喷丸与沉积稀土氧化物涂层对Fe-Cr耐热钢高温氧化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
影响传统火力发电厂效率的主要因素是蒸气的温度和压力,自从二十世纪70年代的能源危机以来,全世界都在设法提高发电机组的温度和压力。近年来减少CO2排放的要求更加鼓励人们提高发电厂的效率。目前,大型发电机组的蒸气温度已经达到600℃左右。提高蒸气温度和压力的前提是研制出能承受更高温度和压力的耐热合金,而锅炉传热管在高温蒸气中的氧化性能则是耐热合金在高温使用的一个瓶颈。
     锅炉传热管内的介质为高温蒸气,管子的内壁不可避免地与蒸气发生氧化反应。当温度提高时,在一定的时间内生成的氧化膜更厚,增厚的氧化膜带来三个主要问题:(1)管子金属的厚度因氧化腐蚀迅速减薄,引起应力增大并导致蠕变破裂;(2)氧化膜的导热性比金属差,使蒸气对管子的冷却作用变差,引起管子金属的温度升高,反过来又会加速管子的氧化和蠕变破坏;(3)当氧化膜生长至一定厚度时,在机组停运时会发生剥落,剥落的部分氧化膜会聚集在锅炉管的下部,在机组重新启动后,因为剥落的氧化膜造成管子堵塞或使管子内介质流量减少,引起过热爆管事故。因氧化膜剥落、堵塞造成的过热爆管是引起锅炉管失效的第二大主要原因。
     本文研究的目的是通过沉积稀土氧化物涂层和喷丸处理工艺,降低Fe-Cr耐热钢在水蒸气中氧化膜的生长速率,防止或减少氧化膜的剥落,减少或避免由此引起的过热爆管事故。
     本文将电泳沉积稀土氧化物涂层(CeO2)应用于纯铁及T9、TP304H和HR3C等Fe-Cr系耐热钢,将喷丸处理工艺应用于TP304H和HR3C,在高温水蒸气中进行等温氧化试验,进行了氧化动力学测试,使用XRD, SEM和EDS等手段对氧化膜进行了物相结构分析和形貌、成分分析。
     试验结果表明,稀土氧化物(CeO2)涂层在一定的试验条件下可提高各种材料在水蒸气中的抗氧化性能,但对铬含量较高的HR3C效果最为显著;对TP304H和HR3C钢,沉积复合氧化物(CeO2+Cr2O3)涂层提高抗氧化性能的效果优于单纯Ce02涂层。
     喷丸处理可显著提高TP304H和HR3C的抗氧化性能,在650℃水蒸气中的氧化试验表明,喷丸处理的TP304H钢抗氧化性能优于HR3C,甚至优于经过喷丸处理的HR3C,180h氧化后,喷丸处理的TP304H试样的单位面积氧化增重是未处理试样的单位面积氧化增重的3.7%。在喷丸的基础上沉积稀土氧化物涂层能进一步提高TP304H和HR3C钢的抗氧化性能。
     使用自制的小径管内壁喷丸设备,对TP304H再热器管进行了内壁喷丸处理,在620-630℃服役7474h后,喷丸处理的管子内壁氧化膜的厚度只有未喷丸管氧化膜厚度的3%,且无剥落现象,喷丸处理提高抗氧化性能的效果显著。
     沉积稀土氧化物CeO2涂层对纯铁、T91钢和TP304H钢的初始氧化阶段产生明显影响,它在金属表面造成低的氧分压,促进形成富铬的氧化物、抑制铁氧化物的生成;而对稳态氧化阶段的阴阳离子扩散无明显影响,因而对氧化速度无显著影响。富铈带位于氧化膜的内部。对T91氧化行为的研究使用了金标记法,以确定扩散传质方向。对T91氧化膜的分析表明,沉积CeO2涂层并氧化后,富铈带位于外层柱状晶和内层等轴晶之间,在富铈带内侧产生新的氧化物形核点,生成等轴状的Fe3O4层,富铈带之外的柱状晶的氧化物颗粒被细化,;对TP304H氧化膜的分析表明,由于沉积CeO2涂层,氧化膜的粘附性提高,富铈带位于内、外氧化层之间,富铈带中含铈的物相为CeO2和FeCeO3。
     沉积CeO2涂层对提高HR3C的抗氧化性能效果显著。氧化膜内的扩散传质由铁离子向外扩散形成外层氧化物和氧离子向内扩散形成内层氧化物,转变为以氧离子向内扩散为主。
     喷丸造成的表面冷加工高能量区域及滑移带、位错和细小晶粒,提供了更多铬的快速扩散通道,提高了铬的扩散通量,促进形成均匀致密的富铬氧化膜,Fe3O4外层消失。由于TP304H属于亚稳态奥氏体钢,喷丸在TP304H表面诱发了马氏体相变。对喷丸的TP304H试样进行了高温X射线衍射,结果表明马氏体在氧化试验温度仍存在。喷丸产生的马氏体可能是TP304H钢能获得比HR3C更好的抗氧化性能的主要原因。
The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Researches have been pursuing to increase both the temperature and pressure worldwide since the energy crisis in the 1970s. The need to reduce CO2 emission recently also becomes an incentive to improve the efficiency. Steam temperatures of the fossil power units with higher efficiency are now around 600℃. These lead to the consideration of materials capable of operating under higher stresses at ever increasing temperatures. One of the key factors to limite the materials using is their susceptibility to steam oxidation.
