铈化合物空心结构材料的制备、表征及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米空心结构是在纳米尺度范围内具有较大内部空间和一定厚度壳层的一类特殊结构,具有低密度、高比表面、优良渗透性等特点,在化学反应器、催化剂、传感器、药物载体等方面有着重要应用,是纳米化学领域中引人注目的问题之一。由于CeO_2具有很好的储氧性及氧离子传导性,所以铈基化合物纳米空心结构是很有应用前景的纳米催化材料。本论文利用溶液化学法对这类纳米空心结构进行了控制合成,并分别从材料制备、形成机理以及性质表征等几个方面进行了系统的研究。
     1.无模板法制备单晶CeO_2空心立方体
     目前制备的CeO_2纳米空心结构(纳米管除外)都是借助于硬模板,形貌为球形并且为多晶结构。本文中我们以CeCl_3·7H_2O为铈源、过氧乙酸为氧化剂,通过醇热反应制备了单晶空心纳米立方体。根据不同时间段的TEM图像观察,我们认为,定向聚集(Oriented Attachment)和奥氏熟化(Ostwald Ripening)是空心立方体形成的机理。即:起始形成的小晶粒类似溶液中分子的布朗运动,这些小粒子通过碰撞,并按照相同的晶面接合为大的粒子以降低粒子之间的界面能。由于起始聚集速度迅速,导致立方体内部具有疏松结构。在反应的后期,进入“固-液-固”质量传输的奥氏熟化控制阶段,小的粒子不断溶解,大的粒子不断长大。因此,位于内部中心的小粒子由于曲率大容易溶解继而在颗粒表面再结晶,因此形成空心立方体结构。由于过氧乙酸中含有一定量的H_2O_2,因此我们用H_2O_2代替过氧乙酸研究空心结构形成的影响因素。对比实验表明,单独利用H_2O_2时得到的是不成形的小晶粒;而如果铈的醇溶液在加入H_2O_2之前首先用浓酸(HCl、HNO_3、H_2SO_4)酸化,最后得到的产品具有空心结构。其中,过氧化物氧化Ce~(3+)为Ce~(4+),Ce~(4+)和乙醇、-OOH生成络合物,而溶液的酸性能防止铈的醇溶液中加入H_2O_2时迅速地沉淀。尽管详细的机理目前还不清楚,但可以肯定过氧化物和酸是形成空心立方体CeO_2的关键因素。对所得空心立方体进行CO催化氧化实验,发现空心CeO_2立方体具有很好的催化性能以及良好的热稳定性。
     2.PVP辅助、醇水混合溶剂下制备空心CeO_2纳米颗粒
     借助PVP,利用CeCl_3在醇水混合溶剂中制备空心CeO_2纳米颗粒。我们同样借助不同时间段的TEM/SEM图像进行分析,发现所制备的空心颗粒形成过程明显与空心立方体的不同。制备的空心颗粒随着反应时间的延长,其粒径基本无变化,但是颗粒的表面由起始的光滑变得粗糙。SEM图像分析,起始纳米颗粒表面由很多小的晶粒组成,但随着反应的进行,表面小晶粒明显变大。因此,我们推断“溶解—再结晶”是空心颗粒的形成机制。对比实验表明,醇水混合溶剂的组成对产品的最后形貌也有影响。当醇的体积比增大时,由于溶液介电常数的变化,导致沉淀颗粒与溶剂之间作用力的变化,纳米颗粒倾向聚集。改变不同的铈盐前驱物,如利用Ce(NO_3)_3或者(NH_4)_2Ce(NO_3)_6作为反应物,最后得到具有八面体结构的CeO_2。其可能原因是NO_3~-氧化乙醇,产生OH~-;而CeCl_3为铈源时,没有碱源(如OH~-)的情况下,仅依靠Ce~(4+)缓慢的水解。不同的反应途径可能影响各晶面的生长速率,从而导致最后纳米颗粒的形貌不同。
     3.同一界面反应下三种不同形成机制的CeO_2纳米管的制备
     利用Ce(OH)CO_3与NaOH水溶液之间的固液界面反应,仅仅改变后处理条件,便得到三种不同形成机制的纳米管。其反应原理:Ce(OH)CO_3前驱体在溶液中首先缓慢发生解离;解离的Ce~(3+)与NaOH水溶液反应在前驱体表面生成Ce(OH)_3;Ce(OH)_3在碱性条件下容易氧化生成Ce(OH)_4;Ce(OH)_4干燥脱水得到CeO_2。尽管反应原理一样,但是采取不同的后处理,得到的纳米管形貌和反应尺寸都不尽相同。对于T-type纳米管来说,起先形成的Ce(OH)_3室温下在NaOH溶液中老化转化为CeO_2,然后未反应的Ce(OH)CO_3利用HNO_3溶解;对于L-type纳米管来说,水热条件有利于一维Ce(OH)_3的生长,不同于室温下无序的小颗粒的生长。随之,一维的Ce(OH)_3在水热条件下,卷曲成管,继而氧化转化为CeO_2纳米管;对于K-type纳米管来说,首先生成的Ce(OH)_3覆盖在Ce(OH)CO_3前驱体表面阻碍了OH~-、Ce~(3+)的继续反应。进一步的反应就依靠Ce~(3+)、OH~-的扩散来进行。由于两种离子半径不同,导致Ce~(3+)从Ce(OH)CO_3向外迁移速率大于OH向内迁移速率,于是晶格空位聚集形成空心结构。为了进一步区别三种不同形成机制的纳米管,我们分别区别了T-type、L-type纳米管,T-type、K-type纳米管。对比实验表明,溶解/结晶速率驱动着Ce(OH)_3的各向异性生长,并且发现在T-type纳米管的形成过程中,Kirkendall扩散同样存在,但K-type纳米管和T-type纳米管具有相反的的变化趋势:即在K-type纳米管形成过程中,其内部空心随着反应时间的延长而增大,而T-type纳米管相反。最后测试了三种纳米管的催化性质。
     4.模板法制备CePO_4:Tb纳米管
     以掺杂Tb的Ce(OH)CO_3为前驱体代替Ce(OH)CO_3,在醇水混合溶剂中与H_3PO_4缓慢的发生固液界面反应,未反应的Ce(OH)CO_3:Tb前驱体利用HNO_3洗涤得到结晶良好的CePO_4:Tb纳米管。XRD、EDS表明Tb不仅成功地掺杂于Ce(OH)CO_3,而且经过溶剂热反应后依然掺杂于CePO_4产物中。由于Ce~(3+)、Tb~(3+)之间存在能量传递,所制备的CePO_4:Tb纳米管表现出很强的绿色荧光。实验发现,当CePO_4:Tb纳米管被KMnO_4氧化后,由于Ce~(4+)不再向Tb~(3+)传递能量,因此荧光发射消失;但加入还原剂(抗坏血酸)时使Ce~(4+)还原至Ce~(3+),绿色荧光发射光谱再次出现,说明CePO_4:Tb纳米管具有很好的荧光开关效应。
     5.金纳米颗粒修饰CeO_2纳米管
     在T-type CeO_2和CePO_4:Tb的纳米管制备过程中,我们都是利用稀HNO_3洗涤未反应的前驱体。考虑到HAuCl_4较强的酸性,我们改用HAuCl_4洗涤Ce(OH)CO_3-CeO_2核壳结构,同样也可以得到纳米管。更重要的是由于电荷的静电吸引作用,AuCl_4~-很容易地进入纳米管,成功地将金纳米颗粒负载于纳米管内腔。为了验证影响因素,我们设计不同的前处理条件,即:分别用HNO_3洗涤、高温煅烧Ce(OH)CO_3-CeO_2前驱体然后再负载,结果发现Au负载量发生明显变化。我们初步认为这与CeO_2表面Au-Cl-OH形成有关。如利用Ce(OH)CO_3-CePO_4核壳结构为研究对象,经过HAuCl_4洗涤、处理,在纳米管内没有发现金颗粒。根据实验结果,初步推断氧化物的等电电位(IEP)以及溶液的pH影响金的负载量。同时发现负载金的CeO_2纳米管在催化CO性能上有了明显的提高。
Hollow nanostructures with remarkable interior space and shell in nanosize have attracted fascinating interest owing to their higher specific surface area,lower density and better permeation,and widespread potential applications in chemical reactors,drug delivery,catalysis,sensors,and various new application fields.Hollow nanostructured ceria is a promising catalytic material owing to its oxygen stroge capacity and oxygen ions conductivity.This paper focused on controlled synthesis of hollow nanostructured cerium compounds through liquid-chemical routes.In addition,controlled synthesis,formation mechanism,and properties are also investigated.The detailed information of the dissertation is listed as follows.
     1.Template-free synthesis of single-crystalline CeO_2 hollow nanocubes
     All of these current CeO_2 hollow structures were prepared under the assistance of templates and were all polycrystalline character.Single-crystalline CeO_2 hollow nanocubes were synthesized through a solvothermal method using CeCl_3·7H_2O as cerium source and peroxyacetic acid(PAA) as oxidant.It is believed that both oriented attachment and Ostwald ripening should be the main formation mechanisms for the hollow nanocubes through the TEM images at different time.In the first stage,initial nanoparticles are assumed to act as the molecules of Brownian motion under the solvothermal conditions.So it is expected that the growth of nanoparticles via oriented attachment shares some characteristics with the collision reactions of molecules.As a result,the oriented attachment process finishes so fast that a loose structure is formed.In the second stage,the Ostwald ripening is dominant with "solid-solution-solid" mass transportation.Crystallites located in the outermost surface of aggregates are larger and would grow at the expense of smaller ones inside,so the solid evacuation occurred.To explore the key factors for the hollow nanocubes formation,H_2O_2 instead of peroxyacetic acid was used because a certain amount of H_2O_2 is retained in the peroxyacetic acid.When H_2O_2 instead of peroxyacetic acid was used,the resulting product was mainly small crystallites and no hollow cubes observed.In contrast,hollow particles appeared when the CeCl_3 ethanol solution was primarily acidified by concentrated H_2SO_4,HCl,and HNO_3 before adding H_2O_2, respectively.Both the peroxide(peroxyacetic acid or H_2O_2) and the acidic condition played crucial roles in determining the final morphology of the products.The catalytic activity of CeO_2 hollow nanocubes towards CO oxidation was studied,and it was found the as-prepared hollow nanocubes have better catalytic property,excellent stability and recycling performance.
     2.Synthesis of hollow nanoparticles in the mixed solvents with the assistance of PVP
     We have synthesized CeO_2 hollow nanoparticles in the mixed solvents with the assistance of PVP.In the same way,we studied the formation mechanism through the evolution process observation from TEM/SEM images at different time,and found it was different from that of the hollow nanocubes.The nanoparticles almost retain their size, while the surface of nanoparticles becomes rough and the hollowing gradually enlarges with extending reaction time.The initial tiny nanocrystallines on the shell develop into bigger nanoparticles with increasing reaction time from the SEM observations.Therefore, we concluded that the "dissolution and recrystallization" mechanism was responsible for the formation of hollow CeO_2 nanoparticles.The composition of ethanol-water solvent also influences the sample finally morphology.The as-prepared samples incline to assembly when increasing the ethanol volume ratio owing to the change of interaction force between nanoparticles and solvent results from the alternation ofε.It was found that the cerium source has some effect on the final morphology of CeO_2.The resulting samples was mainly octahedral when using Ce(NO_3)_3 or(NH_4)_2Ce(NO_3)_6 as reactants.The possible reason lies in the different reaction routes result in different crystal plan growth rate,and influences final morphology.Because the nitrate species could possess enough potential to oxidize ethanol and OH~-as a product produces.However,there is no OH~-were involved in the reaction when using CeCl_3 as cerium precursor,and the formation of CeO_2 depends on the slow hydrolysis of Ce~(4+).
     3.Interface reaction route to three different types of CeO_2 nanotubes
     Three types of CeO_2 nanotubes were prepared in alkaline solutions by employing Ce(OH)CO_3 nanorods as precursors just slightly tuning the post processing conditions. Firstly,Ce(OH)CO_3 nanorods dissociate slowly;The coupled reaction/diffusion at the solid-liquid interface lead to the quick formation of an interconnected Ce(OH)_3 shell; Ce~(3+)/Ce~(4+) oxidation is favored at higher pH value and the conversion from Ce(OH)_3 to Ce(OH)_4(CeO_2·2H_2O) can be realized easily;Finally,the Ce(OH)_4 can be dehydrated to CeO_2 at high temperature.Although the reaction principle is similar,the formation mechanisms of three types of nanotubes are different.For T-type nanotubes,the Ce(OH)_3 shell formed at the early stages can be converted into CeO_2 by aging with concentrated NaOH.Subsequently,the unreacted Ce(OH)CO_3 nanorod cores washed away by diluted HNO_3 result in a large interior space in the T-type nanotubes.For L-nanotubes,the hydrothermal condition favors the anisotropic growth of 1D Ce(OH)_3 structures,and the lamellar rolling of Ce(OH)_3 nanosheets occurs to form tubular structures,which will be transformed into CeO_2 nanotubes by hydroxide assisted hydrothermal treatment.For K-type nanotubes,different diffusivities of ions in the diffusion couple(Ce~(3+) and OH~-) would give the necessary condition for the Kirkendall effect diffusion in the solid-liquid interface reaction.In addition,we compare T-type nanotubes with K-type nanotubes and L-type nanotubes,respectively.Finally,the catalytic activity of different types of nanotubes was studied.
     4.Template synthesis of CePO_4:Tb nanotubes
     We designed a solid-liquid interface reaction between Ce(OH)CO_3:Tb nanorods and H_3PO_4 in ethanol-water mixed solvent,using Tb-doped Ce(OH)CO_3 nanorods as precursors.Combining XRD and EDS measurements,we confirm the Tb~(3+) ion has been successfully doped into Ce(OH)CO_3 precursors and the doping is unaffected by the solvothermal conversion from Ce(OH)CO_3:Tb to CePO_4:Tb.The as-prepared nanotubes show strong green luminescence owing to energy transfer from Ce~(3+) to Tb~(3+).Upon the addition of KMnO_4 solution to the as-prepared colloidal dispersion of CePO_4:Tb~(3+) nanotubes,the emission spectrum disappears,and subsequent reduction of Ce~(4+) by adding aqueous ascorbic acid solution to the oxidized solution induces an increase in the luminescence.These phenomena demonstrate the nanotubes possess redox switch function.
     5.Au nanoparticles-decorated CeO_2 nanotubes
     In the synthesis of T-type CeO_2 and CePO_4:Tb nanotubes,we used HNO_3 to wash the unreacted core precursors.Concerning the acidity of HAuCl_4,we have also fabricated the nanotubes by using HAuCl_4 to wash the unreacted Ce(OH)CO_3.Furthermore,the AuCl_4~-ions easily diffuse into the interior space of nanotubes owing to the static electric force, and the Au NPs were decorated successfully in the CeO_2 nanotubes.We also found that there exists different Au loading amount when we design different pretreatment process, which possible results from the formation of Au-Cl-OH complex on the CeO_2 surface. There is no Au NPs when the Ce(OH)CO_3-CePO_4 core-shell nanostructures were washed by HAuCl_4.Based on the experiment results,we concluded that the IEP of oxides and pH influence the Au loading amount.The Au NPs decorated CeO_2 nanotubes show high catalytic performance towards CO oxidation.
引文
[1] L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, R. Tenne, Hollow nanoparticles of WS_2 as potential solid-state lubricants [J], Nature 1997, 387, 791-793.
    
