醋酸铅致脑损伤及肾损伤的细胞机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     铅是环境中普遍存在的污染物,在人体内可以长期蓄积,而产生全身性多系统的损伤,尤其对儿童的危害更为严重[1]。研究表明铅具有很强的神经亲和性,可在神经组织中蓄积,引起神经系统功能长期不可逆的损害[2]。肾脏作为铅分布和排泄的主要器官,也是铅中毒的靶器官之一[3]。近些年发现,铅的毒性作用没有安全阈值,即体内有铅便有毒[4]。虽然许多国家采取了一些降低环境铅污染的措施,但慢性铅中毒依然是现代城市居民所面临的主要健康问题之一[5]。
     血-脑屏障(Blood brain barrier ,BBB)是中枢神经系统的重要结构,其形态学基础包括血液与神经元之间的一系列解剖结构:脑内毛细血管的内皮细胞及内皮细胞之间的紧密连接、基膜以及神经胶质细胞突起(胶质膜)。BBB保证了中枢神经系统所需内环境的高度稳定,是中枢神经系统正常进行各项机能活动的基础。肾单位(renal unit)主要由肾小球和肾小管组成,是肾脏结构与功能的基本单位,肾小球由毛细血管丛组成,期间有系膜组织支持,系膜细胞发挥着重要作用;肾小管是单层上皮性小管,有重吸收原尿中某些成分和排泄废物等的作用。可见,BBB或肾单位结构和/或功能的变化均是引起许多疾病病理生理变化的核心。
     目前,有关铅致脑、肾损伤的研究多以动物模型和流行病学调查为主[ 6 ]。在细胞上的研究也主要以海马、大脑皮层神经元细胞和人肾小管上皮细胞(HK-2)为研究对象,在星形胶质细胞(C8)、脑毛细血管内皮细胞和人肾小球系膜细胞(HMC)上的系统研究相对较少。本研究是在我们前期动物实验基础上,以C8、人股动脉内皮细胞(HFAEC)和HMC、HK-2为研究对象,观察醋酸铅对体外培养C8、HFAEC和HMC、HK-2的影响,以探讨醋酸铅致脑损伤及肾损伤的细胞及分子机制。
     第一部分醋酸铅对星形胶质细胞和人股动脉内皮细胞的影响
     目的通过观察醋酸铅对C8和HFAEC细胞形态学、生化指标、凋亡相关蛋白表达及凋亡细胞数量的影响,探讨醋酸铅对C8和HFAEC的损伤机制,为铅致BBB的损伤提供理论基础。
     方法
     1.以不同浓度(5、10、20、40μmol/L )醋酸铅作用(染毒)对数生长期C8和HFAEC 6、12、24、48h,同时以不加醋酸铅组为对照组,MTT法检测醋酸铅对细胞生长抑制情况。
     2.选用5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,同样以不加醋酸铅组为对照组,采用Giemsa、HE染色及透射电子显微镜观察细胞形态学变化。
     3. 5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,分光光度计检测染毒组和对照组C8和HFAEC培养上清中乳酸脱氢酶(LDH)和丙二醛(MDA)含量,间接了解细胞被损伤程度。
     4. 5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,DNA Ladder法观察染毒组和对照组C8和HFAEC基因组DNA损伤。
     5. 5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,免疫组织化学法检测染毒组和对照组C8和HFAEC中c-jun、P53、Bax、Bcl-2、Caspase-3蛋白的表达。
     6. 5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,RT-PCR法检测染毒组和对照组C8和HFAEC Caspase-3 mRNA的转录。
     7. 5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,Western blotting法检测染毒组和对照组C8和HFAEC Caspase-3蛋白的表达情况。
     8. 5、10、20μmol/L醋酸铅染毒C8和HFAEC 24h后,PI-Hoechst33342双重荧光染色、流式细胞仪检测染毒组和对照组C8和HFAEC的凋亡率。
     结果
     1.不同浓度醋酸铅(5、10、20、40μmol/L )染毒C8、HFAEC不同时间(6、12、24、48h)后,各染毒组细胞生长抑制率较其对照组均显著升高(P<0.01),并存在浓度与时间依赖关系。
     2.醋酸铅(5、10、20μmol/L)染毒C8、HFAEC 24h后,倒置相差显微镜观察发现细胞密度较对照组降低、胞体变小,且星形胶质细胞突触缩短变细,细胞间连接减少;Giemsa、HE染色法观察发现染毒组较对照组细胞胞浆浓缩,大量细胞核浓染、固缩,核仁裂解,部分细胞核成肾型、马蹄型等,电镜观察同样发现染毒组细胞核质固缩、边移,核质间隙增大,并随醋酸铅浓度加大有凋亡小体形成。
     3.分光光度计检测培养上清LDH、MDA含量发现5、10、20μmol/L醋酸铅染毒组C8、HFAEC培养上清中LDH及MDA含量较其对照组均显著升高(P<0.01)。
     4. DNA ladder法检测C8、HFAEC结果发现5、10、20μmol/L醋酸铅染毒组各细胞较其对照组细胞基因组出现较为明显的DNA损伤现象。
     5.免疫组织化学法检测结果显示5、10、20μmol/L醋酸铅染毒组C8、HFAEC细胞中c-jun、P53、Bax、Caspase-3蛋白表达较其对照组细胞表达量明显上升,而Bcl-2蛋白的表达量醋酸铅染毒组细胞较对照组细胞降低。
