几种矿物的低温液相合成、生长机理及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于碳酸钙和金红石这两种自然界矿物在生命科学、催化及工业生产中的重要作用,本论文使用亲水嵌段聚合物模拟了生物矿化过程,得到了与贝壳结构类似的层状碳酸钙;发展了温和温度条件下简单的醇水二元体系,调节醇/水比例,制备了生物体内出现的非晶、球霰石、文石、方解石相碳酸钙,系统的研究它们之间的转化,探索了生物矿化过程中矿物物相和结构的形成机理;在酮水二元体系中,发展了光催化反应,制备M@TiO(2M=Ag、Au、Pt)纳米复合材料和Pt@TiO2-导电聚合物三元复合材料的新技术。所取得主要研究结果如下:
     1.用一种带冠醚状功能团的亲水嵌断聚合物( PEG-b-hexacyclen macrocycle)作为修饰晶体生长模板,制备了与贝壳结构类似的层状碳酸钙。研究表明,这种功能团除了与特定方解石晶面的定向吸附和构型匹配外,方解石特定晶面表面电荷及配位点的浓度也强烈影响其与聚合物功能团之间的作用。
     2.报道了利用气相扩散的方法制备非晶碳酸钙纳米颗粒的新方法,该方法制备的ACC具有分散性好、可以长期在乙醇中保存、以及浓缩后粒径分布无明显变化等优点。在ACC纳米颗粒的乙醇悬浮液中,加入不同pH的水溶液,分别可得到方解石相菱方块、弯曲的混合相碳酸钙纳米线、球霰石相纳米线、以及方解石相的枝晶。
     3.报道了在醇/水混合溶剂体系中,通过调节乙醇/水的比例,观察到了一个完整的相转变过程,即从方解石与文石的混合相,转变到纯的文石相,继而得到纯的球霰石相,以及选择性合成正交相和六方相的CeOHCO3和CeO2。研究表明,在混合溶剂中,由于无机矿物的溶解度在水中比在乙醇中高,因此降低水的含量会增加无机离子的过饱和度,以及随着醇含量增加矿物晶粒尺寸变小,都偏向于生成动力学相。
     4.在丙酮-水混合溶剂体系中,制备了金红石纳米结构的TiO2。发展了一种清洁的光化学方法合成单分散的M@TiO2(M=Ag、Au、Pt)纳米复合材料。研究结果表明,贵金属颗粒均匀的分散在TiO2聚集体上,并研究了该纳米复合材料的抗菌效果,所得结果显示,当银颗粒的用量在10 g/ml时,大肠杆菌的生长得到了完全的抑止;利用这种Pt@TiO2复合材料在光照条件下诱导苯二胺单体的聚合,生成Pt@TiO2-聚苯二胺三组分复合材料。
In this dissertation, versatile methods were used to control size, shape, polymorph and hierarchy of CaCO3, CeOHCO3 and rutile-TiO2 minerals. For biomineralization study, one double hydrophilic block copolymer with a rigid functional group (PEG-b-hexacyclen macrocycle) directed round disc-like calcite crystals with layered structure, which is similar to nacre of Haliotis rufescens. Amorphous calcium carbonate (ACC) nanoparticles were synthesized by a gas-diffusion process, which was used as precursor for transformation and crystallization of CaCO3 polymorph. It is found that a fine adjustment of thermodynamic-kinetic equilibrium has a strong effect on the formation of metastable kinetic phase. M@TiO2 (M=Ag, Au, Pt) naonocomposites can be successfully synthesized by a photoreduction process. Ag@TiO2 and Au@TiO2 exhibited excellent antibacterial properties against E. coli., when the dosage of metal concentration reached to 10 g/ml. When these nanocomposites fulfilled a photooxidation polymerization process, metal@TiO2-conductive poly(phenylenediamine) hybrid materials formed. The main results can be summarized as following:
     1. PEG-b-hexacyclen macrocycle was used as crystal growth modifier, controlling formation of layered structure CaCO3 with similar structure of nacre. Besides the epitaxial match between pattern of functional group of the copolymer and special crystal face of calcite, particle stabilization, crystallization time, time for polymer rearrangement, and surface-ion density play roles on the formation of this layered structure.