     It is inevitable that the metal is oxidized when it contacts with high temperature water vapor or steam. The higher the temperatue, the more quickly the scale grows. It results in three potential problems. Firstly, the thickness of the tube wall is decreased quickly and then the stress is increased and creep ruptures will happen. Secondly, the increased insulation of the tube material from the cooling fluid by the low thermal conductivity of the oxide scale leads to an increase in metal temperature, thus, oxidation and creep may be accelerated. The third concern is that the thicker oxide scale may spall more easily when the boiler is cooled down. On restart, the spalled oxide scale may lodge somewhere in the system with the potential for causing tube blockages. It is notable that long-term overheating failures due to flow restriction from exfoliated oxide scale is the second most important cause of boiler tube failures, thus increased attention must be paid to the oxide scale growth and exfoliation.
     Electrophoresis deposition of CeO2 coating and shot peening treatment were used for Fe-Cr alloy in this thesis. The purpose was to reduce the oxidation rate and to avoid or soothe the overheating failures due to oxide exfoliation.
     Electrophoresis deposited CeO2 coating was used for pure iron and Fe-Cr alloys such as T91, TP304H and HR3C. Shot peening treatment was used for TP304H and HR3C. The oxidation kinetics was studied under isothermal condition in water vapor. The oxide scales were then studied with XRD, SEM and EDS.
     The results show that the oxidation resistance of pure iron, T91, TP304H and HR3C was improved by CeO2 coating. The effect of CeO2 coating on the oxidation resistance of HR3C is the most remarkable. The oxidation resistance of TP304H with composite coating (CeO2+Cr2O3) is better than that with CeO2 coating only.
     Shot peening can significantly improve the oxidation resistance of TP304H and HR3C. The oxidation resistance of TP304H with shot peening is better than HR3C, and it is even better than HR3C with shot peening. The mass gain of shot peened TP304H is only 3.7% that of un-peened TP304H. The combined treatment of shot peening and CeO2 coating is superior to shot peening only.
     The inner surface of TP304H reheater tubes were shot peened with self-designed shot peening apparatus for small diameter tubes. The oxide scale thickness at the inner surface of shot peened reheater tube was only 3% of the untreated one after service for 7474h at 620-630℃, and no exfoliation occurred on tubes with shot peening. The effect of shot peening on the oxidation resistance was remarkable.
     CeO2 coating obviousely affects the oxidation behavior of pure iron, T91 and TP304H at the initial transient oxidation stage. The coating can introduce lower oxygen partial pressure, promote the formation of Cr rich oxides, and inhibit iron oxides; The Ce rich oxide band is located inside the scale after oxidation, it has no obvious effect on the diffusion process of anion and cations, so its effect on oxidation rate is unsignificant at the steady oxidation stage. Gold marker was used to define the mass transport direction in the study of T91. Analysis of the scale on T91 steel shows that Ce rich oxide band is located at the interface of the inner equiaxed layer and the outer columnar layer after oxidation, and this Ce rich band is not consistent with the original surface. A new oxide nucleating and growing site (reaction front) was induced at the inner surface of the Ce rich band. Analysis of the scale on TP304H steel shows that the adherence of the scale is improved by CeO2 coating. Ce rich oxide band is located between the inner and outer layers. CeFeO3 and CeO2 are characterized in the Ce rich band.