    [2] W. Wei, G. H. Ma, G. Hu, D. Yu, T. Mcleish, Z. G. Su, Z. Y. Shen, Preparation of hierarchical hollow CaCO_3 particles and the application as anticancer drug carrier [J], J. Am. Chem. Soc. 2008, 130,15808-15810.
    
    [3] J. Yang, J. Lee, J. Kang, K. Lee, J. S. Suh, H. G. Yoon, Y. M. Huh, S. Haam, Hollow silica nanocontainers as drug delivery vehicles [J], Langmuir 2008, 24, 3417-3421.
    
    [4] J. Gao, Q. Li, H. Zhao, L. Li, C. Liu, Q. Gong, L. Qi, One-pot synthesis of uniform Cu_2O and CuS hollow spheres and their optical limiting properties [J], Chem. Mater. 2008, 20, 6263-6269.
    
    [5] K. Sakanishi, H. Hasuo, I. Mochida, O. Okuma, Preparation of highly dispersed NiMo catalysts supported on hollow spherical carbon black particles [J], Energy Fuels 1995, 9, 995-998.
    
    [6] J. Shin, R. M. Anisur, M. K. Ko, G. H. Im, J. H. Lee, I. S. Lee, Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery [J], Angew. Chem. Int. Ed. 2009,48, 321-324.
    
    [7] B. Fang, M. Kim, J. H. Kim, J. S. Yu, Controllable synthesis of hierarchical nanostructured hollow core/mesopore shell carbon for electrochemical hydrogen storage [J], Langmuir 2008, 24,12068-12072.
    
    [8] K. Okada, A. Shimai, T. Takei, S. Hayashi, A. Yasumori, K. J. D. MacKenzie, Preparation of microporous silica from metakaolinite by selective leaching method [J], Microporous and Mesoporous Mater. 1998, 21, 289-296.
    
    [9] F. Caruso, R. A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J], Science 1998, 282,1111-1114.
    
    [10] T. Zhang, J. Ge, Y. Hu, Q. Zhang, S. Aloni, Y. Yin, Formation of hollow silica colloids through a spontaneous dissolution-regrowth process [J], Angew. Chem. Int. Ed. 2008, 47, 5806-5811.
    
    [11] N. Du, H. Zhang, J. Chen, J. Sun, B. Chen, D. Yang, Metal oxide and sulfide hollow spheres: Layer-by-Layer synthesis and their application in lithium-ion battery [J], J. Phys. Chem. 5 2008,112, 14836-14842.
    