     6. RT-PCR法检测结果显示5、10、20μmol/L醋酸铅染毒组C8、HFAEC的Caspase-3 mRNA转录较其对照组细胞转录水平明显升高。
     7. Western blotting法检测也显示5、10、20μmol/L醋酸铅染毒组C8、HFAEC Caspase-3蛋白表达较其对照组细胞表达水平明显升高,且与醋酸铅剂量呈正相关。
     8. PI-Hoechst33342双重染色和流式细胞仪检测结果显示,5、10、20μmol/L醋酸铅染毒组C8、HFAEC凋亡率较其对照组细胞凋亡率均显著升高(P<0.01),且存在剂量关系。
     结论醋酸铅可通过生成脂质过氧化物致C8和HFAEC基因组DNA损伤,进一步影响凋亡相关因子表达量的改变,使Bax/Bcl-2比值升高,激活Caspase-3凋亡基因的高表达,最终促使C8和HFAEC凋亡。并可能通过促使C8和HFAEC的凋亡破坏血脑屏障的结构和功能。
     第二部分醋酸铅对人肾小球系膜细胞和人肾小管上皮细胞的影响
     目的通过观察醋酸铅对HMC和HK-2细胞形态学、生化指标、凋亡相关蛋白表达量及凋亡细胞数量的影响,探讨醋酸铅对HMC和HK-2的损伤机制,为铅致肾脏的损伤提供理论基础。
     方法同第一部分
     结果
     1.不同浓度醋酸铅(5、10、20、40μmol/L )染毒HMC和HK-2不同时间(6、12、24、48h)后,各染毒组细胞生长抑制率较其对照组均显著升高(P<0.01),并存在浓度与时间依赖关系。
     2. 5、10、20μmol/L醋酸铅染毒HMC和HK-2 24h后,倒置相差显微镜观察发现细胞密度较对照组降低、胞体变小变圆;Giemsa、HE染色观察发现染毒组较对照组细胞胞浆浓缩,大量细胞核浓染、固缩,核仁裂解,部分细胞核成肾型、马蹄型等,同样电镜观察发现染毒组细胞核质固缩、边移,核质间隙增大,且随醋酸铅浓度加大凋亡小体形成并增多。
     3.分光光度计检测培养上清LDH、MDA含量结果显示,5、10、20μmol/L醋酸铅染毒组HMC和HK-2培养上清中LDH及MDA含量较其对照组均显著升高(P<0.01)。
     4. DNA ladder检测HMC和HK-2基因结果显示, 5、10、20μmol/L醋酸铅染毒组HMC和HK-2基因较其对照组细胞基因组出现较为明显的DNA损伤现象。
     5.免疫组织化学法检测HMC和HK-2凋亡相关蛋白表达,结果显示5、10、20μmol/L醋酸铅染毒组细胞中c-jun、P53、Bax、Caspase-3表达较其对照组细胞表达量明显升高,而Bcl-2蛋白的表达量在醋酸铅染毒组较其对照组表达量却明显降低。
     6. RT-PCR法检测发现5、10、20μmol/L醋酸铅染毒HMC和HK-2细胞24h后Caspase-3 mRNA转录较其对照组细胞明显升高。
     7. Western blotting法检测也显示5、10、20μmol/L醋酸铅染毒HMC和HK-2细胞24h后Caspase-3蛋白表达量较其对照组也明显升高。
     8. PI-Hoechst33342双重染色和流式细胞仪检测结果显示,5、10、20μmol/L醋酸铅染毒组HMC和HK-2凋亡率较其对照组细胞凋亡率均显著升高(P<0.01),且与醋酸铅剂量呈正相关。
     结论醋酸铅可通过生成脂质过氧化物致HMC和HK-2基因组DNA损伤,进一步影响凋亡相关因子表达量的改变,使Bax/Bcl-2比值升高,激活Caspase-3凋亡基因的高表达,最终促使HMC和HK-2凋亡。并可能通过促使HMC和HK-2的凋亡破坏肾脏的结构与功能。
BACKGROUND
     Lead,which is one of the most popular contaminations in the environment, is able to cumulate for a long time and damage various of tissue systems of human body, especially on the children. Recent study showed that Lead acquires neurotropism and cumulates in the nervous system, then further induces long and inconvertible damage. The kidney, as the main organ of distribution and excretion of Lead, is one of the target organs of Lead damage. Some researches demonstrated that there is no safe threshold in the Lead toxicity, that’s to say, the toxicity exist when lead invades the human body. Although many countries’governments have reduced the Lead contaminations in the environment through many measures, chronic harm of Lead on the body is still one of the most essential healthy problems which people have to face nowadays.
