亚慢性镉暴露致五指山猪肾脏损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是一种人体非必需且普遍存在于环境中的有毒有害重金属。长期低剂量镉接触会对机体多种器官造成损伤。肾脏是低剂量镉暴露最主要的受损器官。前期很多学者研究了镉对啮齿类大鼠、小鼠所产生的肾脏毒性,但啮齿类动物与人类差异较大,不能很好的反映镉对人体所造成的损伤。随着流行病学研究的深入,人们发现镉导致肾脏毒性的阈值浓度被远远高估。本试验使用与人类亲缘关系较近的五指山猪作为试验动物,研究镉的肾脏毒性,为镉肾脏毒性的预防和监测提供进一步的理论依据。
     将20头近交系五指山猪随机分成5组,每组4头,分别饲喂添加0.0、0.5、2.0、8.0、32.0 mg/kg镉的基础饲料对其进行100 d攻毒饲养试验。试验期间,每20 d称重、采血、采尿一次。饲喂结束后屠宰全部试验动物,取其心脏、肝脏、脾脏、肺脏、肾脏、臀股二头肌、大肠、小肠、十二指肠、胃、膀胱、股骨、肋骨、大脑、小脑、耳朵、皮肤、尾巴、舌肌。微波消解-原子吸收法测定血液、尿液及组织器官中的镉含量;采集猪肾脏,测定肾脏指数并制作病理切片;采集肾脏皮质,分光光度计法测定其中SOD、CAT、GSH-Px活力和MDA含量;ELISA法测定尿液中Cd-MT, NAG,β2-MG, RBP,α1-MG;BMD法计算镉性肾损伤阈值浓度。主要结论如下:
     1)亚慢性镉暴露条件下,猪体内的镉主要富集在肾脏、肝脏、十二指肠、脾脏,其中,肾脏皮质是镉富集的最主要部位;
     2)低于32.0 mg/kg的亚慢性镉暴露不能抑制五指山猪的生长,也不会对五指山猪肾脏造成脂质过氧化损伤。高于0.5 mg/kg的亚慢性镉暴露可导致肾小管上皮细胞肿胀,肾小管管腔狭窄,肾脏损伤程度随着镉暴露剂量的增加而加剧;
     3)血镉含量与镉暴露剂量呈剂量-效应关系,是反映机体近期镉接触的有效指标;尿镉含量与镉暴露剂量及镉性肾损伤效应标志物含量呈显著正相关,尿镉能较好地反应镉接触情况及肾脏损伤程度,是镉性肾损伤有效的暴露标志物。
     4)亚慢性镉暴露可导致肾脏功能紊乱,出现低分子蛋白尿。UCd-MT, UNAG, Uβ2-MG, URBP作为镉性肾损伤效应标志物时存在较好的一致性,通过BMD法计算所得各标志物异常时的镉暴露剂量BMDL值分别为1.00、0.88、3.08、0.67mg/kg。URBP是镉性肾损伤早期检测较敏感效应标志物。
     5)亚慢性镉暴露导致肾脏损伤的阈值浓度为0.67 mg/kg,以此为参考点得出的健康指导值ADI为0.2μg/kg·BW。
Cadmium is a non-essential and toxic heavy metal for human, ubiquitous in the environment. Kidney is the critical target organ for subchronic exposure to cadmium. Many scholars studied the kidney toxicity of the cadmium in rodents such as rats and mice previously. However, there are great differences between rodents and human in size and genes, so those experimental results couldn’t well reflect the degree of possible injuries of cadmium to human body. In addition, many recent epidemiological studies showed that the critical concentrations of cadmium toxicity had been overestimated. This research was to study the kidney toxicity of cadmium with pigs as experimental animal, it could provide further theoretical data for prevention and monitoring of cadmium renal toxicity for their genetic relationship is closer to human.