    [12] Z. Wang, M. Chen, L. Wu, Synthesis of monodisperse hollow silver spheres using phase-transformable emulsions as templates [J], Chem. Mater. 2008, 20, 3251-3253.
    [13]N.A.Dhas,K.S.Suslick,Sonochemical preparation of hollow nanospheres and hollow nanocrystals[J],J.Am.Chem.Soc.2005,127,2368-2369.
    [14]N.Zink,J.Pansiot,J.Kieffer,H.A.Therese,M.Panthofer,F.Rocker,U.Kolb,W.Tremel,Selective synthesis of hollow and filled fullerene-like(IF) WS_2 nanoparticles via metal-organic chemical vapor deposition[J],Chem.Mater.2007,19,6391-6400.
    [15]H.Cao,X.Qian,C.Wang,X.Ma,J.Yin,Z.Zhu,High symmetric 18-facet polyhedron nanocrystals of Cu_7S_4 with a hollow nanocage[J],J.Am.Chem.Soc.2005,127,16024-16025.
    [16]Z.Li,A.Gebner,J.P.Richters,J.Kalden,T.Voss,C.Kubel,A.Taubert,Hollow zinc oxide mesocrystals from an ionic liquid precursor(ILP)[J],Adv.Mater.2008,20,1279-1285.
    [17]J.Yang,T.Sasaki,Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating[J],Chem.Mater.2008,20,2049-2056.
    [18]J.Di,H.Chen,X.Wang,Y.Zhao,L.Jiang,J.Yu,R.Xu,Fabrication of zeolite hollow fibers by coaxial electrospinning[J],Chem.Mater.2008,20,3543-3545.
    [19]F.Caruso,X.Shi,R.A.Caruso,A.Susha,Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles[J],Adv.Mater.2001,13,740-744.
    [20]Z.Liang,A.Susha,F.Caruso,Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies[J],Chem.Mater.2003,15,3176-3183.
    [21]F.Caruso,M.Spasova,A.Susha,M.Giersig,R.A.Caruso,Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J],Chem.Mater.2001,13,109-116.
    [22]L.Li,R.Ma,N.Iyi,Y.Ebina,K.Takada,T.Sasaki,Hollow nanoshell of layered double hydroxide[J],Chem.Commun.2006,3125-3127.
    [23]A.Imhof,Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells[J],Langmuir 2001,17,3579-3585.
    [24]G.Li,C.Liu,Y.Liu,Facile fabrication of hollow mono-dispersed TiO_2 spheres in an aqueous solution[J],J.Am.Ceram.Soc.2007,90,2667-2669.
    [25]W.S.Choi,H.Y.Koo,Z.Z.Bin,Y.Li,D.Y.Kim,Templated synthesis of porous capsules with a controllable surface morphology and their application as gas sensors[J],Adv.Funct.Mater.2007,17,1743-1749.
    [26]S.W.Kim,M.Kim,W.Y.Lee,T.Hyeon,Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki Coupling reactions[J],J.Am.Chem.Soc.2002,124,7642-7643.
    [27]M.Yang,J.Ma,C.Zhang,Z.Yang,Y.Lu,General synthetic route toward functional hollow spheres with double-shelled structures[J],Angew.Chem.Int.Ed.2005,44,6727-6730.
    [28]S.Ikeda,K.Tachi,Y.H.Ng,Y.Ikoma,T.Sakata,H.Mori,T.Harada,M.Matsumura,Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls[J],Chem.Mater 2007,19,4335-4340.
    [29]Y.Xia,R.Mokaya,Hollow spheres of crystalline porous metal oxides:A generalized synthesis route via nanocasting with mesoporous carbon hollow shells[J],J.Mater.Chem.2005,15,3126-3131.
    [30]S.H.Park,D.Qin,Y.Xia,Crystallization of mesoscale particles over large areas[J],Adv.Mater.1998,10,1028-1032.
    [31]O.D.Velev,E.W.Kaler,Structured porous materials via colloidal crystal templating:From inorganic oxides to metals[J],Adv.Mater.2000,12,531-534.
    [32]Y.Wang,F.Su,J.Y.Lee,X.S.Zhao,Crystalline carbon hollow spheres,crystalline carbon-SnO_2 hollow spheres,and crystalline SnO_2 hollow spheres:Synthesis and performance in reversible Li-ion storage[J],Chem.Mater.2006,18,1347-1353.
    [33]S.J.Kim,C.S.Ah,D.J.Jang,Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles[J],Adv.Mater.2007,19,1064-1068.
    [34]J.N.Wang,L.Zhang,J.J.Niu,F.Yu,Z.M.Sheng,Y.Z.Zhao,H.Chang,C.Pak,Synthesis of high surface area,water-dispersible graphitic carbon nanocages by an in situ template approach[J],Chem.Mater.2007,19,453-459.
    [35]J.C.Yu,X.Hu,Q.Li,Z.Zheng,Y.Xu,Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules[J],Chem.Eur.J.2006,12,548-552.
    [36]A.D.Smigelskas,E.O.Kirkenall,Trans.Am.Inst.Min.Metal.Pet.Eng.1947,171,130.
    [37]H.J.Fan,M.Knez,R.Scholz,D.Hesse,K.Nielsch,M.Zacharias,U.Gosele,Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect:The basic concept[J],Nano Lett.2007,7,993-997.
    [38]R.K.Chiang,R.T.Chiang,Formation of hollow Ni_2P nanoparticles based on the nanoscale Kirkendall effect[J],Inorg.Chem.2007,46,369-371.
    [39] G. Zhang, W. Wang, Q. Yu, X. Li, Facile one-pot synthesis of PbSe and NiSe_2 hollow spheres: Kirkendall-effect-induced growth and related properties [J], Chem. Mater. 2009, 21,969-974.
    
    [40] F. Niu, A. M. Cao, W. G. Song, L. J. Wan, La(OH)_3 hollow nanostructures with trapezohedron morphologies using a new Kirkendall diffusion couple [J], J. Phys. Chem. C 2008,112,17988-17993.
    
    [41] L. Xie, J. Zheng, Y. Liu, Y. Li, X. Li, Synthesis of Li_2NH hollow nanospheres with superior hydrogen storage kinetics by plasma metal reaction [J], Chem. Mater. 2008, 20, 282-286.
    
    [42] Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect [J], Science 2004,304,711-714.
    
    [43] X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y. Li, Formation of CeO_2-ZrO_2 solid solution nanocages with controllable structures via Kirkendall effect [J], J. Am. Chem. Soc. 2008,130, 2736-2737.
    
    [44] R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, H. Nakajima, Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles [J], Mater. Lett. 2007, 61, 1060-1063.
    
    [45] Y. Yin, C. Erdonmez, S. Aloni, A. P. Alivisatos, Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra [J], J. Am. Chem. Soc. 2006,128,12671-12673.
    
    [46] Y. Vasquez, A. K. Sra, R. E. Schaak, One-pot synthesis of hollow superparamagnetic CoPt nanospheres [J],J.Am. Chem. Soc. 2005, 127, 12504-12505.
    
    [47] U. Jeong, Y. Xia, Photonic crystals with thermally switchable stop bands fabricated from Se@Ag_2Se spherical colloids [J], Angew. Chem. Int. Ed. 2005, 44, 3099-3103.
    
    [48] Y. Ma, K. Huo, Q. Wu, Y. Lu, Y. Hu, Z. Hu, Y. Chen, Self-templated synthesis of polycrystalline hollow aluminium nitride nanospheres [J], J. Mater. Chem. 2006, 16, 2834-2838.
    
    [49] C. Li, X. Yang, B. Yang, Y. Yan, Y. Qian, A template-interface co-reduction synthesis of hollow sphere-like carbides [J], Eur. J. Inorg. Chem. 2003, 3534-3537.
    
    [50] J. Huang, Y. Xie, B. Li, Y. Liu, Y. Qian, S. Zhang, In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres [J], Adv. Mater. 2000, 12,808-811.
    [51] J. Bao, Y. Liang, Z. Xu, L. Si, Facile synthesis of hollow nickel submicrometer spheres [J],Adv. Mater. 2003, 15,1832-1835.
    
    [52] Q. Liu, H. Liu, M. Han, J. Zhu, Y. Liang, Z. Xu, Y. Song, Nanometer-sized nickel hollow spheres [J], Adv. Mater. 2005, 17,1995-1999.
    
    [53] H. Xu, W. Wang, Template synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall [J], Angew. Chem. Int. Ed. 2007,46,1489-1492.
    
    [54] L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers [J], Adv. Mater. 2002, 14, 300-303.
    
    [55] F. Gu, C. Z. Li, S. F. Wang, M. K. Lü, Solution-phase synthesis of spherical zinc sulfide nanostructures [J], Langmuir 2006,22, 1329-1332.
    
    [56] Z. Wu, M. Zhang, K. Yu, S. Zhang, Y. Xie, Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture [J], Chem. Eur. J. 2008,14, 5346-5352.
    
    [57] W. Ostwald, Z Phys. Chem. 1900, 34,495.
    
    [58] B. Liu, H. C. Zeng, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors [J], Small 2005,1, 566-571.
    
    [59] J. Li, H. C. Zeng, Size tuning, functionalization, and reactivation of Au in TiO_2 nanoreactors [J], Angew. Chem. Int. Ed. 2005, 44, 4342-4345.
    