     2. In a gas-diffusion process, well-dispersed amorphous calcium carbonate nanoparticles were synthesized in ethanol. The nanoparticles can be stable in ethanol for several months, and its size distribution doesn’t change even after condensation or ultracentrifugation. Crystallization behaviour of the amorphous calcium carbonate were investigated, a lot of structures, such as calcite rhomb, curved CaCO3 nanofibre, vaterite nanofibre, and calcite dendritic crystal, can be formed when the water content and pH in the water-ethanol mixed solvents changed.
     3. Adjusting the water/ethanol ratio, a complete polymorph evolution from thermodynamic stable phase to metastable phase happened in the case of CaCO3 and cerium compounds. Calcite, aragonite, and vaterite appeared one after the other when increase the ethanol content in the case of CaCO3. While in the case of cerium compound, orthorhombic CeOHCO3, metalstable hexagonal CeOHCO3, and CeO2 formed as final product when decreasing the water content. The poor solubility of the inorganic materials in ethanol, and the size of the crystals decreasing with the increasing the content of ethanol, tend to formation of a kinetic phase.
     4. In acetone-water mixed solvents, nanostructured rutile TiO2 was synthesized. After a clean photoreduction process, M@TiO2 (M=Ag, Au, Pt) loaded with ultrathin metal nanoparticles were prepared without introduction of any toxic additives. Ag@TiO2 and Au@TiO2 nanocomposites show an excellent antibacterial ability. Pt@TiO2 nanocomposite presents a high photooxidation ability, which preformed oxidative polymerization of phenylenediamine, leading to the formation of a new kind of metal-semiconductor-conductive polymer hybrid materials.