     The electrodeposited CeO2 coating can improve the oxidation resistance of HR3C greatly in water vapor. The diffusion process was changed from inward oxygen diffusion and outward iron diffusion to predominantly inward oxygen diffusion. Shot peening introduces cold worked, high energy region at the surface, Cr diffusion is accelerated along the slip bands, dislocations and copious amounts of grain boundaries at elevated temperatures, and Cr rich oxides form at the early stage of oxidation, which acts as a strong barrier against further oxidation. The formation of Fe3O4 layer is inhibited. TP304H is a kind of metastable austenitic stainless steel. Shot peening can induce martensite at the surface. The shot peening induced martensite still exists at the testing temperature. The existence of shot peening induced martensite at the surface may play an important role in Cr diffusion and affect the oxidation behavior of TP304H steel significantly.
引文
[1]李辛庚,齐慧滨,王学刚,等.火电厂锅炉再热器管高温腐蚀研究[J].材料保护,2003,36(6):9-11
    [2]I. G. Wright, M. Schuze, S. R. Pateraon, P. F. Tortorelli, R. B. Dooley. Progress in prediction and control of scales exfoliation on superheater and reheater alloys[A]. Forth International Conference on Boiler Tube and HRSG Tube Failures and Inspections[C], San Diego, CA:EPRI,2004,9-18
    [3]郑世津.锅炉蒸气侧氧化层剥落的治理[J].华东电力,2003,(12):66-68
    [4]L. Tan, X. Ren, K. Sridharan, T. R. Allen. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation[J], Corrosion Science,2008(50):2040-2046
    [5]杨冬,陈听宽,李会雄.锅炉过热器与再热器流量分配的线性数学模型及壁温计算方法[J].中国电机工程学报,2001,21(5):38—42
    [6]李耀君,柯于进,王红雨.不锈钢过热器管氧化皮脱落爆管分析[J].2005,38(6):46-49
    [7]M. J. Bennet, D. P. Moon. The role of active elements in the oxidation behaviour of high temperature metals and alloys, in E. Lang, ed. Proceedings of the European Colloquium, Elsevier, Amsterdam,1989
    [8]D. P. Whittle, J. Stringer. Improvements in high temperature oxidation resistance by addition of reactive elements or oxide dispersion[J]. Philosophical Transactions of the Royal Society of London,1980, A295:309-315
    [9]C. Wagner. Formation of composite scales consisting of oxidation of different metals[J]. Journal of the Electrochemical Society,1956, (11):627-633
    [10]李铁藩.金属的高温氧化和热腐蚀[M].北京:化学工业出版社,2003
    [11]N. Birks, G. H. Meier, F. S. Pittit. Introduction to high temperature oxidation of metals (2nd Edition)[M]. Cambridge University Press,2006
    [12]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995
    [13]李辛庚,齐慧滨,王学刚,何家文.火电厂锅炉0Cr19Ni9再热器管高温腐蚀研究[J].材料保护,2003,36(6):9-12.