     20 inbred strain pigs were randomly divided into five groups, each for four, and they were fed for 100 days with normal feeds and feeds added with the cadmium with the content of 0.5、2.0、8.0、32.0 mg/kg, respectively. The body weight was measured, the urine and blood was collected every 20 days. After continuously feeding for 100 days, the pigs were killed and their hearts, livers, spleens, lungs, kidneys, muscle, duodenums, large intestines, small intestines, stomachs, bladders, femurs, ribs, brains, cerebellas, ears, derma, tails and tongues were collected to determine the cadmium content by microwave digestion-AAS. Kidney was collected to determine its kidney index, and observe its pathological changes with pathological sections by H·E staining method. Kidney cortical was collected to determine the activity of SOD, CAT, GSH-Px and content of MDA by spectrophotometer. Uβ2-MG, Uα1-MG, UNAG, Cd-MT and URBP were measured by means of enzyme linked immunoabsorbent assay (ELISA). Threshold dose of kidney damage was calculated by benchmark dose method. The main conclusions were as follows:
     1) Under the conditions of subchronic cadmium exposure, cadmium in pigs mainly distributed in kidney, liver, duodenum, spleen. Kidney cortex is the most important part for cadmium accumulation;
     2) Cadmium exposure less than 32.0 mg/kg could not significantly inhibit the growth of Wuzhishan pigs, or cause lipid peroxidation damage. Cadmium exposure higher than 0.5 mg/kg could cause renal tubular epithelial cell swelling, and tubular stenosis. The degree of damage of kidney pathological damage aggravate with the increasment of cadmium exposure dose;
     3) Blood cadmium levels showed a dose-response relationship with cadmium exposure, which suggests that blood cadmium levels is effective indicator for recent cadmium exposure. Urine cadmium concentration can reflect both the cadmium exposure dose and the kidney dysfunction. Urine cadmium concentration is a reliable biomarker of cadmium exposure.
     4) Subchronic cadmium exposure gave rise to renal tubular dysfunction, which was reflected by low-molecular-weight proteinuria. There were good consistencies when UCd-MT, UNAG, Uβ2-MG, URBP were used as effect biomarkers of cadmium induced renal damage. The estimated BMDL were 1.00, 0.88, 3.08, 0.67 mg Cd/kg for UCd-MT, UNAG, Uβ2-MG and URBP, respectively. URBP was a sensitive effect biomarker for early renal damage.
     5) The threshold dose of subchronic cadmium exposure induce renal damage was 0.67 mg/kg, and when it was used as a reference point for the health guideline value derived ADI was 0.2μg/kg·BW.
引文
安红敏,郑伟,高扬. 2007.镉的健康危害及干预治疗研究进展.环境与健康杂志, 24 (9): 739-743.
    常秀丽,金泰廙,陈亮,雷立健,周袁芬. 2006.金属硫蛋白基因亚型表达在镉接触中作为生物标志物的研究.中华劳动卫生职业病杂志, 24(1): 12-15.
    陈大伟,王林,曹瑾,张钰,刘宗平. 2008.镉对大鼠肾皮质的氧化损伤及乙酰半胱氨酸的保护效应.中国兽医学报, 38(11): 968-972.
    陈业峤,钟振坤. 1997.猪试验性亚急性镉中毒症.动物毒理学, 12(1): 15-18.
    冯书堂,褚武军,王雅春. 1999.中国五指山猪.北京:中国农业科技出版社, 30-50.
    黄波,金泰廙. 2000.金属硫蛋白作为镉接触、效应和易感性生物标志物. Chinese J Ind Med, 13(5): 304-306.
    金泰廙,孔庆瑚,叶葶葶,王洪复,蒋学之,汪再娟,朱国英,吴训伟,曾祥斌,薄梅花. 2002.镉致人体健康损害的环境流行病学研究.环境与职业医学, 19(1): 10-20.
    靳洪涛,凡春荣,李慧,李晋,李吉涛,王学峰,冯书堂,王爱平. 2007.试验用五指山小型猪正常生理值测定.试验动物科学, 24(6): 71-75.
    李君,潘家荣,魏益民,郭波莉. 2007.铅镉联合作用对大鼠肾脏脂质过氧化影响.中国公共卫生, 8(23): 957-958.
    刘发欣,高怀友,伍钧. 2006.镉的食物链迁移及其污染防治对策研究.农业环境科学学报, 25: 805-809.