引文
1 Mann S,2001, Biomineralization– Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: Oxford.
    2 Wood RA, et.al. 2002, Science, 296: 2383.
    3 Yu SH, H. et.al. 2004, J. Mater. Chem., 14: 2124.
    4 Xu AW, et.al. 2007, J. Mater. Chem., 17:, 415.
    5 C?lfen H, et.al. 2005, MRS Bull., 30: 727.
    6 Imai H, 2006, Top Curr. Chem., 270: 43.
    7 C?lfen H, 2007, Top Curr. Chem., 271: 1.
    8 Yu SH, 2007, Top Curr. Chem., 271: 79.
    9 Han YJ, et.al. 2003, Angew. Chem., Int. Ed., 42: 3668.
    10 Han YJ, et.al. 2003, J. Am. Chem. Soc., 125: 4032.
    11 Kotachi A, et.al. 2006, Chem. Lett., 35: 204.
    12 Park HK, et.al. 2004, Chem. Commun., 24.
    13 Falini G, et.al. 1996, Science, 271:, 67.
    14 Weiner S, et.al. 1991, Trends Biochem. Sci., 16: 252.
    15 Belcheer AM, et.al. 1996, Nature, 381: 56.
    16 Aizenberg J, et.al. 1996, Connect. Tissue Res., 35: 17.
    17 Berman A, et.al. 1993, Science, 259: 776.
    18 Beniash E, et.al. 1999, J. Struct. Biol., 125: 50.
    19 Aizenberg J, 2004, Adv. Mater., 16: 1295.
    20 Weiner S, et.al. 2005, Science, 309: 1027.
    21 Politi Y, et.al. 2004, Science, 306: 1161.
    22 Politi Y, et.al. 2006, Adv. Funct. Mater., 16: 1289.
    23 Addadi L, et.al. 2006, Chem. Eur. J., 12: 980.
    24 Checa AG, et.al. 2006, Proc. R. Soc. London Ser. B, 273: 1329.
    25 Oaki Y, et.al. 2005, Angew. Chem. Int. Ed., 44: 6571.
    26 Oaki Y, et.al. 2006, Small, 2: 66.
    27 Nassif N, et.al. 2005, Proc. Natl. Acad. Sci. U. S. A., 102: 12653.
    28 C?lfen H, et.al. 2003, Angew. Chem. Int. Ed., 42: 2350.
    29 C?lfen H, et.al. 2005, Angew. Chem. Int. Ed., 44: 5576.
    30 Matijevic E, 1993, Chem. Mater., 5: 412.
    31 Chen SF, et.al. 2004, Chem. Eur. J., 10: 3050.
    32 Braga D, 2003, Angew. Chem. Int. Ed., 42: 5544.
    33 Young JR, et.al. 1999, J. Struct. Biol., 126: 195.
    34 Kato T, et.al. 2002, Adv. Mater., 14: 869.
    35 Gueta R, et.al. 2007, Angew. Chem. Int. Ed., 46: 291.
    36 Woesz A, et.al. 2006, J. Mater. Res., 21: 2068.
    37 Meldrum FC, et.al. 2008, Chem. Rev., 108: 4433.
    38 Sommerdijk NAJM, et.al. 2008, Chem. Rev. 108: 4499.
    39 C?lfen H, et.al. 2001, Chem. Eur. J., 7: 106.
    40 Qi LM, et.al. 2000, Angew. Chem., Int. Ed., 39: 604.
    41 Yu SH, et.al. 2002, Chem. Eur. J., 8: 2937.
    42 Gower LA, et.al. 1998, J. Cryst. Growth, 191: 153.
    43 Yu SH, et.al. 2005, Nature Materials, 4: 51.
    44 Li Q, et.al. 2002, J. Cryst. Growth, 236: 357.
    45 Manoli F, et.al. 2000, J. Cryst. Growth, 218: 359.
    46 Qi LM, et.al. 2002, Chem. J. Chinese Univ., 23: 1595.
    47 Falini G, et.al. 1996, Chem. Commun., 1037
    48 Seo KS, et.al. 2005, J. Cryst. Growth 276: 680.
    49 Naka K, et.al. 2002, Langmuir, 18: 3655.
    50 Ka?parováP, et.al. 2004, Colloid and Surface A: Physicochem Eng Aspects, 250: 153.
    51 Guo XH, et.al. 2006, Angew. Chem. Int. Ed., 45: 3977.
    52 Guo XH, et.al. 2008, Crystal Growth Design, 8: 1233.
    53 Volkmer D, et.al. 2005, Angew. Chem. Int. Ed., 44: 639.
    54 Zhu JH, et.al. 2009, CrystEngCommun., 539.
    55 Zhu JH, et.al. 2009, Chem. Commu., 9: 1106.
    56 Guo XH, et.al. 2007, Cryst Growth Des., 7: 354
    57 Gao YX, et.al. 2006, Langmuir, 22: 6125.
    58 Pecher J, et.al. 2009, Cryst. Growth Des., 9: 1306.