    [14]A. S. Khanna. Introduction to High Temperature Oxidation and Corrosion[M]. ASM International,2002
    [15]I. G. Wright. Metals Handbook[M], Vol.13, Corrosion. ASM International, Metals Park, OH,1987:97
    [16]R. Peraldi, B. A. Pint. Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor[J]. Oxidation of Metals, 2004,61(5/6):463-483
    [17]I. E. Klwim, J. Sharon. The oxidation mechanism of Fe-Ni-Co alloys[J]. Oxidation of Metals,1981,16(1/2):99-107
    [18]S. Jiarian, L.Longjian. High-temperature oxidation of Fe-Cr alloys in wet oxygen[J]. Oxidation of Metals,1997,48(3):107-116
    [19]D. L. Douglass, P. Kofstad, A. Rahmel, G. C. Wood. International workshop on high-temperature corrosion[J]. Oxidation of Metals,1996, (45):529-620
    [20]沈嘉年,周龙江,李铁藩.水蒸气加速Fe-Cr合金高温氧化的作用[J].材料研究学报,1998,12(2):128-132
    [21]P. Kofstad. High Temperature Corrosion[M]. London:Elsevier Applied Science, 1998
    [22]H. Asteman, J. E. Svensson, L.-G. Johansson, M. Norell. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873K in the presence of 10% water vapor[J]. Oxidation of Metals,1999,52(1/2):95-111
    [23]M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, L.-G. Johansson. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600℃[J]. Corrosion Science, 2006, (48):2014-2035
    [24]Akira Yamamuchi, Kazuya Kurokawa. Growth behavior and structures of scale in oxidation of ferritic stainless steel at 1473K in H2O-containing atmospheres[A]. Toshio Narita, Toshio Maruyama. Proceedings of the International Symposium on High Temperature Corrosion and Protection 2000[C], Hokkaido, Japan:Materials at High Temperature,2000,179-184
    [25]Dionisio Laverde, Tomas Gomez-Acebo, Francisco Castro. Continuous and cyclic oxidation of T91 ferritic steel under steam[J]. Corrosion Science,2004, (46): 613-631
    [26]Shigenari Hayashi, Toshio Narita. Effect of water vapor on the High-temperature oxidation behavior of Fe-5A1 alloy at 1073K[A]. Toshio Narita, Toshio Maruyama. Proceedings of the International Symposium on High Temperature Corrosion and Protection 2000[C], Hokkaido, Japan:Materials at High Temperature,2000,79-86
    [27]P. J. Annis, W. J. Quadakkers. Mechanisms of steam oxidation in high strength martensitic steels[J]. International Journal of Pressure Vessels and Piping,2007, 84(1-2):75-81
    [28]C. S. Giggins, F. S. Pettit. The effect of alloy grain size and surface deformation on the selective oxidation of chromium in Ni-Cr alloys at temperature of 900℃ and 1100℃[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1969,245:2509-2514
    [29]Minami Yusuke, Tooyama Akira, Seki Mikihito, Nonaka Kazuo, Koga Kunitoshi. Stam-oxidation resistance of shot blasted stainless steel tubing after 10-year service [J]. NKK Technical Review,1996,75:1-10
    [30]Hiroyuki Kawaura, Hiroshi Kawahara Kazuaki Nishino, Takashi Saito. New surface treatment using shot blast for improving oxidation resistance of TiAl-base alloys[J]. Matereals Science and Engineering,2002, A(329-331):589-595
    [31]李铁藩.金属晶界在高温氧化中的作用[J].中国腐蚀与防护学报,2002,22(3):180-183
    [32]Mitsutoshi Ueda, Makoto Nanko. Microstructure development of scales formed in the early stage of steam oxidation of Fe-Cr ferritic alloys at elevated temperature [A]. Toshio, Narita. Proceedings of the International Symposium on High Temperature Corrosion and Protection 2000[C]. Hokkaido, Japan,2000,73-77
    [33]徐庭栋,李庆芬,杨尚林.低作用应力引起的溶质在晶界非平衡偏聚或贫化[J].钢铁研究学报,2001,13(4):28-33
    [34]李辛庚,何家文.喷丸处理提高TP304H耐热钢锅炉管抗水蒸气氧化性能应用效果的观察[J].中国腐蚀与防护学报,2003,23(3):171-174
    [35]Li Xingeng, He Jiawen. Effect of shot blasting on oxidation behavior of TP304H steel at 610-770℃ in water vapor[J]. Materials Letters,2006,60:339-344
    [36]李辛庚,傅敏,何家文.喷丸对TP304钢高温水蒸气氧化行为的作用[J].材料科学与工艺,2004,12(3):253-257
