadmium-induced DNA fragmentation is inhibitable by zinc in porcine kidney LLC-PK1 cells [J]. Life Sciences,1995,56(17).
    [216]Shih C., Wu J., Ko W., et al. Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells [J]. Journal of cellular biochemistry,2003, 89(2):335-347.
    [217]Nakagawa T., Zhu H., Morishima N., et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β [J]. Nature,2000, 403(6765):98-103.
    [218]敖琳.细胞凋亡中Ca2+稳态失调机制的研究进展[J].国外医学分子生物学分册,2001,23(2):106-109.
    [219]Dundjerski J., Kova T., Pavkovi N., et al. Glucocorticoid receptor-Hsp90 interaction in the liver cytosol of cadmium-intoxicated rats [J]. Cell biology and toxicology,2000, 16(6):375-383.
    [220]Baker T., Vanvooren H., Smith W., et al. Involvement of calcium channels in the sexual dimorphism of cadmium-induced hepatotoxicity [J]. Toxicology letters,2003, 137(3):185-192.
    [221]Orrenius S., Mccabe M., Nicotera P. Ca2+ -dependent mechanisms of cytotoxicity and programmed cell death [J]. Toxicology letters,1992,64/65:357-364.
    [222]Hu Q., Chang J., Tao L., et al. Endoplasmic reticulum mediated necrosis-like apoptosis of HeLa cells induced by Ca2+ oscillation [J]. Journal of Biochemistry and Molecular Biology, 2005,38(6):709-716.
    [223]Rekasi Z., Czompoly T., Schally A., et al. Antagonist of growth hormone-releasing hormone induces apoptosis in LNCaP human prostate cancer cells through a Ca2+-dependent pathway [J]. Proceedings of the National Academy of Sciences,2005,102(9):3435.
    [224]Ye J., Mao W., Wu A., et al. Cadmium-induced apoptosis in human normal liver L-02 cells by acting on mitochondria and regulating Ca2+ signals [J]. Environmental Toxicology and Pharmacology,2007,24(1):45-54.
    [225]Orrenius S., Zhivotovsky B., Nicotera P. Regulation of cell death:the calcium-apoptosis link [J]. Nature Reviews Molecular Cell Biology,2003,4(7):552-565.
    [226]W Tjen W., Beyersmann D. Cadmium-induced apoptosis in C6 glioma cells:influence of oxidative stress [J]. Biometals,2004,17(1):65-78.
    [227]Fleury C., Mignotte B., Vayssiere J. Mitochondrial reactive oxygen species in cell death signaling [J]. Biochimie,2002,84(2-3):131-141.
    [228]Lee W., Bork U., Gholamrezaei F., et al. Cd2+-induced cytochrome c release in apoptotic proximal tubule cells:role of mitochondrial permeability transition pore and Ca2+ uniporter [J]. American Journal of Physiology- Renal Physiology,2005,288(1):F27-F29.
    [229]L G M., Refsnes M., Lilleaas E., et al. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells [J]. Toxicology, 2005,211(3):253-264.
    [230]Zhou T., Zhou G., Song W., et al. Cadmium-induced apoptosis and changes in expression of p53, c-jun and MT-I genes in testes and ventral prostate of rats [J]. Toxicology,1999, 142(1):1-13.
    [231]Kuida K., Boucher D. Functions of MAP kinases:insights from gene-targeting studies [J]. Journal of Biochemistry,2004,135(6):653-656.
    [232]Torii S., Nakayama K., Yamamoto T., et al. Regulatory mechanisms and function of ERK MAP kinases [J]. Journal of Biochemistry,2004,136(5):557-561.
    [233]Zarubin T., Jiahuai H. Activation and signaling of the p38 MAP kinase pathway [J]. Cell research,2005,15(1):11-18.
    [234]Jing L., Anning L. Role of JNK activation in apoptosis:a double-edged sword [J]. Cell research,2005,15(1):36-42.
    [235]Kim J., Sharma R. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages [J]. Toxicological Sciences,2004, 81(2):518-527.
    [236]Kim S., Moon C., Eun S., et al. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis [J]. Biochemical and biophysical research communications,2005,328(1):326-334.
    [237]Chuang S., Wang I. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium [J]. Carcinogenesis,2000, 21(7):1423-1432.
    [238]Chuang S., Yang J. Comparison of roles of three mitogen - activated protein kinases induced by chromium (VI) and cadmium in non - small - cell lung carcinoma cells [J]. Molecular and Cellular Biochemistry,2001,222(1):85-95.
    [239]Chao J., Yang J. Opposite roles of ERK and p38 mitogen-activated protein kinases in cadmium-induced genotoxicity and mitotic arrest [J]. Chem. Res. Toxicol,2001, 14(9):1193-1202.
    [240]Galan A., Garcia-Bermejo M., Troyano A., et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells [J]. Journal of Biological Chemistry,2000,275(15):11418-11424.
    [241]Miguel B., Rodriguez M., Aller P., et al. Regulation of cadmium-induced apoptosis by PKCδ in U937 human promonocytic cells [J]. BBA-Molecular Cell Research,2005, 1743(3):215-222.
    [242]Galan A., Garcia-Bermejo M., Troyano A., et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells [J]. Journal of Biological Chemistry,2000,275(15):11418.
    [243]Liu Y., Zhang S., Cai Y. Cytoprotective effects of selenium on cadmium-induced LLC-PK1 cells apoptosis by activating JNK pathway [J]. Toxicology in Vitro,2007,21(4):677-684.
    [244]Harfouche R., Gratton J., Yancopoulos G., et al. Angiopoietin-1 activates both anti-and proapoptotic mitogen-activated protein kinases [J]. The FASEB Journal,2003, 17:1523-1525.
    [245]Matsumoto T., Turesson I., Book M., et al. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis [J]. Journal of Cell Biology,2002,156(1):149-160.
    [246]Hyman K., Seghezzi G., Pintucci G., et al. Transforming growth factor-betal induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase [J]. Surgery,2002,132(2):173-179.
    [247]Coutant A., Lebeau J., Bidon-Wagner N., et al. Cadmium-induced apoptosis in lymphoblastoid cell line:involvement of caspase-dependent and-independent pathways [J]. Biochimie,2006, 88(11):1815-1822.
    [248]Kyriakis J., Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiological reviews,2001,81(2):807.
    [249]Liu Y., Shepherd E., Nelin L. MAPK phosphatases-regulating the immune response [J]. Nature Reviews Immunology,2007,7(3):202-212.
    [250]Huang S., Shu L., Easton J., et al. Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity [J]. Journal of Biological Chemistry,2004,279(35):36490.
    [251]Morita K., Saitoh M., Tobiume K., et al. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress [J]. The EMBO Journal,2001, 20(21):6028-6036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700