     Blood brain barrier (BBB), which consists of the endothelial cells of brain blood capillaries, tight junction between endothelial cells, basement membrane and neuroglial cells(gelatinous membrane), is not only an important part of the central nervous system but also ensures internal environment of the nervous system to keep highly stable. Therefore, BBB supplies the base for various normal activities of central nervous system (CNS). The nephron is the structural and functional unit of the kidney, comprising renal corpuscle and an epithelial renal tubule. The renal corpuscle consists of blood capillaries and mesenteria which develop a significant function, while the renal tubule functions as reabsorption and excretion. The structural and functional changes of BBB or renal unit may lead to pathophysiological changes of many diseases.
     Nowadays many researches about Lead toxicity on the brain and kidney mainly focus on the animals models, epidemiological investigations, and some cells like hippocampal neurons and human kidney epithelial cell line(HK-2), however, studies on the relationship between Lead and mouse astrocytes(C8), cerebral capillary vessel endothelial cell and human glomerular mesangial cells are rare. Based on previous animal experience, we studied the effects of Lead toxicity on C8, human femoral artery endothelial cell (HFAEC), Human mesangial cells (HMC) and HK-2, and tried to explore the cellular and molecular mechanisms of Lead effecting on the brain and kidney.
    
     PartⅠEffects of Lead toxicity on astrocytes(As) and human femoral arterial endothelial cell(HFAEC)
     Objection To explore Lead acetate inducing apoptosis of mice astrocytes(C8) and human femoral arterial endothelial cell (HFAEC), and provide theoretical basis for the damage of Lead to blood-brain barrier and nephron.
     Methods
     1. C8 and HFAEC in logarithmic growth phase were treated to different concen- -tration Lead acetate(5,10,20,40μmol/L)for different time (6,12,24,48h). Mean- -while, the cell treated without Lead acetate was served as the control group, and the prorolifcations of the cells were detected by MTT.
     2. C8 and HFAEC were treated with 5,10,20μmol/L Lead acetate for 24h respect- -ively .the cell treated without Lead acetate was served as the control group, Cell morphology changes were observed by Giemsa and HE stain and cell ultrastruc- -tures were observed by transmission electron microscopy.
     3. LDH activity and MDA content of cellular supernatant of Lead acetate-treated groups (5, 10, 20μmol/L) for 24h and blank group of C8 and HFAEC were detected by spectrophotometer in order to investigate cell damage level.
     4. DNA damage of Lead acetate-treated grous (5, 10, 20μmol/L) and control group of C8 and HFAEC were detected by DNA ladder.
     5. The expression of c-jun、P53, Bax, Bcl-2 and Caspase-3 of Lead acetate-treated groups (5,10,20μmol/L) and control group of C8 and HFAEC were detected by cell immunohistochemistry.
     6. Caspase-3 mRNA level of Lead acetate-treated groups (5, 10, 20μmol/L) and control group of C8 and HFAEC were detected by RT-PCR .
     7. Caspase-3 protein level of Lead acetate-treated groups (5, 10, 20μmol/L) and control group of C8 and HFAEC were detected by Western blotting.