    刘秉文,陈俊杰. 2000.医学分子生物学.北京:中国协和医科大学出版社, 238-250.
    吕雪飞,邓玉林,周群芳. 2010.镉在雄性泥鳅体内的富集分布.化学通报, 10, 932-937.
    马登军,孙汉文,徐海宏,冯海燕,袁倬斌,晁春艳. 2008.静脉注射染毒小白鼠组织器官中镉蓄积的研究.华北科技学院学报, 5 (1): 34-39.
    邵明东,宋德花,王哲,李冬梅,艾洁. 2010.鸡镉中毒各组织器官镉的含量及影响.中国畜禽种业, 6 (4), 122-125.
    宋筱瑜,张磊,隋海霞,李建文,马宁,刘飒娜,刘兆平,李凤琴,严卫星. 2011.基准剂量方法在风险评估中的应用.卫生研究, 40(1): 2-26.
    苏敏,许庭良,姜俸芙. 2001.慢性染镉小鼠肾近端小管上皮细胞的形态学观察.四川解剖学杂志, 9(1): 17.
    唐伟峰,何兴轩,谢红,王翔朴. 1994.尿中NAG、γ-GT酶对镉作业工人肾损害的诊断意义.职业医学, 21(2): 5-6.
    陶炼晖,王翔朴. 1990.镉毒性肾损害与镉、锌结合蛋白.职业医学, 3(17): 131-135.
    陶炼晖,王翔朴. 1990.镉中毒肾损害大鼠尿中金属硫蛋白的变化.卫生毒理学杂志, 3: 135-164.
    陶炼晖,王翔朴,王夷平,梁绍先,何坚,唐外星. 1991.亚慢性镉中毒肾损伤的超微病理观察.职业医学,18:258-261.
    魏泓. 1997.我国小型猪研究的现状.中国试验动物学杂志, 7(4): 252-255.
    吴训伟. 2001.镉接触致肾脏功能损害的预后.上海:复旦大学.
    严卫星,丁晓雯. 2009.食品毒理学.北京:中国农业大学出版社, 299.
    杨敬华,徐兆发,徐斌,贺安宁. 2007.镉致大鼠肾脏毒性机制研究.中国公共卫生, 7(23):887-888.
    杨文正. 1996.动物矿物质营养.北京:中国农业出版社: 187-191.
    朱善良,陈龙,高伟,周娟,蒋英子. 2003.镉致大鼠睾丸脂质过氧及酶活性变化研究.中国公共卫生, 6(19): 707-709.
    朱善良,陈龙. 2006.镉毒性损伤及其机制的研究进展.生物学教学, 8(31): 2-6.
    Akihide T, Tetsuo H. 1993. Cell death and degeneration of renal proximal tubular cell in rats with subchronic cadmium in toxication. Toxicol Pathol, 21: 341-351.
    Aoyagi T, Hayakawa K, Miyaji K, Ishikawa H, Hata M. 2003. Cadmium nephrotoxicity and evacuation from the body in a rat modeled subchronic intoxication. Int. J. Urol., 10, 332-338.
    ATSDR. 1998. Cadmium (Update). Washington, DC: U.S. Department of Health and Human Services.
    Bagchi D, Vuchetich PJ, Bagshi M. 1997. Induction of oxidative stress by chronic administration of sodium dichromate and cadmium chloride to rats. Free Radic Bio Med, 22(3): 471-478.
    Bernard A, Goret A, Roels H, Buchet JP, Lauwerys R. 1998. Experimental confirmation in rats of the mixed type proteinuria observed in workers exposed to cadmium. Toxicology, 10: 369-375.
    Bernard A, Roles H, Buchet JP, Goret A. 1992. Cadmium and health: the Belgian experience, cadmium in the human environment. Toxicity and Carcinogenicity. IARC, 15-30.
    Bernard A. 2008. Biomarkers of metal toxicity in population studies: research potential and interpretation issues. J Toxicol Environ Health, Part A, 71: 1259-1265.
    Bernard AM, Lauwerys RR. 1998. Retinol binding protein in urine: a more pratical index than urinary β2-MG for routine screening of renal tubular function. Clin Chem, 27(10): 1781.