    [37]R. Naraparaju, V. B. Trindade, H.-J. Christ, U. Krupp. Effect of shot peening on high temperature oxidation behaviour of boiler steel:experimental results and simulation[J]. Corrosion Engineering, Science and Technology,2009,44(3):211-217
    [38]X. Ren, K. Sridharan, T.R. Allen. Effect of shot peening on the oxidation of ferritic-martensitic steels in supercritical water[R]. NACE Corrosion 2008, March 16-20,2008, New Orleans LA. Paper No.08425
    [39]F. Czerwinski, J. A. Szpunar. Optimizing properties of CeO2 sol-gel coatings for protection of metallic substrates against high temperature oxidation[J]. Thin Solid Film,1996,289:213-219
    [40]齐慧滨,D. G. Lees,何业东.表面施加稀土氧化物涂层对Fe25Cr5Al合金高温氧化行为的影响[J].中国有色金属学报,1998,8(suppl.1):18-24
    [41]齐慧滨,D. G. Lees,何业东.表面施加含稀土氧化物涂层对Fe25Cr高温氧化的“活性元素效应”[J].腐蚀科学与防护技术,1999,11(4):193-201
    [42]王永刚,何业东,朱日彰.电沉积-热解Y203涂层提高Fe3Al高温氧化膜的保护性[J].中国稀土学报,1998,16(3):226-229
    [43]F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, S. Perrier. Yttrium sol-gel coating effects on the cyclic oxidation behavior of 304 stainless steel[J]. Corrosion Science,2003,45:2867-2880
    [44]F. Riffard, H. Buscail, E.Caudron, R.Cueff, C.Issartel, S. Perrier. The influence of implanted yttrium on the cyclic oxidation behavior of 304 stainless steel[J]. Applied Surface Science,2006,252:3697-3706
    [45]S. Chevalier, G. Bonnet, P. Dufour, J. P. Larpin. The REE:a way to improve the high-temperature behavior of stainless steels[J]. Surface Coatings Technoloty,1998, (100-101):208-213
    [46]P. Y. Hou, J.Stringer. Effect of surface applied reactive element oxide on the binary alloys containing Cr[J]. Journal of the Electrochemical Society,1987,134(7): 1836-1849
    [47]何业东,F. H. Scott氧化物涂层促使镍铬合金高温选择氧化的研究[J].中国有色金属学报,1995,5(3):48-53
    [48]R. Cueff, H. Buscail, E. Caudro, F.Riffard, C. Issartel, S. El Messki. Effect of reactive element oxide coating on the high temperature oxidation behavior of FeCrAl alloys[J]. Applied Surface Science,2004,229:233-241
    [49]S. Chevalier, C. Nivot, J. P. Larpin. Influence of reactive element oxide coatings on the high temperature oxidation behavior of alumina-forming alloys[J]. Oxidation of Metals,2004,61:195-216
    [50]J. Stringer, B. A. Wilcox, R. I. Jaffee. The high temperature oxidation of nickel -20wt% chromium alloys containing dispersed oxide phase[J]. Oxidation of Metals, 1972,5(1):11-47
    [51]B. G. Mendis, K. J. T. Livi, K. J. Hemker. Observations of reactive element gettering of sulfur in thermally grown oxide pegs[J]. Scripta Materialia,2006,55: 589-592
    [52]梁戈,李辛庚.电沉积Ce02涂层对TP304H钢高温水蒸气氧化机制的影响[J].材料热处理学报,2006,27(4):114-118
    [53]Li Xingeng, Wang Xuegang, He Jiawen. Effects of CeO2 coating on oxidation behavior of TP304H sSteel in high-temperature water vapor[J]. Electricity,2005,1: 17-20
    [54]Wang Lei, Ma Jianxin, Lu Xiaofeng, Zong Fang. Catalytic reduction of SO2 and NO over rare earth oxides[J]. Chinese Journal of Catalysis,2000,21(6):542-546
    [55]Adele Qi Wang, Teresa Diane Golden. Anodic electrodeposition of Cerium oxide thin Films:Formation of crystalline thin films[J]. Journal of the Electrochemical Society,2003,150(9):C616-C620
    [56]S. M. C. Fernandes, L. V. Ramanathan. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys[J]. Materials Research,2004, 7(1):135-139
    [57]S. Chevalier, C. Valot, G. Bonnet, J. C. Colson, J. P. Larpin. The reactive element effect on thermally grown chromia scale residual stress[J]. Materials Science & Engineering,2003, A343:257-264
    [58]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001
    [59]P. J. Ennis, W. J. Quadakkers. Mechanisms of steam oxidation in high strength martensitic steels[J]. International Journal of Pressure Vessels and Piping,2007, 84(1/2):75-81
    [60]R. Viswanathan, J. Sarver, J.M. Tanzosh. Boiler materials for ultra- supercritical coal power plants-Steamside oxidation[J]. Journal of Materials Engineering and Performance,2006,15(3):255-274