    59 Penn RL, et.al. 1999, Geochim Cosmochim Acta, 63: 1549.
    60 Penn RL, et.al. 2004, J. Phys Chem. B, 108: 12707.
    61 Gehrke N, et.al. 2005, Cryst. Growth Design, 5: 1317.
    62 Yang HG, et.al. 2004, Angew Chem. Int. Ed., 43: 5930.
    63 Pacholski C, et.al. 2002, Angew. Chem., 114: 1234.
    64 Liu B, et.al. 2003, J. Am. Chem. Soc., 125: 4430.
    65 Liu B, et.al. 2004, J. Am. Chem. Soc., 126: 8124.
    66 Liu B, et.al. 2004, Angew. Chem. Int. Ed., 43: 4745.
    67 Liu B, et.al. 2004, J. Phys. Chem. B, 107: 4338.
    68 Rousseau M, et.al. 2005, Biomaterials, 26: 6254.
    69 Pujol O, et.al. 2004, J. Phys Chem. B, 108: 13128.
    70 Yang SW, et.al. 2006, J. Am. Chem. Soc., 128: 9330.
    71 Kulak A N, et al. 2007, J. Am. Chem. Soc., 129: 3729.
    72 Lan WJ, et.al. 2007, Langmuir, 23: 3409.
    73 Olszta MJ, et.al. 2004, Chem. Mater., 16: 2355.
    74 Cheng XG, et.al. 2006, Biotechno. Prog., 22: 141.
    75 Linsebigler AL, et.al. 1995, Chem. Rev., 95: 735.
    76刘春艳,2007,纳米光催化及光催化环境净化材料,化学工业出版社。
    77 Ohtani B, et.al. 1997, J. Phys. Chem. B., 101: 3746.
    78 Cozzoli PD, et.al. 2004, J. Am.Chem. Soc., 126: 3868.
    79 Pacholski C, et.al. 2004, Angew. Chem., 116: 4878.
    80 Dukovic G, et.al. 2008, Adv. Mater., 20: 4306.
    81 Duonghong D, 1981, J. Am. Chem. Soc., 103: 4685.
    82 Keleher, J; et.al. 2002, World J. Microbiol. Biotechnol., 18: 133
    83 Gunawan, C; et.al. 2009, Small, 5: 341.
    84张金龙,2004,光催化,华东理工大学出版社。
    85 Nishimoto SI, et.al. 1985, J. Chem. Soc. Faraday Trans. 1, 61.
    86 Ohtani B, et.al. 1997, J. Phys. Chem. B, 101: 3746.
    87 Ng YH, et.al. 2007, Adv. Mater., 19: 597.
    1 Young JR, et.al. 1999, J. Struct. Biol., 126: 195.
    2 (a) Lowenstam HA, et.al. 1989, On Biomineralization; Oxford University Press: Oxford. (b) Mann S, 2001, Biomineralization– Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: Oxford.
    3 (a) Mann S, 2000, Angew. Chem. Int. Ed., 39: 3392. (b) Ozin GA, 1997, Acc. Chem. Res., 30: 17. (c) Weiner SW, et.al. 1997, J. Mater. Chem., 7: 689. (d) Estroff LA, et.al. 2001, Chem. Mater., 13: 3227. (e) Kato T, et.al. 2002, Adv. Mater., 14: 869. (f) C?lfen H, et.al. 2003, Angew. Chem. Int. Ed., 42: 2350. (g) Meldrum FC, 2003, Int. Mater. Rev., 48: 187. (h) Yu SH, et.al. 2004, J. Mater. Chem., 14: 2123.
    4 (a) Kniep R, et.al. 1996, Angew. Chem. Int. Ed., 35: 2624. (b) Busch S, et.al. 1999, Eur. J. Inorg. Chem. 10: 1643.
    5 (a) Tian ZR, et.al. 2002, J. Am. Chem. Soc., 124: 12954. (b) Tian ZR, et.al. 2003, Nature Materials, 2: 821.
    6 (a) Taubert A, et.al. 2003, J. Phys. Chem., 107: 2660. (b) Taubert A, et.al. 2002, Langmuir, 18: 4488.
    7 Yu SH, et.al. 2005, Nature Materials, 4: 51.
    8 Tang ZY, et.al. 2003, Nature Materials, 2: 413.
    9 (a) Jackson AP, et.al. 1988, Proc. R. Soc. Lond. B, 234: 415. (b) Belcher AM, et.al. 1996, Nature, 381: 56.
    10 Dalas E, et.al. 1999, Langmuir, 15: 8322.
    11 C?lfen H, 2003, Curr. Opin. Colloid Interface Sci., 8: 23.
    12 Weiner S, et.al. 1980, FEBS Letts., 111: 311.
    13 Weiner S, 1984, Phil. Trans. R. Soc. Lond. B, 304: 425.
    14 Heywood BR, Template directed nucleation and growth of inorganic materials in, Mann S Biomimetic Materials Chemistry, Wiley-VCH 1996, New York, Weinheim, Cambridge.