    Bokori J, Fekete S, Glavits R, Kadar I, Koncz J, Kovari L. 1996. Complex study of the physiological role of cadmium. Acta Vet Hung, 44: 57-74.
    Brzoska MM, Kaminski M, Supermak-Bobko D, Zwierz K, Moniuszko J. 2003. Changes in the structure and function of the kidney of rats chronically exposure to cadmium. Arch. Toxicol, 77, 344-352.
    Buchet J P, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, Ducoffre G, Deplaen P, Staessen J, Amery A, Lijnen P, Thijs L, Rondia D, Sartor F, Saint R, Nick L. 1990. Renal effects of cadmium body burden of the general population. The Lancet, 336: 699-702.
    Chen L, Jin TY, Huang B, Nordberg G, Nordberg M. 2006. Critical exposure level of cadmium for elevated urinary metallothionein-An occupational population study in China. Toxicology and Applied Pharmacology, 215, 93-99.
    Chia KS. 1989. Renal tubular function of workers exposed to low levels of cadmium. Bri J Ind Med, 46(3): 163.
    Collares-Buzato CB, Jepson MA, Mcewan GT, Simmons NL, Hirst BH. 1994. Junctional uvomorulin/E-cadherin and phosphotyrosine-modified protein are correlated with paracellular permeability in Madind-Darby canine kidney (MDCK) epithelia. Histochemistry, 1994, 101(3): 185-194.
    Crump KS. 1984. A new method for determining allowable daily intakes. Fundam Appl Toxicol, 4(5): 854-871.
    Czarnecki GL, Baker DH. 1982. Tolerance of the chick to excess dietary cadmium as influenced by dietary cysteine and by experimental infection with Eimeria acervulina. J Anim Sci, 54: 983-988.
    Dudley RE, Gammal LM, Klaassen CD. 1985. Cadmium-induced hepatic and renal injury in chronicallyexposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol Appl Pharmacol, 77(3): 414-426.
    EFSA, 2009. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSAJ, 980, 1-139.
    EFSA. 2009. Scientific opinion, Use of the benchmark dose approach in risk assessment, Guidance of the Scientific Commitee. EFSAJ, 1150, 1-72.
    EPA. 1997. Integrated Risk Information System (IRIS) for cadmium. Washington, DC: Office of health and environmental assessment, U.S. Environmental Protection Agency. Friberg, L. 1950. Acta. Med. Scand. Suppl, 240: 1-124.
    Garcon G, Leleu B, Marez T, Zerimech F, Haguenoer JM, Furon D, Shirali P. 2007. Biomonitoring of the adverse effects inducted by the chronic exposure to lead and cadmium on kidney function: usefulness of alpha-glutathione S-transferase. Sci Total Environ, 377, 165-172.
    GB 2762-2005. 2005.食品中污染物限量.北京:中华人民共和国卫生部.
    GB/T 13078-2001. 2001.饲料卫生标准.北京:中华人民共和国国家质量监督检验检疫局.
    Goyer RA, Miller CR, Zhu SY, Victery W. 1989. Non-metallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the rat. Toxicol Appl Pharmacol, 101(2): 232-244.
    Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Hecke EV, Roels HA, Carleer R, Staessen JA. 2006. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res, 5: 9-17.
    IPCS. 2001. Environmental Health Criteria V134: Cadmium. International Programme on Chemical Safety. World Health Organization, Geneva.
    Itoh Y, Enomoto H, Takagi K. 1983. Clinical usefulness of serum alpha1-microglobulin as a sensitive indicator for renal insufficiency. Nephron, 33(1): 69-70.
    Jarup L, Elinder CG, Spang G. 1988. Cumulative blood-cadmium and tubular proteinruia: a dose-response relationship. Int Arch Occup Environ Health, 60(3): 223-229.
    Jin TY, Nordberg GF. 1999. Renal dysfunction caused by cadmium pollution from smelting in China. In: Nogawa K, Kuracchi M, Kasuya M, eds. Advances in the prevention of environmental cadmium pollution and countermeasures, 73-77.