    [61]S. Haga, Y. Harada, H. Tsubakino. Fatigue life prolongation of carburized steel by means of shot-peening[J], Materials Science Forum,2006, (505-507):775-780
    [62]Do Haeng Hur, Myung Sik Choi, Deok Hyun Lee, et al. Effect of shot peening on primary water stress corrosion cracking of Alloy 600 steam generator tubes in an operating PWR plant[J]. Nuclear Engineering and Design,2004,227(2):155-160
    [63]陈志新,金仁甫.喷丸工艺的现状及其发展[J].凿岩机械气动工具,1997,(2):57-59
    [64]吴寿喜,王德志,卢军,阎作修,李永冬.中国抛喷丸技术与装备现状分析[J].中国铸造装备与技术,2009,(6):6-10
    [65]傅敏,岳增武,王学刚,闫凤洁,李辛庚.小径管内壁喷丸系统[P]中国:CN201574176U.2010.9.8
    [66]Lu Xinying, Zhu Rizhang, He Yedong. Electrodeposited thin oxide films [J]. Surface and Coatings Technology,1996,79:19-24
    [67]I. G. Wright, B. A. Pint. An assessment of the high temperature oxidation behavior of Fe-Cr steels in water vapor and steam[R], NACE Corrosion 2002, April 7-11,2002, Denver, Co. Paper No.02377
    [68]J. Zurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheise, W. J. Quadakkers. The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr-ferritic steel in Ar-H2O mixtures[J]. Oxidation of Metals,2005, 63(5/6):401-422
    [69]Pantip Ampornrat, Gary S. Was. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water[J]. Journal of Nuclear Materials,2007,371: 1-17
    [70]P. Y. Hou, J. Stringer. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales[J]. Materials Science and Engineering A,1995,202(1-2):1-10
    [71]S. Chevalier, J. P. Larpin. Formation of perovskite type phases during the high temperature oxidation of stainless steels coated with reactive element oxides[J]. Acta Materialia,2002,50(12):3107-3116
    [72]S. Chevalier, J. P. Larpin. Influence of reactive element oxide coatings on the high temperature cyclic oxidation of chromia-forming steels[J]. Materials Science and Engineering A,2003,363:116-125
    [73]I. G. Wright, P. F. Tortorelli. Program on technology innovation:Oxide growth and exfoliation on alloys exposed to Steam[R]. EPRI, Palo Alto, CA:2007. No. 1013666, chapter 2
    [74]J. Stringer, The reactive element effect in high-temperature corrosion[J]. Materials Science and Engineering A.1989, A120:129-137
    [75]P. Y. Hou, J. Stringer. The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25wt%Cr[J]. Oxidation of Metals,1988,29(1-2):45-73
    [76]E. A. Polman, T. Fransen, P. J. Gellings. High-temperature corrosion and mechanical properties of protective scales on Incoloy 800H:The influence of preoxidation and ion implantation[J]. Oxidation of Metals,1990,33(1-2):135-155
    [77]M. Richen, J. Nolting, I. Riess. Specific heat and phase diagram of nonstoichiometric ceria (CeO2-x) [J]. Journal of Solid State Chemistry,1984,54: 89-99.
    [78]I. Riess, M. Richen, J. Nolting. On the specific heat of nonstoichiometric ceria [J]. 1985,57:314-322.
    [79]T. Sundararajan, S. Kuroda, J. Kawakita, S. Seal. High temperature corrosion of nanoceria coated 9Cr-1Mo ferritic steel in air and steam[J]. Surface & Coatings Technology,2006, (201):2124-2130
    [80]Vicente Braz Trindade, Rodrigo Borin, Behzad Zandi Hanjari, et al. High-temperature oxidation of pure Fe and the ferritic steel 225Cr1Mo[J]. Materials Research,2005,8(4):365-369
    [81]P. Y. Hou, Z. R. Shui, G. Y. Chuang, J. Stringer. Effect of reactive element oxide coatings on the high temperature oxidation behavior of a FeCrAl alloy[J]. Journal of The Electrochemical Society.1992,139(4):1119-1126
    [82]N. Patibandla, T. A. Ramanarayanan, F. Cosandey, Effect of ion implanted Ce on the growth rate of Chromia scales on Ni-30 Cr alloys[J]. Journal of the Electrochemical Society,1991(138):2176-2184
    [83]S. Chevalier, G. Bonnet, J. P. Larpin, J. C. Colson. The combined effect of refractory coatings containing reactive elements on high temperature oxidation behavior of chromia-forming alloys[J]. Corrosion Science,2003, (45):1661-1673