     8. Cell apoptosis rates of Lead acetate-treated groups (5, 10, 20μmol/L) and control group of C8 and HFAEC were detected by PI-Hoechst33342 stain and flow cytometry.
     Results
     1. With different concentration of Lead acetate(5,10,20,40μmol/L)and different time (6,12,24,48h), the cell growth activity in treated groups reduced significantly compared to the control group (P<0.01), presenting a dose and time-dependent manner.
     2. C8 and HFAEC treated with the Lead acetate (5,10,20μmol/L)for 24h showed that cell density was lower, and synapses became shorter and thinner, and intercellular junction reduced compared to control group. Giemsa and HE stain showed that cell nucleolus and cytoplasm dense stained, pyknosis,nucleolus cracking, and part of nucleolus showed kindey and horseshoe type. Electron microscopy showed nuclear pyknosis, side shift, nucleus and cytoplasm space increased on exposed groups of Lead acetate, and with the increasing concentration of Lead acetate, the apoptotic bodies appeared.
     3. LDH and MDA content in supernatant of treated groups (5, 10, 20μmol/L) increased significantly compared to control group (P<0.01).
     4. The result of DNA ladder showed that, diffused bands appeared in treated groups (5, 10, 20μmol/L) compared to control group by agarose gel electrophoresis.
     5. Results of immunohistochemistry showed that the expression of c-jun, P53, Bax and Caspase-3 increased, meanwhile Bcl-2 decreased in treated groups (5, 10, 20μmol/L) compared to control group.
     6. The result of RT-PCR showed that Caspase-3 mRNA level increased in 5, 10, 20μmol/L toxicant groups compared to control group,and the expression of Capase-3 was positively correlated with Lead dose.)
     7. Western blotting suggested that Caspase-3 expression of C8 and HFAEC in the treated group was higher than that in the control group,and the expression of Capase-3 was positively correlated with Lead dose.
     8. PI-Hoechst33342 double staining and flow cytometry demonstrated that cell apoptosis rates of 5, 10, 20μmol/L toxicant groups increased significantly compared to control group(P<0.01)。
     Conclusion Lead acetate was able to induce the formation of lipid peroxide and result in the damage of genome DNA of C8 and HFAEC, and then influence the expression of apoptosis-related factors, increase the ratio of Bax/Bcl-2, activate the high expression of Caspase-3, finally lead to the apoptosis of C8 and HFAEC and destroy the structure and function of brain blood barrier.
    
     PartⅡEffects of Lead toxicity on human mesangial cells and human renal tubular epithelial cells
     Objetion To find the effects of Lead acetate induced apoptosis of human mesangial cells(HMC) and human renal tubular epithelial cells(HK-2), and provide theoretical basis for the damage of Lead to nephron. Methods The same to the PartⅠ
     Results
     1. With different concentration of Lead acetate(5,10,20,40μmol/L)and different time (6,12,24,48h), the cell growth activity in toxicant groups reduced significantly compared to the control group (P<0.01), presenting a dose and time-dependent manner.
     2. Under inverted phase contrast microscope observing,the Lead acetate(5,10,20μmol/L)treated HMC and HK-2 for 24h showed that cell density was lower, synapses became shorter and thinner and intercellular junction reduced compared to control group. Giemsa and HE stain showed that cell nucleolus and cytoplasm dense stained, pyknosis, nucleolus cracking, and part of nucleolus showed kindey and horseshoe type. Electron microscopy showed nuclear pyknosis, side shift, nucleus and cytoplasm space increased on exposed groups of Lead acetate, and with the increasing concentration of Lead acetate, the apoptotic bodies appeared.
     3. LDH and MDA content in supernatant of treated groups (5, 10, 20μmol/L) increased significantly compared to control group (P<0.01).
     4. The result of DNA Ladder showed that, diffused bands appeared in treated groups(5,10,20μmol/L) compared to control group by agarose gel electrophoresis.
     5. Results of immunohistochemistry showed that the expression of c-jun, P53, Bax and Caspase-3 increased, meanwhile Bcl-2 decreased in treated groups(5,10,20μmol/L) compared to control group.
     6. The result of RT-PCR showed that Caspase-3 mRNA level increased in treated groups (5,10,20μmol/L) compared to control group,and the transcription of Capase-3 was positively correlated with Lead dose.
     7. Western blotting suggested that Caspase-3 expression of HMC and HK-2 in the treated group was higher than that in the control group,and the expression of Capase-3 was positively correlated with Lead dose.