    Kawada T. 1989. Cadmium, NAG activity, andβ2-microglobulin in the urine of cadmium pigment workers. Br J Ind Med, 46: 52-55.
    Klaassen, CD. 2001. Casarett and Doull’s Toxicology: The Basic Science of Poisons (sixth eds). McGraw-Hill, New York, PP. 822-826.
    Lauwerys R, Roels H, Buchet JP. 1989. Health effects of cadmium: update of recent studies in Belgium. London: Cadmium Association, 89-93.
    Lemioglu F, Bernard A. 1998. Effect of calmodulin-inhibitors and verapamil on the nephrotoxicity of cadmium in rat. Toxicol Lett, 95: 9-13.
    Lohmann RD, Beyersmann D. 1993. Cadmium and zinc mediated changes of the Ca2+-dependent endonuclease in apoptosis. Biochen Biophys Res Commun, 190: 1097-1103.
    Marsuura K, Takasugi M, Kunifuji Y, Horie A, Kuroiwa A. 1991. Morphological effects of cadmium on proximal tubular cells in rats. Trace Elem Res, 31: 171-182.
    Nogawa K, Ishizaki A, Kobayashi E. 1999. A comparison between health effects of cadmium andcadmium concentration in urine among inhatitants of the itai-itai disease endemic district. Envir Res, 18: 397-409.
    Nogawa K, Kido T. 1993. Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int Arch Occup Environ Health, 65: 43-46.
    Nomiyama K, Momiyama H, Nomura Y. 1999. Effect of dietary cadmium on rhesus monkeys. Envir. Hlth. Perspect., 28, 224-243.
    Nordberg GF, Kjellstrom, and Nordberg M. 1985b. In“cadmium and health. A toxicological and epidemiological appraisal.”(L. Friberg, C-G. Elinder, T Kjellstrom, T, .et al., Eds), Ch 6. CRC Press, Boca Raton, GL.
    Nordberg GF, Nogawa K, Nordberg M, Friberg L. 2007. Handbook on the toxicology of Metals. Brussels: Academic Press, 446-486.
    Nordberg GF, Piscator M. 1972. Influence of long term cadmium exposure on urinary excretion of protein and cadmium in mice. Envir Physiol Biochem, 2: 37-49.
    Nordberg GF. 1992. Appication of the critical effect and critical concentration concept to human risk assessment for cadmium. In: Nordberg GF, Herber L, Alessio, eds. Cadmium in the human environment: toxicity and carcinogenicity. Vol 118. IARC Lyon, France, 1-12.
    Roels H, Bernard A M, Cardenas A, Buchet JP, Lauwerys RR, Hotter G, Ramis I, Mutti A, Franchini I, Bundschuh I. 1993. Markers of early renal changes induced by industrial pollutants.ⅢApplication to workers exposed to cadmium. British Journal of Medicine, 50: 37-38.
    Roels H, Lauwerys R, Materne D. 1994. Study on cadmium proteinuria. Glomerular dysfunction: an early sign of renal impairment. Proceedings, Recent Advances in the Assessment of the Health Effects of Environmental Pollution, 2: 631-641.
    Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reily PE, Williams DJ, Moore MR. 2003. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett, 137: 65-83.
    Savolainen H. 1995. Cadmium-Associated renal disease. Renal Failure, 17(5): 485.
    Shaikh Z. 1982. Urinary metallothiothionein: a specific test for monitoring occupational cadmium exposure. Vet Hum Toxic, 24: 276.
    Shaikh ZA, Ellis KJ, Subramanian KS, Greenberg A. 1990. Biological monitoring for occupational cadmium exposure: the urinary metallotheionein. Toxicology, 63: 53-62.
    Shaikh ZA, Smith LM. 1984. Biological indicators of cadmium exposure and toxicity. Cellular and Molecular Life Sciences, 40: 36-43.
    Shaikh ZA, Vu TT, Zaman K. 1999. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol, 154: 256-263.
    Shiroishi K. 1997. Urine analysis for detection of cadmium-induced renal changes with special reference toβ2-microglobulin. Envir Res, 13: 407-424.