    15 C?lfen H, 2001, Macromol. Rapid Commun., 22: 219.
    16 Izatt RM, et.al. 1991, Chem. Rev., 91: 1721.
    17 Sedlak M, et.al. 2001, Macromol. Chem. Phys., 202: 587.
    18 Weiner S, et.al. 1996, Chem. Eur. J., 2: 278.
    19 Zhan J, et.al. 2003, Adv. Mater., 15: 621.
    20 C?lfen H, et.al. 2001, Chem. Eur. J., 7: 106.
    21 Volkmer D, et.al. 2004, J. Mater. Chem., 14: 2249.
    22 Wohlrab S, et.al. 2005, Chem. Eur. J.,11: 2903.
    23 Wang TX, et.al. 2005, J. Am. Chem. Soc.,127: 3246.
    2 Politi Y, et.al. 2004, Science, 306: 1161.
    3 Weiner S, et.al. 2005, Science, 309 : 1027.
    4 Politi Y, et.al. 2006, Adv. Funct. Mater., 16: 1289.
    5 Nassif N, et.al. 2005, Proc. Natl. Acad. Sci. U. S. A., 102: 12653.
    6 Addadi L, et.al. 2006, Chem. Eur. J., 12: 980.
    7 Lee HS, et.al. 2007, Bull. Korean Chem. Soc., 3: 457.
    8 Xu AW, et.al. 2005, Adv. Mater., 17: 2217.
    9 Faatz M, et.al. 2004, Adv. Mater., 16: 996.
    10 Günther C, et.al. 2005, Z. Anorg. Allg. Chem., 631: 2830.
    11 Chen SF, et.al. 2005, Adv. Mater., 17: 1461.
    12 Wang TX, et.al. 2005, J. Am. Chem. Soc., 127: 3246.
    13 Nassif N, et.al. 2005, Angew. Chem. Int. Ed., 44: 6004.
    14 Aizenberg J, et.al. 2003, Science, 299: 1205.
    15 Volkmer D, et.al. 2005, Angew. Chem. Int. Ed., 44: 639.
    16 Popescu DC, et.al. 2006, Angew. Chem. Int. Ed., 45: 1762.
    17 Balz M, et.al. 2005, Adv. Funct. Mater., 15: 683
    18 Olszta MJ, et.al. 2004, Chem. Mater., 16: 2355.
    19 Aizenberg J, et.al. 2003, Science, 299: 1205.
    20 Xu XR, et.al. 2004, Chem. Mater., 16: 1740.
    21 Shen Q, et.al. 2006, J Phys. Chem. B, 110: 2994.
    22 Chen SF, et.al. 2006, Chem. Mater., 18: 115.
    23 Chen SF, et.al. 2004, Chem. Eur. J., 10: 3050.
    24 Tai CY, et.al. 1998, AIChE J., 44: 1790.
    25 Liu B, et.al. 2004, J. Phys. Chem. B, 107: 4338
    1 Young JR, et. al. 1999, J. Struct. Biol,. 126: 195.
    2 C?lfen H, et. al. 2003, Angew. Chem. Int. Ed,. 42: 2350.
    3 Kato T, et. al. 2002, Adv. Mater., 14: 869.
    4 Brown R, et. al. 1999, Can. J. Fish. Aquat. Sci., 56: 1898.
    5 Burt HM, et. al. 1997, Dig. Dis. Sci., 42: 1283.
    6 Taylor DR, et. al. 1995, J. Hepatology, 22: 488.
    7 C?lfen H, 2003, Curr. Opin. Colloid Interface Sci., 8: 23.
    8 Walsh D, et. al. 1999, Adv. Mater., 11: 324.
    9 (a) Li M, et. al. 2002, Adv. Funct. Mater., 12: 773. (b) Li M, et. al. 2003. Adv. Mater., 15: 2032.