     8. PI-Hoechst33342 double staining and flow cytometry demonstrated that cell apoptosis rates of treated groups (5, 10, 20μmol/L) increased significantly compared to control group(P<0.01).
     Conclusion Lead acetate was able to induce the formation of lipid peroxide and result in the damage of genome DNA of HMC and HK-2, and then influence the expression of apoptosis-related factors, increase the ratio of Bax/Bcl-2, activate the high expression of Caspase-3, finally lead to the apoptosis of HMC and HK-2 and damage the structure and function of the kidney.
引文
[1] Wilson MA, Johnston MV, Goldstein GW, et al. Neonatal lead exposure impairs development of rodent barrel field cortex[J]. Proc Natl Acad Sci USA,2000,97(10):5540–5545.
    [2]历有名,姜玲玲.铅中毒病理生理机制的若干研究进展[J].广东微量元素科学, 2001, 8(9): 8-10.
    [3] WEAVER V M, LEE B K, AHN K D,et al. Associations of lead biomarkers with renal function in Korean lead workers [J]. Occup Environ Med,2003,60 (1) :551-562.
    [4] Weisskopf MG, Proctor SP, Schwartz J, et al. Cumulative lead exposure and cognitive performance among elderly men[J]. Epidemiology,2007,18(1):59–66.
    [5] Van Wijngaarden E, Campbell JR, Cory-Slechta DA. Bone lead levels are associated with measures of memory impairment in older adults[J]. Neurotoxic- -ology, 2009,30(4):572–580.
    [6] Muntner P , He J , Vupputuri S. Blood lead and chronic kidney disease in the general United States population : results from NHANESⅢ[J]. Kidney Int . 2003 ,63(3) :1044-1050.
    [7] SHIH R A , HU H , WEISSKOPF M G, et al. Cumulative lead dose and cognitive function in adults : a review of studies that measured both blood lead and bone lead[J ] .Environ Health Perspect , 2007 , 115(3):483-492.
    [8] Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain[J]. Trends Neurosci,2003,26(10):523–530.
    [9] Liu J, Xie Y, Ward JM,et al. Toxicogenomic analysis of aberrant gene expression in liver tumors and nontumorous livers of adult mice exposed in utero to inorganic arsenic[J]. Toxicol Sci 2004,77(2):249–257.
    [10] Wang Q, Luo W, Zhang W, et al. Iron supplementation protects against lead-induced apoptosis through MAPK pathway in weanling rat cortex[J]. Neurotoxicology,2007, 28(4): 850-859.
    [11] XU S Z, ShAN C J , BULLOCKL , et al. Pb2 + reduces PKCs and NF2κB in59 vitro [J ] . Cell Biol Toxicol , 2006 ,22(1):189-198.
    [12] Zhong huaYu, Fang Yi,Xueza Zhi. Effect of lead acetate on the apoptosis and the expression of bcl-2 and Bax genes in rat brain cells[J].Chinese Journal of Preventive Medicine, 2002, 36(1): 30-33.
    [13] Pandya JD, Dave KR, Katyare SS . Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin[J]. Lipids Health Dis ,2004,3(1):13.
    [14] Youdim MB. What have we learnt from CDNA microarray gene expression studies about the role of Fe in MPTP induced neurodegeneration and Parkinson’s disease? [J]. J Neural Transm Suppl ,2003,65(2):73–88.
    [15]马静,魏益民,郭波莉,潘家荣,师俊玲.铅对人体和动物毒性作用.中国公共卫生, 2009, 25(3): 369~370.
    [16] Adonavlo VN,Oteiza PI.Lead intoxication: antioxidant defense and oxidative damage in rat brain[J].Toxicology,1999,135(223):77-85.
    [17] Vyskocil A, Cizkova M, Tejnorova I. Effect of prenatal and postnatal exposure to lead on kidney function in male and female rats[J]. Journal of Applied Toxicology,2006,15(4): 327– 328.
    [18]雷义,金文达,陈峰.活性氧与线粒体损伤[J].南华大学报(医学版), 2006, 34 (5) : 648-657.
    [19] Engelhardt B. Development of the blood-brain barrier[J]. Cell Tissue Res,2003,314(1): 119-129.
    [20] He I, Poblenz A T, Medrano C I, et al. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore[J]. J Biol Chem, 2000, 275(1): 2175-2184.