    [84]M. J. Capitan, S. Lefebvre, A. Traverse, A. Paul, and J. A. Odriozola, Anomalous scattering study of oxide scales formed at 1173 K on surface modified stainless steel [J]. Journal of Materials Chemistry,1998, (10):2293-2298
    [85]M. J. Capitan, A. Paul, J. L. Pastol, J. A. Odriozola. X-ray diffraction study of oxide scales formed at high temperatures on AISI 304 stainless steel after Cerium deposition [J]. Oxidation of Metals,1999,52(5-6):447-462
    [86]H. Buscail, E. Sciora, J. P. Larpin. Gerard. Influence of ceria coatings on growth stresses developed in wiistite scales formed on pure iron at 800℃[J]. Oxidation of Metals,1997,48(5/6):417-438
    [87]曾潮流,王文,F. C. Rizzo,吴维(?)Fe_2Ce和Fe_5Ce合金在600_800_空气中的氧化行为[J].金属学报,1998,34(10):1089-1094
    [88]X. Peng, J. Yan, Y. Zhou, F. Wang. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air[J]. Acta Materialia,2005(53): 5079-5088
    [89]K. H. Low, C, H. Shek, J. K. L. Lai. Recent development in stainless steel[J]. Materials Science and Engineering R,2009,65:39-104
    [90]H. Asteman, J.-E. Svensson, L.-G. Johansson. Oxidation of 310 steel in H2O/O2 mixtures at 600℃:the effect of water-vapour-enhanced chromium evaporation[J]. Corrosion Science,2002,44(11):2635-2649
    [91]Nobuo Otsuka, Yoshiaki Shida, Hisao Fujikawa. Internal-external transition for the oxidation of Fe-Cr-Ni austenitic stainless steels in steam[J]. Oxidation of Metals, 1989,32(1-2):13-45
    [92]H. Matsuo, Y. Nishiyama, T. Yamadera, Steam oxidation of fine-grain steels [A]. in:R. Viswanathan, D. Gandy, and K. Coleman, Ed., Advances in Materials Technology for Fossil Power Plants, ASM International,2005,441-451
    [93]E. Essuman, G. H. Meier, J. Zurek, M. Hansel W. J. Quadakkers. The Effect of water vapor on selective oxidation of Fe-Cr alloys[J]. Oxidation of Metals,2008, 69(3-4):143-162
    [94]C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society,1952,99:369-380
    [95]A. M. Brass, J. Chene, G. Anteri, et.al. Role of shot-peening on hydrogen embrittlement of a low-carbon steel and a 304 stainless steel[J]. Journal of Materials Science,1991,26:4517-4526
    [96]B. E. Wilde, I. Chattoraj. The effect of shot peening on hydrogen absorption by and hydrogen permeation through AISI 4130 Steels[J]. Scripta Metallurgica et Materialia,1992,26:627-632
    [97]T. Sato, Y. Fukuda, K. Mitsuhara, K. Sakai, The practical application and long-term experience of new heat resistant steels to large scale USC boiler[A], in:R. Viswanathan, D. Gandy, and K. Coleman. Proceedings of the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants. ASM International, Hilton Head Island, South Carolina,2004(25-28):177-190
    [98]H. Asteman, K. Segerdahl, J.-E. Svensson, L.-G. Johansson. The influence of water vapor on the corrosion of chromia-forming steels[J], Materials Science Forum, 2001,369-372:277-286
    [99]A. Di Schino, I. Salvatori, J. M. Kenny. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel[J]. Journal of Materials Science,2002(37):4561-4565
    [100]王敏,郭鸿镇.大块料1Cr18Ni9Ti奥氏体不锈钢的晶粒细化研究[J].材料热处理技术,2008,(10):24-30
    [101]P. Zahumensky, S. Tuleja, J. Orszagova, J. Janovec, V. Siladiova, Corrosion resistance of 18Cr-12Ni-2.5Mo steel annealed at 500-1050℃[J]. Corrosion Science, 1999,17(4):1305-1322
    [102]Y. Nagae, K. Aoto. Magnetic property change in an austenitic stainless steel subjected to damage at elevated temperature-Microstructure responsible for magnetic property[J]. Acta Metallurgica Sinica (English Letters),2004,17(4): 387-392.
    [103]Yuji Nagae. A study on detection of creep damage before crack initiation in austenitic stainless steel[J]. Materials Science and Engineering A,2004, (387-389): 665-669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700