    [60] Y. Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu_2O nanospheres [J], Langmuir 2005, 21,1074-1079.
    
    [61] J. Li, H. C. Zeng, Hollowing Sn-doped TiO_2 nanospheres via Ostwald ripening [J], J. Am. Chem. Soc. 2007,129,15839-15847.
    
    [62] H. G. Yang, H. C. Zeng, Preparation of hollow anatase TiO_2 nanospheres via Ostwald ripening [J], J.Phys. Chem. B2004, 108, 3492-3495.
    
    [63] B. Liu, H. C. Zeng, Mesoscale organization of CuO nanoribbons: Formation of "dandelions" [J],J.Am. Chem. Soc. 2004, 126, 8124-8125.
    
    [64] H. G. Yang, H. C. Zeng, Self-construction of hollow SnO_2 octahedra based on two-dimensional aggregation of nanocrystallites [J], Angew. Chem. Int. Ed. 2004, 43, 5930-5933.
    
    [65] J. Zhou, W. Wu, D. Caruntu, M. H. Yu, A. Martin, J. F. Chen, C. J. Oconnor, W. L. Zhou, Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application [J],J. Phys. Chem. C 2007, 111, 17473-17477.
    
    [66] Y. F. Zhu, J. L. Shi, W. H. Shen, X. P. Dong, J. W. Feng,M. L. Ruan, Y. S. Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure [J], Angew. Chem. Int. Ed. 2005, 44, 5083-5087.
    
    [67] V. V. Sokolova, I. Radtke, R. Heumann, M. Epple, Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles [J], Biomaterials 2006,27, 3147-3153.
    
    [68] H. M. Chen, R. S. Liu, M. Y. Lo, S. C. Chang, L. D. Tsai, Y. M. Peng, J. F. Lee, Hollow platinum spheres with nano-channels: Synthesis and enhanced catalysis for oxygen reduction [J], J. Phys. Chem. C 2008,112, 7522-7526.
    
    [69] J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres [J], Environ. Sci. Technol. 2008, 42, 4902-4907.
    
    [70] G. Duan, W. Cai, Y. Luo, Zh. Li, Y. Lei, Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition [J], J. Phys. Chem. B 2006, 110, 15729-15733.
    
    [71] Q. Zhao, Y. Gao, X. Bai, C. Wu, Y. Xie, Facile synthesis of SnO_2 hollow nanospheres and applications in gas sensors and electrocatalysts [J], Eur. J. Inorg. Chem. 2006, 2006, 1643-1648.
    
    [72] X. W. Lou, D. Deng, J. Y. Lee, L. A. Archer, Preparation of SnO_2/carbon composite hollow spheres and their lithium storage properties [J], Chem. Mater. 2008, 20, 6562-6566.
    
    [73] S. Lim, C. S. Yoon, J. Cho, Synthesis of nanowire and hollow LiFePO_4 cathodes for high-performance lithium batteries [J], Chem. Mater. 2008, 20, 4560-4564.
    [74] H. Kim, J. Cho, Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material [J], Chem. Mater. 2008, 20,1679-1681.
    
    [75] W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan, Tin-Nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries [J], Adv. Mater. 2008, 20, 1160-1165.
    
    [76] P. H. C. Camargo, Y. H. Lee, U. Jeong, Z. Zou, Y. Xia, Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties [J], Langmuir 2007,23, 2985-2992.
    
    [77] J. F. Branco, C. T. Pinho, R. A. Figueiredo, Heat conduction in the hollow sphere with a power-law variation of the external heat transfer coefficient [J], Int. J. Heat Mass Transfer 2000, 27, 1067-1076.
    [78]X.Zhang,L.Feng,S.Song,B.Wang,X.Ma,S.Cao,Prepartionn of nano-zinc borate with ultra-hollow spheres as flame retardant[J],New Chem.Mater.2008,36,60-62.
    [79]X.X.Lin,Y.F.Zhu,W.Z.Shen,Synthesis and optical and magnetic properties of diluted magnetic semiconductor Zn_(1-x)Mn_xO hollow spherical structures[J],J.Phys.Chem.C 2009,113,1812-1817.
    [80]C.T.Campbell,C.H.F.Peden,Oxygen Vacancies and Catalysis on Ceria Surfaces [J],Science 2005,309,713-714.
    [81]Z.Zhan,S.A.Barnett,An octane-fueled solid oxide fuel cell[J],Science 2005,308,844-847.
    [82]M.F.Stephanopoulos,M.Sakbodin,Z.Wang,Regenerative adsorption and removal of H_2S from hot fuel gas streams by rare earth oxides[J],Science 2006,312,1508-1510.
    [83]T.Hibino,A.Hashimoto,T.Inoue,J.Tokuno,S.Yoshida,M.Sano,A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures[J],Science 2000,288,2031-2033.
    [84]C.A.Coutinho,S.R.Mudhivarthi,A.Kumar,V.K.Gupta,Novel ceria-polymer microcomposites for chemical mechanical polishing[J],Appl.Surf.Sci.2008,255,3090-3096.
    [85]吴文远,稀土冶金学[M],化学工业出版社2005.
    [1]P.Jiang,J.F.Bertone,V.L.Colvin,A lost-wax approach to monodisperse colloids and their crystals[J],Science 2001,291,453-457.
    [2]X.W.Lou,L.A.Archer,General route to nonspherical anatase TiO_2 hollow colloids and magnetic multifunctional particles[J],Adv.Mater.2008,20,1853-1858.
    [3]X.W.Lou,C.Yuan,Q.Zhang,L.A.Archer,Platinum-functionalized octahedral silica nanocages:Synthesis and characterization[J],Angew.Chem.Int.Ed.2006,45,3825-3829.
    [4]S.Jiao,L.Xu,K.Jiang,D.Xu,Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu_2O crystal templating[J],Adv.Mater.2006,18,1174-1177.
    [5]Y.Yin,C.Erdonmez,S.Aloni,A.P.Alivisatos,Faceting of nanocrstals during chemical transformation:From solid silver spheres to hollow gold octahedra[J],J.Am.Chem.Soc.2006,128,12671-12673.
    [6]李玲,表面活性剂与纳米技术[M],化与红业出版社2003.
    [7]W.Z.Wang,B.Poudel,D.Z.Wang,Z.F.Ren,Synthesis of PbTe nanoboxes using a solvothermal technique[J],Adv.Mater.2005,17,2110-2114.
    [8]T.He,D.Chen,X.Jiao,Y.Wang,Co_3O_4 nanoboxes:Surfactant-templated fabrication and microstructure characterization[J],Adv.Mater.2006,18,1078-1082.
    [9]H.G.Yang,H.C.Zeng,Self-construction of hollow SnO_2 octahedra based on two-dimensional aggregation of nanocrystallites[J],Angew.Chem.Int.Ed.2004,43,5930-5933.
    [10]C.Lu,L.Qi,J.Yang,X.Wang,D.Zhang,J.Xie,J.Ma,One-pot synthesis of octahedral Cu_2O nanocages via a catalytic solution route[J],Adv.Mater.2005,17,2562-2567.
    [11]Y.Xiong,B.Wiley,J.Chen,Z.Y.Li,Y.Yin,Y.Xia,Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties[J],Angew.Chem.Int.Ed.2005,44,7913-7917.
    [12]L.Gou,C.J.Murphy,Solution-phase synthesis of Cu_2O nanocubes[J],Nano.Lett.2003,3,231-234.
    [13](a) S.Yang,L.Gao,Controlled synthesis and self-assembly of CeO_2 nanocubes[J],J.Am.Chem.Soc.2006,128,9330-9331;
    (b) Y.Sun,B.Mayers,Y.Xia,Metal nanostructures with hollow interiors[J],Adv.Mater.2003,15,641-646;
    (c) H.C.Zeng,Synthetic architecture of interior space for inorganic nanostructures [J], J. Mater. Chem. 2006, 16, 649-662.
    
    [14] K. Zhou, X. Wang, X. Sun, Q. Peng, Y. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes [J], J. Catal. 2005,229, 206-212.
    
    [15] C. Ho, J. C Yu, T. Kwong, A. C Mak, S. Lai, Morphology-controllable synthesis of mesoporous CeO_2 nano- and microstructures [J], Chem. Mater. 2005, 17,4514-4522.
    
    [16] H. Mei, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu, C. H. Yan, Shape-selective syntheis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes [J], J. Phys. Chem. B 2005,109,24380-24385.
    
    [17] X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y. Li, Formation of CeO_2-ZrO_2 solid solution nanocages with controllable structures via Kirkendall effect [J], J. Am. Chem. Soc. 2008,130,2736-2737.
    
    [18] C. Y. Chang-Chien, C. H. Hsu, T. Y. Lee, C. W. Liu, S. H. Wu, H. P. Lin, C. Y. Tang, C. Y. Lin, Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend [J], Eur. J. Inorg. Chem. 2007, 3798-3804.
    
    [19] X. M. Sun, J. Liu, Y. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres [J], Chem. Eur. J. 2006, 12, 2039-2047.
    
    [20] Y. Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu_2O nanospheres [J], Langmuir 2005, 21, 1074-1079.
    