    [21] Vorbrodt AW, Dobrogowska DH. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels[J]. Folia Histochem Cytobiol,2004, 421(2): 67-75.
    [22] Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease[J]. Pharmacol Rev,2005,57(2): 173-185.
    [23] Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier[J]. Nat Rev Neurosci, 2006, 7(1): 41-53.
    [24] Kiran Kumar B, Prabhakara Rao Y, Noble T, et al. Lead-induced alteration of apoptotic proteins in different regions of adult rat brain[J]. Toxical Lett,2009, 184(1): 56-60.
    [25] Cabell L, Ferguson C, Luginbill D, et al. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead[J].Toxicology and Applied Pharmacology, 2004,198(1):49– 60.
    [26] Agarwal S, Roy S, Ray A, et al. Arsenic trioxide and lead acetate induce apoptosis in adult rat hepatic stem cells[J]. Cell Biology and Toxicology, 2009, 25(4): 403-413.
    [27]李宏.铅的脑发育毒性机理[J].国外医学卫生学分册, 1997,24(3):133-142.
    [28] Zheng W, Perry DF, Nelson DL,et al. Protection of cerebrospinal fluid against toxic metals by the choroid plexus[J]. FASEB J,1991,5(2): 2188-2193.
    [29] Muldoon SB, Cauley JA, Kuller LH, et al. Effects of blood lead levels on cognitive function of older women[J]. Neuroepidemiology, 1996,15(1): 62-72.
    [30] Schwartz BS, Stewart WF, Bolla KI,et al. Past adult lead exposure is associated withlongitudinal decline in cognitive function[J]. Neurology, 2000,55(2): 1144-1150.
    [31] Jedrychowski W, Perera F, Jankowski J, et al. Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-lead levels: The prospective cohort study in three-year olds[J]. Early Human Development,2009, 85(8):503–510.
    [32] Dyatlov VA, Platoshin AV, Lawrence DA,et al. Lead potentiates cytokine- and glutamate-mediated increases in permeability of the blood-brain barrier[J]. Neurotoxicology, 1998, 19(2): 283-291.
    [33] Kerper LE, Hinkle PM. Lead uptake in brain capillary endothelial cells:activation by calcium store depletion[J].. Toxicol Appl Pharmacol,1997,146(1):127-133.
    [34] Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates[J]. Brain,2003, 126(1):5-19.
    [35] Press MF. Lead encephalopathy in neonatal Long-Evans rats: morphologic studies[J]. J Neuropathol Exp Neurol, 1977,36(2): 169-193.
    [36]赵正言,邵杰,竺智伟.铅的神经毒理机制研究进展[J].中国实用儿科杂志,2006,21(3): 163-165.
    [37]陈萍萍.铅的神经发育毒性研究进展[J].国外医学医学地理分册, 2002, 12(4): 174-176.
    [38]宋波,牛玉杰.铅神经毒性对星形胶质细胞的损伤[J].河北医科大学学报, 2005, 26(6): 474-477.
    [39]黄琼,许月初.锌钙铅对儿童学习记忆能力的影响及其机制研究[J].微量元素与健康研究,2000, 17(1): 65-67.
    [40] Kaufman PL , Abelt BT, Cynader M. Introductory comments on neuroprotection[J ] . Surv Ophthalmo ,1999 ,43(1) :89 - 90.
    [41] Osborne NN, Ugarte M, Chao M, et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma[J] .Surv Ophthalmol , 1999 ,43(1) :102- 128.
    [42] Slomiany BL, Piotrowski J, Slomiany A. Induction of tumor necrosis factor and apoptosis in domrthacin: effects of omeprazole and ebrotidine[J]. Seand J Gastroenterol,1999,32(2): 638-642.
    [43] Peherstorfer E, Mayer B, Boehm S, et al.Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells[J]. Am J Physiol Renal Physiol, 2002, 283(1): 190-196.
    [44]林喜秀,瞿树林,陈嘉勤.低氧训练对大鼠肾组织细胞凋亡及HIF-1α、bax、bcl-2表达的影响[J].中国运动医学杂志, 2008, 27(5): 571-574.
    [45] Wang L, Wang H, Hu M. Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead[J]. Arch Toxicol, 2009, 83(5): 417-427.
    [46]昌业伟,车薇,哈小琴,等.铅对原代培养海马细胞形态及酶活力的影响[ J].工业卫生与职业病,2009,35(5):261-265.