    10 Ajikumar PK, et. al. 2004, Cryst. Growth Des., 4: 331.
    11 Hosoda N, et. al. 2001, Chem. Mater., 13: 688.
    12 Falini G, et. al. 1998, A. Chem. Eur. J., 4: 1048.
    13 Loste E, et. al. 2003, Langmuir, 19: 2830.
    14 Küther J, et. al. 1998, J. Mater. Chem., 8: 641.
    15 Li Q, et. al. 2002, J. Cryst. Growth, 236: 357.
    16 Lee I, et. al. 2001, Adv. Mater., 13: 1617.
    17 Tai CY, et. al. 1998, AICHE J., 44: 1790.
    18 C?lfen H, et. al. 1998, Langmuir, 14: 582.
    19 (a) Yu SH, et. al. 2004, J. Mater. Chem., 14: 2124. (b) Qi LM, et. al. 2002, Adv. Mater., 14: 300.
    20 Naka K, 2003, Top. Curr. Chem., 228: 141.
    21 Kitamura M, 2002, J. Cryst. Growth, 237-239: 2205.
    22 Manolia F, et. al. 2002, J. Cryst. Growth, 236: 363.
    23 Zhan JH, et. al. 2003, Adv. Mater., 15: 621.
    24 Park HK, et. al. 2004, Chem. Commun., 10: 24.
    25 Lakshminarayanan R, et. al. 2003, Cryst. Growth Des., 3: 953.
    26 Yu SH, et. al. 2005, Nature Materials, 4: 51.
    27 Chen SF, et. al. 2005, Adv. Mater., 17: 1461.
    28 Tang ZY, et. al. 2003, Nature Materials, 2: 413.
    29 Dickinson SR, et. al. 2003, J. Mater. Chem., 13: 928.
    30 Doxsee KM, 1998, Chem. Mater., 10: 2610.
    31 Doxsee KM, et. al. Materials Science of the Cell; Mulder B, et. al. Eds., MRS Symposium Series, 489: 161-166.
    32 Yu SH, et. al. 2004, Cryst. Growth Des., 4: 33.
    33 Wang LF, et. al. 1999, J. Colloid Interface Sci., 218: 545.
    34 White WB, 1974, in Infrared Spectra of Mineral (Ed: Farmer, V. C.), Mineralogical Society, London, page 227-284.
    35 Wolf G, et. al. 2000, J. Thermal Anal., 60: 463.
    36 de Leeuw NH, et. al. 1998, J. Phys. Chem. B, 102: 2914.
    37 Gibbs JW, 1928, in Collected Works, Longman, New York.
    38 Dedonder-Lardeux C, et. al. 2000, Chem. Rev., 100: 4023.
    39 Xyla AG, et. al. 1991, Colloids Surf. 53: 241.
    40 Chen SF, et. al. 2004, Chem. Eur. J., 10: 3050.
    41 GehrkeN, et. al. 2005, Cryst. Growth Des., 5: 1317.
    42 Rudloff J, et. al. 2004, Langmuir, 20: 991.
    