    Sidhu M, Prasad R, Gill KD. 1997. Alterations in isoforms of glutathione S-transferase in liver and kidney of cadmium exposed rhesus monkeys: purification and kinetic characterization. Mol Cell Biochem, 166(2): 55-63.
    Skoczyn A, Joanna W, Andrzejak R. 2001. Lead-cadmium interaction effect on the responsiveness of ratmesenteric vessels to norepinephrine and angiotensinⅡ. Toxicology, 162: 157-170.
    Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reily EB, Eilliams DJ, Moore MR. 2003. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 137: 65-83.
    Satarug S, Nishijo M, Ujjin P, Vanavanitkun Y, Baker JR, Moore MR. 2004. Effects of chronic exposure to low-level cadmium on renal tubular function and CYP2A6-mediated coumarin metabolism in healthy human subjects. Toxicology Letters, 148: 187-197.
    Staessen JA, Lauwerys RR, Geert I, Roels HA, Vyncke G, Amery A. 1994. Renal function and historical environmental cadmium pollution from zinc smelters. Lancet, 343: 1523-1527.
    Sidney S, Debasis B, Ezdihar H, Manashi B. 2000. Oxidative mechanisms in the toxicity of chromium and cadmium ions. Environ Pathol Toxicol Oncol, 19(3): 201-213
    Sugihira N, Sagai M, Suzuki KT. 1987. Renal damage induced by cadmium-metallothionein: effects on biochemical indicators. Toxicology, 44(1): 1-11.
    Suwazono Y, Uetani M, ?kesson A, Vahter M. 2010. Recent applications of benchmark dose method for estimation of reference cadmium exposure for renal effects in man. Toxicology Letters, 198, 40-43.
    Takenaka S, Oldiges H, Konig H. 1983. Carcinogenicity of cadmium chloride aerosols in wistar rats. J Natl Cancer Inst, 70: 367-373.
    Thijssen S, Maringwa J, Faes C, Lambrichts I, Kerhove EV. 2007. Chronic exposure of mice to environmentally relavant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology, 229, 145-156.
    Tohyama C. 1981. Metallothionein excretion in urine upon cadmium exposure: its relationship with liver and kidney cadmium. Toxicology, 22: 181-191.
    Trzcinka-Ochocka M, Jakubowski M, Razniewska G, Halatek T, Gazewski A. 2004. The effect of environmental cadmium exposure on kidney function: the possible influence of age. Environ Res, 95: 143-150.
    Tsuchiya K, Iwao S. 1999. Increased urinaryβ2-microglobulin in cadmium exposure: dose-effect relationship and biological significance ofβ2-microglobulin. Envir Hlth Perspect, 28: 147-153.
    Uchida M, Teranishi H, Aoshima K, Katoh T, Kasuya M, Inadera H. 2007. Elevated urinary levels of vitamin D-binding protein in the inhabitants of a cadmium pollute area, Jinzu River basin, Japan. Tohoku J Exp Med, 211(3): 269-274.
    Verschoor M, Herber R, Van Hennen J, Wibowo A, Zielhuis R. 1999. Renal function of workers with low-level cadmium exposure. Scand J Work Enviro Health, 13: 232-238.
    Weise M, Prufer D, Jaques G. 1981. Beta2-microglobulin and other proteins as parameters for tubular function. Contrib Nephrol, 24: 88~98.
    Yamagami T, Suna T, Fukui Y, Ohashi F, Takada S, Sakurai H, Aoshima K, Ikeda M. 2008. Biological variations in cadmium, Alpha 1-microglobulin, Beta 2-microglobulin and N-acetyl-beta-D- glucosaminidase in adult women in a non-polluted area. Int Arch Occup Environ Health, 81: 263-271.
    Zahir A. 1984. Urinary metallothionein as indicator of cadmium body burden and of cadmium-induced nephrotoxity. Envir Health Kerspeltives, 54: 171-174.
    Zhou T. 1998. Cadmium induced apoptosis and related changes in expression of p53, c-jun and MT-Igenes in testes and ventral prostate of rats. Licentiate Thesis in Medical Science in Umea University. Umea. Sweden, 24: 123-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700