    [47] Aykin-Burns N, Franklin EA, Ercal N. Effects of N-acetylcysteine on lead-exposed PC-12 cells[J]. Archives Environmental Contamination and Toxicology,2005,49(1):119–123.
    [48] Gurer-Orha H, Sabir HU, Ozgunes H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers[J]. Toxicology ,2004,195(3):147–154. [49 ]安兰敏,牛玉杰,徐兵,等.铅对大鼠脑细胞凋亡的诱发作用及对fos、jun、p53基因和一氧化氮合酶表达的影响[J] .癌变·畸变·突变,2006 , 18(5) :359-362.
    [50]杨玫,官大威,熊昌艳,等.c-jun在组织损伤中的表达变化及其法医学意义[J].中国法医学杂志, 2009,24(6):401-402.
    [51] Martinou JC. Apoptosis. Key to the mitochondrial gate[J].Nature,1999,399(6735):411-412.
    [52] Park EJ, Zhao YZ, Kim YC, et al. Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts[J]. Eur J Pharmacol,2007,559(2-3):115-123.
    [53] Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage[J]. Oncogene ,1999,18(53):7644–7655.
    [54] Xu Jin, Lian Ling jun, Wu Chen, et al. Lead induces oxidative stress, DNA damage and alteration of p53,Bax and Bcl-2 expressions in mice[J]. Food and Chemical Toxicology, 2008, 46(5):1488–1494.
    [55] Wolter KG, Hsu YT, Smith CL, et al. Movement of Bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol, 1997,139(5):1281–1292.
    [56] Hockenbery D, Nunez G, Milliman C, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death[J]. Nature ,1990,348(6299):334–336.
    [57] Xu J, Ji LD, Xu LH. Lead-induced apoptosis in PC 12 cells:involvement of p53, Bcl-2 family and caspase-3[J]. Toxicologly Letters,2006. 166(2):160–167.
    [58] Pulido MD, Parrish AR. Metal-induced apoptosis: mechanisms[J]. Mutat Res, 2003,533(1/2):227–241.
    [59] Cabell L, Ferguson C, Luginbill D, et al. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead[J].Toxicology and Applied Pharmacology, 2004,198(1):49– 60.
    [60] Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates[J]. Brain,2003, 126(1):5-19.
    [61] Ormerod MG, Sun XM, Snowden RT, et al. Increased membrane permeability of apoptotic thymocytes: a flow cytometric study[J]. Cytometry,1993,14(6):595-602.
    [62] Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining thefunctional architecture of the brain[J]. Trends Neurosci,2003,26(10):523–530.
    [63] Zurich M G, Eskes C , Honegger P. Maturation dependent neurotoxicity of lead acetate in vitro : implication of glial reactions[J] . J Neurosci Res,2002,70 (1) :108-116.
    [64] Ellis MR, Kane KY. Lightening the lead load in children [J].AmFam Physician,2000,62 (3):545-554
    [65]安飞云,王翔朴,高泽宣,等.铅中毒肾损害早期检测的实验研究[J].中华劳动卫生职业病杂志,1990,8(4):209-210.
    [66]卞建春,王富民,李慧敏等.铅、镉染毒对SD大鼠的氧化损伤及乙酰半胱氨酸的保护作用[J].中国兽医学报,2008,28(7):828-831.
    [67]蔡燕侠,田琳,路小婷.醋酸铅染毒大鼠的肾脏损害[J].职业与健康, 2005,21(8):1125-1127.
    [68] Brewster UC, Perazella NA. A review of chronic lead intoxication:a unrecognized cause of chronic kidney disease[J]. Am J Med Sci, 2004, 327(2):341-347.
    [69] Benjelloun M, Tarrass F, Hachim K. Chronic lead poisoning:a“forgotten”Cause of renal disease[J]. Saudi J Kidney Dis Transpl, 2007,18(1):83-86.
    [70]王学谦,尹先仁,白雪涛.铅镉联合作用对大鼠肾小管上皮细胞脂质过氧化的影响[J].卫生研究, 2002, 31 (4 ):232-235.
    [71]刘栋,周桂凤,蒋云生等. KI对染铅近曲肾小管上皮细胞XIAP表达及凋亡的影响[J].现在生物医学进展, 2006, 6(10): 25-29.
    [72] Sandau K, Pfeilschifter J, Brüne B. Nitric oxide and superoxide induced p53 and Bax accumulation during mesangial cell apoptosis[J]. Kidney Int, 1997, 52(2): 378-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700