    1 Justel T, et. al. 1998, Angew. Chem. Int. Ed., 37: 3084.
    2 Adachi GY, et. al. 1998, Chem. Rev., 18: 1479.
    3 Palmer MS, et. al. 2002, J. Am. Chem. Soc., 124: 8452.
    4 Stouwdam JW, et. al. 2002 Nano Lett., 2: 733.
    5 Hasegawa Y, et. al. 2002, Angew. Chem. Int. Ed., 41: 2073.
    6 Fang YP, et. al. 2003, J. Am. Chem. Soc., 125: 16025.
    7 Wang X, et. al. 2002, Angew. Chem. Int. Ed., 41: 4790.
    8 Velu S, et. al. 2003, Top Catal., 22: 235.
    9 Van Kooten W, et. al. 1999, Catal. Lett., 63: 227.
    10 Fu Q, et. al. 2003, Science, 301: 935.
    11 Tanaka K, et. al. 1997, Jpn. J. Appl. Phys., 36: 3517.
    12 Danielson E, et. al. 1998, Science, 279: 831.
    13 Kang HJ, et. al. 2003, Nature, 432: 522.
    14 Sato T, et. al. 2001, Science, 291: 1517.
    15 Aoki Y, et. al. 1996, Phys. Rev. B, 54: 12172.
    16 Jaime M, et. al. 2000, Nature, 405: 160.
    17 Keppens V, et. al. 1998, Nature, 395: 876.
    18 Han ZH, et. al. 2003, J. Mater. Chem., 13: 150.
    19 Hsu WP, et. al. 1988, Langmuir, 4: 31.
    20 Wang HC, et. al. 2002, Mater. Res. Bull., 37: 783.
    21 Li GS, et. al. 1996, J. Solid State Chem., 126: 74.
    22 Lu CH, et. al. 2002, Mater. Sci. Eng. B, B90: 138.
    23 Li Q, et. al. 2003, J. Phys. Chem. Solids, 64: 295.
    24 Han ZH, et. al. 2000, J. Crystal Growth, 219: 315.
    25 C?lfen H, et. al. 2003, Angew. Chem. Int. Ed., 42: 2350.
    26 Dickinson SR, et. al. 2003, J. Mater. Chem., 13: 928.
    27 (a) Falini G, et. al. 1997, Chem. Eur.J., 3: 1807. (b) Falini G, et. al. 2000, J. Chem. Soc., Dalton Trans., 3983.
    28 (a) Yu SH, 2001, J. Ceram. Soc. Jpn., 109: S65. (b) Yu SH, et. al. 1999, J. Mater. Chem., 9: 1283. (c) Yu SH, et. al. 1999, J. Mater. Res., 14: 4157.