    [21] R. L. Perm, J. F. Banfield, Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals [J], Science 1998,281, 969-971.
    
    [22] J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of hollow nanocubes of Cu_2O and Cu via reductive self-assembly of CuO nanocrystals [J], Langmuir 2006, 22, 7369-7377.0
    
    [23] B. Jia, L. Gao, Morphological transformation of Fe_3O_4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field [J], J. Phys. Chem. C 2008,112,666-671.
    
    [24] M. I. Award, C. Harnoode, K. Tokuda, T. Ohsaka, Simultaneous electroanalysis of peroxyacetic acid and hydrogen peroxide [J], Anal. Chem. 2001, 73,1839-1843.
    [25]Z.H.Han,Y.T.Qian,J.Yang,G.Q.Lu,Soft solution processing of cerium hydroxysulfate powders with different morphologies[J],J.Mater.Chem.2003,13,150-153.
    [26]D.Boro,P.Stephen,Nanostructured cerium oxide:preparation and properties of weakly-agglomerated powders[J],J.Eur.Cream.Soc.1999,19,1925-1934.
    [27]Y.Zhang,Z.Kang,J.Dong,H.Abernathy,M.Liu,Self-assmbly of cerium compound nanopetals via a hydrothermal process:Synthesis,formation mechanism and properties[J],J.Solid State Chem.2006,179,1733-1738.
    [28]L.S.Zhong,J.S.Hu,A.M.Cao,Q.Liu,W.G.Song,L.J.Wan,3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J],Chem.Mater.2007,19,1648-1655.
    [29]J.Zhang,Z.Lin,Y.Lan,G.Ren,D.Chen,F.Huang,M.Hong,A multistep oriented attachment kinetics:Coarsening of ZnS nanoparticle in concentrated NaOH[J],J.Am.Chem.Soc.2006,128,12981-12987.
    [30]B.Liu,H.C.Zeng,Symmetric and asymmetric ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J],Small 2005,1,566-571.
    [31]J.Li,H.C.Zeng,Hollowing Sn-doped TiO_2 nanospheres via Ostwald ripening[J],J.Am.Chem.Soc.2007,129,15839-15847.
    [32]B.Tang,L.Zhuo,J.Ge,G.Wang,Z.Shi,J.Niu,A surfactant-free route to single-crystalline CeO_2 nanowires[J],Chem.Commun.2005,3565-3567.
    [33]F.H.Scholes,A.E.Hughes,S.G.Hardin,R Lynch,P.R.Miller,Influence of hydrogen peroxide in the preparation of nanocrystalline ceria[J],Chem.Mater.2007,19,2321-2328.
    [34]李小忠,王连军,赵铭,李健生,孙秀云,离子交换-双氧水氧化法制备纳米CeO_2晶体[J],无机化学学报2006,22,79-82.
    [35]J.S.Lee,S.C.Choi,Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H_2O_2 and NH_4OH[J],Mater.Lett.2004,58,390-393.
    [36]L.Li,Y.Chu,Y.Liu,L.Dong,Template-free synthesis and photocatalytic properties of novel Fe_2O_3 hollow spheres[J],J.Phys.Chem.C 2007,111,2123-2127.
    [1] S. Iijima, Helical microtubules of graphitic carbon [J], Nature 1991, 354, 56-58.
    
    [2] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors [J], Science 2000, 287, 622-625.
    
    [3] S. Fan, M.G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties [J], Science 1999, 283, 512-514.
    
    [4] S. Song, Y. Zhang, Y. Xing, C. Wang, J. Feng, W. Shi, G. Zheng, H. Zhang, Rectangular AgIn(WO_4)_2 nanotubes: A promising photoelectric material [J], Adv. Funct. Mater. 2008, 18,2328-2334.
    
    [5] N. K. Shrestha, J. M. Macak, F. S. Stein, R. Hahn, C. T. Mierke, B. Fabry, P. Schmuki, Magnetically guided titania nanotubes for site-selective photocatalysis and drug release [J], Angew. Chem. Int. Ed. 2009,48, 969-972.
    
    [6] R. Tenne, Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles [J], Angew. Chem. Int. Ed. 2003,42, 5124-5132.
    
    [7] J. Chen, S. L. Li, F. Gao, Z. L. Tao, Synthesis and characterization of WS_2 nanotubes [J], Chem. Mater. 2003,15,1012-1019.
    
    [8] R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide [J], Nature 1992, 360,444-445.
    
    [9] Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, High-rate, gas-phase growth of M0S2 nested inorganic fullerenes and nanotubes [J], Science 1995,267, 222-225.
    
    [10] N. G. Chopra, R. G. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie and A. Zettl, Boron nitride nanotubes [J], Science 1995,269, 966-966.
    
    [11] M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen, Redox-active nanotubes of vanadium oxide [J], Angew. Chem. Int. Ed. 1998, 37, 1263-1265.
    
    [12]Y. R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J. L. Hutchison, Cage structures and nanotubes of NiCl_2 [J], Nature 1998, 395, 336-337.
    
    [13] M. Nath, C. N. R. Rao, Nanotubes of group 4 metal disulfides [J], Angew. Chem. Int. Ed 2002, 41, 3451-3454.
    
    [14] M. Nath, C. N. R. Rao, New metal disulfide nanotubes [J], J. Am. Chem. Soc. 2001, 123,4841-4842.
    
    [15] Y. Xiong, B. T. Mayers, Y. Xia, Some recent developments in the chemical synthesis of inorganic nanotubes [J], Chem. Commun. 2005, 5013-5022.
    
    [16] P. Hoyer, Formation of a titanium dioxide nanotube array [J], Langmuir 1996, 12, 1411-1413.
    
    [17] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin, Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications [J], Chem. Mater. 2008, 20, 756-767.
    
    [18] J. Zeng, C. Liu, J. Huang, X. Wang, S. Zhang, G. Li, J. Hou, UV-light induced fabrication of CdCl_2 nanotubes through CdSe/Te nanocrystals based on dimension and configuration control [J], Nano Lett. 2008, 8, 1318-1322.
    
    [19] Y. Yang, D. S. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, D. Hesse, U. Gosele, M. Zacharias, Influence of temperature on evolution of coaxial ZnO/Al_2O_3 one-dimensional heterostructures: From core-shell nanowires to spinel nanotubes and porous nanowires [J], J. Phys. Chem. C 2008, 112,4068-4074.
    
    [20] U. K. Gautam, Y. Bando, J. Zhan, P. M. F. J. Costa, X. S. Fang, D. Golberg, Ga-doped ZnS nanowires as precursors for ZnO/ZnGa_2O_4 nanotubes [J], Adv. Mater. 2008, 20, 810-814.
    
    [21] C. H. B. Ng, H. Tan, W. Y. Fan, Formation of Ag_2Se nanotubes and dendrite-like structures from UV irradiation of a CSe_2/Ag colloidal solution [J], Langmuir 2006, 22, 9712-9717.
    
    [22] Q. Wang, J. X. Li, G. D. Li, X. J. Cao, K. J. Wang, J. S. Chen, Formation of CuS nanotube arrays from CuCl Nanorods through a gas-solid reaction route [J], J. Cryst. Growth 2007,299, 386-392.
    
    [23] K. Raidongia, C. N. R. Rao, Study of the transformations of elemental nanowires to nanotubes of metal oxides and chalcogenides through the Kirkendall effect [J], J. Phys. Chem.C 2008,112,1366-13371.
    
    [24] Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, X. Fan, Growth of ZnO nanostructures with different morphologies by using hydrothermal technique J. Phys. Chem. B 2006,110, 20263-20267
    
    [25] E. Matijevic, Uniform inorganic colloid dispersions: Achievements and challenges [J], Langmuir 1994, 10,8-16.
    
    [26] Y. Sun, N. G. N. Angwafor, D. J. Riley, M. N.R. Ashfold, Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth [J], Chem. Phys. Lett. 2006, 431, 352-357.
    [27]I.G.Loscertales,A.Barrero,I.Guerrero,R.Cortijo,M.Marquez,A.M.G.Calvo,Micro/nano encapsulation via electrified coaxial liquid jets[J],Science 2002,295,1695-1698.
    [28]D.Li,Y.Xia,Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J],Nano Lett.2004,4,933-938.
    [29]C.C.Tang,Y.Bando,B.D.Liu,D.Golberg,Cerium oxide nanotubes prepared from cerium hydroxide nanotubes[J],Adv.Mater.2005,17,3005-3009.
    [30]W.Q.Han,L.Wu,Y.Zhu,Formation and oxidation state of CeO_(2-x)nanotubes[J],J.Am.Chem.Soc.2005,127,12814-12815.
    [31]K.Zhou,Z.Yang,S.Yang,Highly reducible CeO_2 nanotubes[J],Chem.Mater.2007,19,1215-1217.
    [32]Z.Guo,F.Du,G.Li,Z.Cui,Synthesis and characterization of single-crystal Ce(OH)CO_3 and CeO_2 triangular microplates[J],Inorg.Chem.2006,45,4167-4169.
    [33]R.J.Qi,Y.J.Zhu,G.F.Cheng,Y.H.Huang,Sonochemical synthesis of single-crystalline CeOHCO_3 rods and their thermal conversion to CeO_2 rods[J],Nanotechnology 2005,2502-2506.
    [34]Z.Guo,F.Du,Z.Cui,Hydrothermal synthesis of single-crystalline CeCO_3OH flower-like nanostructures and their thermal conversion to CeO_2[J],Mater.Chem.Phys.2009,113,53-56.
    [35]S.Wang,F.Gu,C.Li,H.Cao,Shape-controlled synthesis of CeOHCO_3 and CeO_2microstructures[J],J.Cryst.Growth 2007,307,386-394.
    [36]L.S.Zhong,J.S.Hu,A.M.Cao,Q.Liu,W.G.Song,L.J.Wan,3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J],Chem.Mater 2007,19,1648-1655.
    [37]Z.Wang,Z.Quan,J.Lin,Remarkable changes in the optical properties of CeO_2nanocrystals induced by lanthanide ions doping[J],Inorg.Chem.2007,46,5237-5242.
    [38]S.C.Kuiry,S.D.Patil,S.Deshpande,S.Seal,Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation[J],J.Phys.Chem.B 2005,15,6936-6939.
    [39]H.J.Fan,U.G(o|¨)sele,M.Zacharias,Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes:A review[J],Small 2007,3,1660-1671.
    [40]H.X.Mai,L.D.Sun,Y.W.Zhang,R.Si,W.Feng,H.P.Zhang,H.C.Liu,C.H.Yan,Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra,nanorods, and nanocubes [J], J. Phys. Chem. B 2005, 109, 24380-24385.
    
    [41] L. Li, Y. Chu, Y. Liu, L. Dong, Template-free synthesis and photocatalytic properties of novel Fe_2O_3 hollow spheres [J], J. Phys. Chem. C 2007, 111, 2123-2127.
    
    [42] Y. Xiong, Z. Li, X. Li, B. Hu, Y. Xie, Thermally stable hematite hollow nanowires [J], Inorg. Chem. 2004, 43, 6540-6542.
    [1]李建宇,稀土发光材料及其应用[M],化学工业出版社2003.
    [2]刘光华,稀土材料与应用技术[M],化学工业出版社2005.
    [3](a) O.K.Moune,M.D.Faucher,N.Edelstein,Optical spectrum,crystal field analysis of Pr~(3+) in YPO_4[J],J.Alloy.Comp.2001,323-324,783-787;
    (b) J.M.Nedelec,C.Mansuy,R.Mahiou,Sol-gel derived YPO_4 and LuPO_4 phosphors,a spectroscopic study[J],J.Mol.Struct.2003,651,165-170.
    [4](a)X.Duan,Y.Huang,Y.Cui,J.Wang,C.M.Lieber,Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J],Nature 2001,409,66-69;
    (b) H.Kind,H.Yan,B.Messer,M.Law,P.Yang,Nanowire ultraviolet photodetectors and optical Switches[J],Adv.Mater.2002,14,158-160.
    [5]T.J(u|¨)stel,H.Nikol,C.Ronda,New developments in the field of luminescent materials for lighting and displays[J],Angew.Chem.Int.Ed.1998,37,3084-3103.
    [6]E.Ordonez-Regil,R.Drot,E.Simoni,J.J.Ehrhardt,Sorption of Uranium(Ⅵ) onto lanthanum phosphate surfaces[J],Langmuir 2002,18,7977-7984.
    [7]H.Song,L.Yu,S.Lu,T.Wang,Z.Liu,L.Yang,Remarkable differences in photolum inescent properties between LaPO_4:Eu one-dimensional nanowires and zero-dimensional nanoparticles[J],Appl.Phys.Lett.2004,85,470-472.
    [8]K.Riwotzki,H.Meyssamy,A.Komowski,M.Haase,Liquid-Phase synthesis of doped nanoparticles:colloids of luminescing LaPO_4:Eu and CePO_4:Tb Particles with a narrow particle size distribution[J],J.Phys.Chem.B 2000,104,2824-2828.
    [9]W.Schaik,S.Lizzo,W.Smit,G.Blasse,Influence of impurities on the luminescence quantum efficiency of(La,Ce,Tb)PO_4[J],J.Electrochem.Soc.1993,140,216-221.
    [10]M.Yu,J.Lin,J.Fu,Y.C.Han,Sol-gel fabrication,patterning and photolurninescent properties of LaPO_4:Ce~(3+),Tb~(3+) nanocrystalline thin films[J],Chem.Phys.Lett.2003,371,178-183.
    [11]K.Kompe,H.Borvhert,J.Storz,A.Lobo,S.Adam,T.Moller,M.Haase,Green-emitting CePO_4:Tb/LaPO_4 core-shell nanoparticles with 70%photoluminescence quantum yield[J],Angew.Chem.Int.Ed.2003,42,5513-5516.
    [12]W.Bu,Z.Hua,H.Chen,J.Shi,Epitaxial synthesis of uniform cerium phosphate one-dimensional nanocable heterostructures with improved luminescence[J],J.Phys.Chem.B 2005,109,14461-14464.
    [13]M.Cao,C.Hu,Q.Wu,C.Guo,Y.Qi,E.Wang,Controlled synthesis of LaPO_4 and CePO_4 nanorods/nanowires[J],Nanotechnology 2005,16,282-286.
    [14]M.Guan,J.Sun,M.Han,X.Zheng,F.Tao,G.Yin,X.Wei,J.Zhu,X.Jiang,Synthesis and luminescence of CePO_4 and CePO_4:Tb hollow and core-shell microspheres composed of single-crystal nanorods[J],Nanotechnology 2007,18,415602.
    [15]Q.Li,V.W-W Yam,Redox luminescence switch based on energy transfer in CePO_4:Tb~(3+) nanowires[J],Angew.Chem.Int.Ed.2007,46,3486-3489.
    [16]W.Bu,H.Chen,Z.Hua,Z.Liu,W.Huang,L.Zhang,J.Shi,Surfactant-assisted synthesis of Tb(Ⅲ)-doped cerium phosphate single-crystalline nanorods with enhanced green emission[J],Appl.Phys.Lett.2004,85,4307-4309.
    [17]L.Zhu,X.Liu,X.Liu,Q.Li,J.Li,S.Zhang,J.Meng,X.Cao,Facile sonochemical synthesis of CePO_4:Tb/LaPO_4 core/shell nanorods with highly improved photoluminescent properties[J],Nanotechnology 2006,17,4217-4222.
    [18]L.Karpowich,S.Wilcke,R.Yu,G.Harley,J.A.Reimer,L.C.De Jonghe,Synthesis and characterization of mixed-morphology CePO_4 nanoparticles[J],J.Solid State Chem.2007,180,840-846.
    [19]Y.Zhang,H.Guan,Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO_4 single-crystal nanowires[J],J.Cryst.Growth 2003,256,156-161.
    [20]W.Zhou,Z.Han,J.Wang,Y.Zhang,Z.Jin,X.Sun,Y.Zhang,C.Yan,Y.Li,Copper catalyzing growth of single-walled caroon nanotubes on substrates[J],Nano Lett.2006,6,2987-2990.
    [21]C.Yan,D.Xue,Formation of Nb_2O_5 nanotube arrays through phase transformation[J],Adv.Mater.2008,20,1055-1058.
    [22]X.Wu,Z.Xu,X.C.Zeng,Single-walled MoTe_2 nanotubes[J],Nano Lett.2007,7,2987-2992.
    [23]Y.Liu,K.J.Gilmore,J.Chen,V.Misoska,G.G.Wallace,Bio-nanowebs based on poly(styrene-a-isobutylene-a-styrene)(SIBS) containing single-wall carbon nanotubes[J],Chem.Mater.2007,19,2721-2723.
    [24]K.Takashi,S.Susumu,Electronic structure of boron-doped carbon nanotubes[J],Phys.Rew.B 2008,77,165417(5 pages).
    [25]U.K.Gautam,Y.Bando,J.Zhan,P.M.F.J.Costa,X.Fang,D.Golberg,Ga-doped ZnS nanowires as precursors for ZnO/ZnGa_2O_4 nanotubes[J],Adv.Mater.2008,20,810-814.
    [26]W.Xu,J.Song,L.Sun,J.Yang,W.Hu,Z.Ji,S.H.Yu,Structural,electrical,and photoconductive properties of individual single-crystalline tellurium nanotubes synthesized by a chemical route: Doping effects on electrical structure [J], Small 2008,4, 888-893.
    
    [27] B. Cheng, S. Qu, H. Zhou, Z. Wang, Al_2O_3:Cr~(3+) nanotubes synthesized via homogenization precipitation followed by heat treatment [J], J. Phys. Chem. B 2006, 110, 15749-15754.
    
    [28] H. Chen, Y. Chen, Y. Liu, H. Zhang, C. P.Li, Z. Liu, S. P. Ringer, J. S. Williams, Rare-earth doped boron nitride nanotubes [J], Mater. Sci. Eng. B 2008,146,189-192.
    
    [29] F. Li , X. Wang, C. Shao, R. Tan, Y. Liu, W doped vanadium oxide nanotubes: Synthesis and characterization [J], Mater. Lett. 2007, 61, 1328-1332.
    