    29 Haase M, et. al. 1992, J. Phys. Chem., 96: 6756. (b) Tolbert SH, et. al. 1994, Science, 265: 373.
    30 Murakoshi K, et. al. 1998, Chem. Commun., 321.
    31 Falini G, et. al. 1996, Chem. Commun., 1037.
    32 Lahiri J, et. al. et. al. 1997, J. Am. Chem. Soc., 119: 5449.
    33 Manoli F, et. al. 2000, J. Crystal. Growth, 218: 359.
    34 Qi LM, et. al. 2002, Chem. J. Chin. Univ., 23: 1595.
    35 Yu DB, et. al. 2003, Adv. Funct. Mater., 13: 497.
    36 Sheldrick WS, et. al. 1997, Angew. Chem. Int. Ed., 36: 206.
    37 Tai CY, et. al. 1998, AlChE J., 44: 1790.
    38 Yu SH, et. al. 2003, J. Phys. Chem. B, 107: 7396.
    39 Hirano M, et. al. 1996, J. Am. Ceram. Soc., 79: 777.
    1 Cozzoli PD, et.al. 2006, Chem. Soc. Rev., 35: 1195.
    2 Habas SE, et.al. 2008, J. Am. Chem. Soc., 130: 3294.
    3 Tada H, et.al. 2006, Nature Mater., 5: 782.
    4 Mokari T, et.al. 2004, Science, 304: 1787.
    5 Elmalem E, et.al. 2008, Adv. Mater., 20: 4312.
    6 Sondi I, et.al. 2004, J. Colloid Interface Sci., 275: 177.
    7 Zhang YW, et.al. 2008, J. Colloid Interface Sci., 325: 371.
    8 Thiel J, et.al. 2007, Small, 3: 799.
    9 Gunawan C, et.al. 2009, Small, 5: 341.
    10 Chen WJ, et.al. 2008, Small, 4: 485.
    11 Chen WJ, et.al. 2008, Anal. Chem., 80: 9612.
    12 Wang YM, et.al. 2008, Adv. Funct. Mater., 18: 1131.
    13 Niňo-Martínez N, et.al. 2008, Nanotechnology, 19: 1.
    14 Kudo A, et.al. 2009, Chem. Soc. Rev., 38: 253.
    15 Fujishima A, et.al. 1972, Nature, 238: 37.
    16 Pacholski C, et.al. 2004, Angew. Chem., 116: 4878.
    17 Dukovic G, et.al. 2008, Adv. Mater., 20: 4306.
    18 Chen XB, et.al. 2007, Chem. Rev., 107: 2891.
    19 Thompson TL, et.al. 2006, Chem. Rev., 106: 4428.
    20 Ohtani B, et.al. 1997, J. Phys. Chem. B., 101: 3746
    21 Cozzoli PD, et.al. 2004, J. Am.Chem. Soc., 126: 3868.
    22 Chan SC, et.al. 2005, Langmuir, 21: 5588.
    23 Keleher J, et.al. 2002, World J. Microbiol. Biotechnol., 18: 133.
    24 Hosono E, et.al. 2004, J. Am. Chem. Soc., 126: 7790.
    25 Wang D, et.al. 2006, J. Am. Chem. Soc., 128: 13670.
    26 Swamy V, et.al. 2006, Appl. Phys. Lett., 89: 163118.
    27 Wang HF, et.al. 2005, P. Natl. Acad. Sci. U.S.A., 102 : 15752.
    28 Priya R, et.al. 2009, J. Phys. Chem. C, 113: 6243.
    
    29 Zhang YX, et.al. 2002, Chem. Phys. Lett., 365: 300.
    30 Wu JM, et.al. 2005, Nanotechnology, 17: 105.
    31 Rai M, et.al. 2009, Biotechnol. Adv., 27: 76.
    32 Zhang H, et.al. 2009, Environ. Sci. Technol., 43: 2905.
    33 Hu B, et.al. 2008, J. Phys. Chem. C, 112: 11169.
    1 Linsebigler A, et.al. 1995, Chem. Rev., 95: 735.
    2 Duonghong D, et.al. 1981, J. Am. Chem. Soc., 103: 4685.
    3 Cozzoli PD, et.al. 2004, J. Phys. Chem. B, 108: 9623.
    4 Ohtani B, et.al. 1997, J. Phys. Chem. B, 101: 3746.
    5 Ng, YH, et.al. 2007, Adv. Mater., 19: 597.
    6 Shirakawa H, et.al. 1977, J. Chem. Soc. Chem. Commun., 578.
    7 Li XG, et.al. 2002, Chem. Rev., 102: 2925-3030.
    8 Guo SJ, et.al. 2007, Chem. Mater., 19: 4621.
    9 Wang JJ, et.al. 2008, Adv. Funct. Mater., 18: 1105.
    10 Dukovic H, et.al. 2008, Adv. Mater. 20: 4306.
    11 Habas, S. E.; Yang, P. D.; Mokari, T. 2008, J. Am. Chem. Soc., 130: 3294.
    12 Zhan YJ, et.al. 2008, J. Am. Chem. Soc., 130: 5650.
    13 Yao WT, et.al. 2008, Adv. Funct. Mater., 18: 3357.
    14 Teshima K, et.al. 1996, Chem. Commun., 829.
    15 Uemura S, et.al. 2000, Polym. J., 32: 987.
    16 Cataldo F, 1996, Eur. Polym. J., 32: 43.
    17 Mallick K, et.al. 2005, Langmuir, 21: 7964.
    18 Wang JJ, et.al. 2008, Adv. Funct. Mater., 18: 1105.
    19 Dauscher A, et.al. 1988, Surf. Sci., 204: 161.
    20 Gelius U, et.al. 1970, Phys. Scripta, 2: 70.
    21 Beamson G, Briggs D, 1992, High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database.
    22 Ichinohe D, 1998, Macromol. Chem. Phys., 199: 1241.
    23 Li XG, 2003, Polymer, 44: 5579.
    24 Li XG, 2001, J. Polym. Sci., 39: 3989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700