    [30] Y. Mao, J. Y. Huang, R. Ostroumov, K. L. Wang, J. P. Chang, Synthesis and luminescence properties of erbium-doped Y_2O_3 nanotubes [J], J. Phys. Chem. C 2008, 112,2278-2285.
    
    [31] Z. W. Lin, Q. Kuang, W. Lian, Z. Y. Jiang, Z. X. Xie, R. B. Huang, L. S. Zheng, Preparation and optical properties of ThO_2 and Eu-doped ThO_2 nanotubes by the sol-gel method combined with porous anodic aluminum oxide template [J], J. Phys. Chem. B 2006, 110,23007-23011.
    
    [32] C. C. Chen, Y. C. Liu, C. H.Wu, C. C. Yeh, M. T. Su, Y. C. Wu, Preparation of fluorescent silica nanotubes and their application in gene delivery [J], Adv. Mater. 2005,17, 404-407.
    
    [33] D. Pantarotto, J. P. Briand, M. Prato, A. Bianco, Translocation of bioactive peptides across cell membranes by carbon nanotubes [J], Chem. Commun. 2004,16-17.
    
    [34] X. Bai, H. Song, L. Yu, L. Yang, Z. Liu, G. Pan, S. Lu, X. Ren, Y. Lei, L. Fan, Luminescent properties of pure cubic phase Y_2O_3/Eu~(3+) nanotubes/nanowires prepared by a hydrothermal method [J], J.Phys. Chem. B 2005,109,15236-15242.
    
    [35] G. D. Santis, L. Fabbrizzi, M. Licchelli, N. Sardone, A. H. Velders, Fluorescence redox switching systems operating through metal centres: the Ni~(2+)/N~(3+) Couple [J], Chem. Eur. J. 1996, 2, 1243-1250.
    
    [36] J. Andreasson, G. Kodis, Y. Terazono, P. Liddell, S. Bandyopadhyay, R. Mitchell, T. Moore, A. Moore, D. Gust, Molecule-based photonically switched half-adder [J], J. Am. Chem. Soc. 2004,126, 15926-15927.
    
    [37] P.Yan, M. W. Holman, P. Robustelli, A.Chowdhury, F. I. Ishak, D. M. Adams, Molecular switch based on a biologically important redox reaction [J], J. Phys. Chem. B 2005,109,130-137.
    [38]S.Lee,A.M.Mulller,R.A-Kaysi,C.J.Bardeen,Using perylene-doped polymer nanotubes as fluorescence sensors[J],Nano Lett.2006,6,1420-1424.
    [39]S.Weiss,Fluorescence spectroscopy of single biomolecules[J],Science 1999,283,1676-1683.
    [40]G.Chen,C.Xu,X.Song,W.Zhao,Y.Ding,S.Sun,Interface reaction route to two different kinds of CeO_2 nanotubes[J],Inorg.Chem.2008,47,723-728.
    [41]Y.-P.Fang,A.-W.Xu,R.-Q.Song,H.-X.Zhang,L.-P.You,J.-C.Yu,H.-Q.Liu,Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J],J.Am.Chem.Soc.2003,125,16025-16034.
    [42]H.-I.Chen,H.-Y.Chang,Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents[J],Colloids Surf.,A:Physicochem.Eng.Aspects 2004,242,61-69.
    [43]C.Ho,J.C.Yu,T.Kwong,A.C.Mak,S.Lai,Morphology-controllable synthesis of mesoporous CeO_2 nano- and microstructure[J],Chem.Mater.2005,17,4514-4522.
    [44]L.-S.Zhong,J.-S.Hu,A.-M.Cao,Q.Liu,W.-G.Song,L.-J.Wan,3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J],Chem.Mater.2007,19,1648-1655.
    [45]L.Li,G.Li,Y.Che,W.Su,Valence characteristics and structural stabilities of the electrolyte solid solutions Ce_(1-x)RE_xO_(2-δ)(RE=Eu,Tb) by high temperature and high pressure[J],Chem.Mater.2000,12,2567-2574.
    [1] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, M. Prat, Decorating carbon nanotubes with metal or semiconductor nanoparticles [J], J. Mater. Chem. 2007,17, 2679-2694.
    
    [2] M. A. Correa-Duarte, L. M. Liz-Marzan, Carbon nanotubes as templates for one-dimensional nanoparticle assemblies [J], J. Mater. Chem. 2006, 16, 22-25.
    
    [3] M, Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M. S. Dresselhaus, Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers [J], Nano Lett. 2003, 3, 723-726.
    
    [4] T. M. Day, P. R. Unwin, J. V. Macpherson, Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes [J], Nano Lett. 2007, 7, 51-57.
    
    [5] J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J], J. Am. Chem. Soc. 2001, 123, 6536-6542.
    
    [6] J. Li, S. Tang, L. Lu, H. C. Zeng, Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly [J], J. Am. Chem. Soc. 2007, 129, 9401-9409.
    
    [7] Z. Wang, Q. Zhang, D. Kuehner, X. Xu, A. Ivaska, L. Niu, The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis [J], Carbon 2008, 46, 1687-1692.
    
    [8] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells [J], J. Phys. Chem. B 2005,109,22212-22216.
    
    [9] X. Li, Y. Liu, L. Fu, L. Cao, D. Wei, G. Yu, D. Zhu, Direct route to high-density and uniform assembly of Au nanoparticles on carbon nanotubes [J], Carbon 2006, 44, 3113-3148.
    
    [10] H. C. Choi, M. Shim, S. Bangsaruntip, H. Dai, Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J], J. Am. Chem. Soc. 2002, 124, 9058-9059.
    
    [11] A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes [J], Nano Lett. 2006,6,1080-1082.
    [12] S. Sakthivel, H. KischS. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide [J], Angew. Chem. Int. Ed. 2003, 42,4908-4911.
    
    [13] W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carrier recombination dynamics [J], J. Phys. Chem. 1994, 98, 13669-13679.
    
    [14] I. Paramasivam, J. M. Macak, P. Schmuki, Photocatalytic activity of TiO_2 nanotube layers loaded with Ag and Au nanoparticles [J], Electrochem. Commun. 2008,10, 71-75.
    
    [15] S. H. Chien, Y. C. Liou, M. C. Kuo, Preparation and characterization of nanosized Pt/Au particles on TiO_2-nanotubes [J], Synthetic Met. 2005,152, 333-336.
    
    [16] J. Guzman, S. Carrettin, J. C. Fierro-Gonzalez, Y. Hao, B. C. Gates, A. Corma, CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species [J], Angew. Chem. Int. Ed. 2005, 44,4778-4781.
    
    [17] U. R. Pillai, S. Deevi, Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide [J], Appl. Cata. A-Gen. 2006,299,266-273.
    
    [18] A. Luengnaruemitchai, S. Osuwan, E. Gulari, Comparative studies of low-temperature water-gas shift reaction over Pt/CeO_2, Au/CeO_2 , and Au/Fe_2O_3 catalysts [J], Catal. Commun. 2003,4,215-221.
    
    [19] M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction [J], J. Catal 2001, 197, 113-122.
    
    [20] F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Electron localization determines defect formation on ceria substrates [J], Science 2005, 309, 752-755.
    
    [21] S. Carrettin, P. Concepcion, A. Corma, J. M. L. Nieto, V. F. Puntes, Nanocrystalline CeO_2 increases the activity of Au for CO oxidation by two orders of magnitude [J], Angew. Chem. Int. Ed. 2004,43, 2538-2540.
    
    [22] R. Zanella, S. Giorgio, C. R. Henry, C. Louis, Alternative methods for the preparation of gold nanoparticles supported on TiO_2 [J], J. Phys. Chem. B 2002,106, 7634-7642.
    
    [23] F. Moreau, G. C. Bond, Influence of the surface area of the support on the activity of gold catalysts for CO oxidation [J], Catal. Today 2007,122, 215-221.
    
    [24] A. M. Venezia, G. Pantaleo, A. Longo, G. D. Carlo, M. P. Casaletto, F. L. Liotta, G. Deganello, Relationship between structure and CO oxidation activity of ceria-supported gold catalysts[J],J.Phys.Chem.B 2005,109,2821-2827.
    [25]P.X.Huang,F.Wu,B.L.Zhu,X.P.Gao,H.Y.Zhu,T.Y.Yah,W.P.Huang,S.H.Wu,D.Y.Song,CeO_2 nanorods and gold nanocrystals supported on CeO_2 nanorods as catalyst[J],J.Phys.Chem.B 2005,109,19169-19174.
    [26]L.S.Zhong,J.S.Hu,A.M.Cao,Q.Liu,W.G.Song,L.J.Wan,3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J],Chem.Mater.2007,19,1648-1655.
    [27]S.J.Son,S.B.Lee,Controlled gold nanoparticle diffusion in nanotubes:Platfom of partial functionalization and gold capping[J],J.Am.Chem.Soc.2006,128,15974-15975.
    [28]L.Qu,L.Dai,E.Osawa,Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes[J],J.Am.Chem.Soc.2006,128,5523-5532.
    [30]R.Si,M.F.Stephanopoulos,Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO_2 catalysts for the water-gas shift reaction[J],Angew.Chem.Int.Ed.2008,47,2884-2887.
    [31]N.Minou,S.Olivier,C.Bernard,Surface chemistry of nanometric ceria particles in aqueous dispersions[J],J.Colloid Interface Sci.1993,160,459-471.
    [32]宋晓岚,邱冠周,杨振华,曲鹏,水相介质中纳米CeO_2的分散行为[J],稀有金属2005,29,167.172.
    [33]M.L.Machesky,W.O.Andrade,A.W.Rose,Adsorption of gold(Ⅲ)-chloride and gold(Ⅰ)-thiosulfate anions by goethite[J],Geochim.Cosmochim.Acta 1991,55,769-776.
    [34]H.Cordatos,T.Bunluesin,J.Stubenrauch,J.M.Vohs,R.J.Gorte,Effect of ceria structure on oxygen migration for Rh/ceria catalysts[J],J.Phys.Chem.1996,100,785-789.
    [35]C.Serre,F.Garin,G.Belot,C.Maire,F.Garin,G.Belot,G.Maire,Reactivity of Pt/Al_2O_3 and Pt-CeO_2 catalysts for the oxidation of carbon monoxide by oxygen:Ⅰ.Catalyst characterization by TPR using CO as reducing agent[J],J.Catal.1993,141,1-8.
    [1]S.Kumar,T.Nann,Shape control of Ⅱ-Ⅵ semiconductor nanomaterials[J],Small 2006,2,316-329.
    [2]Y.W.Jun,J.S.Choi,J.Cheon,Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J],Angew.Chem.Int.Ed 2006,45,2-28.
    [3]Z.A.Peng,X.Peng,Mechanisms of the shape evolution of CdSe nanocrystals[J],J.Am.Chem.Soc.2002,123,1389-1395.
    [4]D.V.Talapin,A.L.Rogach,A.Kornowski,M.Haase,H.Weller,Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture[J],Nano Lett.2001,1,207-211.
    [5][美]张金中,王中林,刘俊,陈少伟,刘刚玉,自组装纳米结构[M],化学工业出版社2005.
    [6]C.J.Murphy,N.R.Jana,Controlling the aspect ratio of inorganic nanorods and nanowires[J],Adv.Mater.2002,14,80-82.
    [7]Y.Sun,Y.Xia,Shape-controlled synthesis of gold and silver nanoparticles[J],Science 2002,298,2176-2179.
    [8]H.Shi,L.Qi,J.Ma,H.Cheng,Polymer-directed synthesis of penniform BaWO_4nanostructures in reverse micelles[J],J.Am.Chem.Soc.2003,125,3450-3451.
    [9]N.N.Zhao,L.Qi,Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants[J],Adv.Mater.2006,18,359-362.
    [10]H.Shi,L.Qi,J.Ma,H.Cheng,Polymer-directed synthesis of penniform BaWO_4nanostructures in reverse micelles[J],J.Am.Chem.Soc.2003,125,3450-3451.
    [11]L.Fan,R.Guo,Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J],Cryst.Growth & Design 2008,8,2150-2156.
    [12]J.Zhang,Y.F.Song,L.Cronin,T.Liu,Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups[J],J.Am.Chem.Soc.2008,130,14408-14409.
    [13]C.Y.Chang-Chien,C.H.Hsu,T.Y.Lee,C.W.Liu,S.H.Wu,H.P.Lin,C.Y.Tang,C.Y.Lin,Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend[J],Eur.J.lnorg.Chem.2007,3798-3804.
    [14]X.M.Sun,J.Liu,Y.Li,Use of carbonaceous polysacchafide microspheres as templates for fabricating metal oxide hollow spheres[J],Chem.Eur J.2006,12,2039-2047.
    [15]H.I.Chen,H.Y.Chang,Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents[J],Colloids Surf.,A 2004,242,61-69.
    [16]S.Chen,S.H.Yu,B.Yu,L.Ren,W.Yao,H.Colfen,Solvent effect on mineral modification:Selective synthesis of cerium compounds by a facile solution route[J],Chem.Eur.J.2004,10,3050-3058.
    [17]F.Yan,X.Wu,D.Wu,乙醇/水混合溶剂沉淀制备纳米BaF_2及粒径控制[J],无机化学学报 2007,23,1174-1178.
    [18]R.Si,Y.W.Zhang,L.P.You,C.H.Yan,Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone)[J],J.Phys.Chem.B 2006,110,5994-6000.
    [19]F.Zhou,X.Zhao,H.Xu,C.Yuan,CeO_2 spherical crystallites:synthesis,formation mechanism,size control,and electrochemical property study[J],J.Phys.Chem.C 2007,111,1651-1657.
    [20]X.Sun,X.Qiu,L.Li,G.Li,ZnO twin-cones:Synthesis,photoluminescence,and catalytic decomposition of ammonium perchlorate[J],Inorg.Chem.2008,47,4146-4152.
    [21]Z.L.Wang,Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J],J.Phys.Chem.B 2000,104,1153-1175.
    [22]Y.Li,H.Liao,Y.Ding,Y.Fan,Y.Zhang,Y.Qian,Solvothermal elemental direct reaction to CdE(E=S,Se,Te) semiconductor nanorod[J],Inorg.Chem.1999,38,1382-1387.
    [23]Y.Jiang,Y.Wu,X.Mo,W.Yu,Y.Xie,Y.Qian,Elemental solvothermal reaction to produce ternary semiconductor CuInE_2(E=S,Se) nanorods[J],Inorg.Chem.2000,39,2964-2965.
    [24]Y.Xiong,Y.Xie,S.Chen,Z.Li,Fabrication of self-supported patterns of aligned β-FeOOH nanowires by a low-temperature solution reaction[J],Chem.Eur.J.2003,9,4991-4996.
    [25]J.W.Gong,S.H.Yu,H.S.Qian,L.B.Luo,X.M.Liu,Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes[J],Chem.Mater.2006,18,2012-2015.
    [26]Z.A.Zang,H.B.Yao,Y.X.Zhou,W.T.Yao,S.H.Yu,Synthesis and magnetic properties of new[Fe_(18)S_(25)](TETAH)_(14)(TETAH=Protonated triethylenetetramine)nanoribbons:An efficient precursor to Fe_7S_8 nanowires and porous Fe_2O_3 nanorods[J],Chem.Mater.2008,20,4749-4755.
    [27]W.T.Yao,S.H.Yu,X.Y.Huang,J,Jiang,L.Q.Zhao,L.Pan,J.Li,Nanocrystals of an inorganic-organic hybrid semiconductor:Formation of uniform nanobelts of [ZnSe](Diethylenetriamine)_(0.5) in a ternary solution[J],Adv.Mater.2005,17,2799-2802.
    [28]Q.Han,J.Chen,X.Yang,L.Lu,X.Wang,Preparation of uniform Bi_2S_3 nanorods using xanthate complexes of bismuth(Ⅲ)[J],J.Phys.Chem.C 2007,111,14072-14077.
    [29]K.An,N.Lee,J.Park,S.C.Kim,Y.Hwang,J.G.Park,J.Y.Kim,Synthesis,characterization,and self-assembly of pencil-shaped CoO nanorods[J],J.Am.Chem.Soc.2006,128,9753-9760.
    [30]J.Park,B.Koo,K.Y.Yoon,Y.Hwang,M.Kang,J.G.Park,T.Hyeon,Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump[J],J.Am.Chem.Soc.2005,127,8433-8440.
    [31]黄春辉,稀土配位化学[M],科学出版社 1997.
    [32]F.Luo,C.J.Jia,W.Song,L.P.You,C.H.Yan,Chelating ligand-mediated crystal growth of cerium orthovanadate[J],Cryst.Growth & Design 2005,5,137-142.
    [33]F.Tao,Z.Wang,L.Yao,W.Cai,X.Li,Shape-controlled synthesis and characterization of YF_3 truncated octahedral nanocrystals[J],Cryst.Growth & Design 2007,7,854-858.
    [34]F.Tao,Z.Wang,L.Yao,W.Cai,X.Li,Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF_3 submicrocrystals or nanocrystals[J],J.Phys.Chem.C 2007,111,3241-3245.
    [35]R.E.Sievers,J.C.Bailar Jr,Some metal chelates of ethylenediaminetetraacetic acid,diethylenetriaminepentaacetic acid,and triethylenetetraminehexaacetic acid[J],Inorg.Chem.1962,1,174-182.
    [36]M.S.C.Flett,The characteristic infra-red frequencies of the carboxylic acid group[J],J.Chem.Soe.1951,962-967.
    [37]M.Uchida,A.Sue,T.oshioka,A.Okuwaki,Hydrothermal synthesis of needle-like barium sulfate using a barium(Ⅱ)-EDTA chelate precursor and sulfate ions[J],J.Mater.Sci.Lett.2000,19,1373-1374.
    [38] Y. Fujishiro, H. Ito, T. Sato, A. Okuwaki, Synthesis of monodispersed LaPO_4 particles using the hydrothermal reaction of an La(edta)-chelate precursor and phosphate ions [J], J. Alloys Compd. 1997, 252, 103-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700