金属氧化物催化尿素醇解法合成碳酸二乙酯反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二乙酯(DEC)是重要的有机碳酸酯,具有广泛的应用前景。本文对尿素醇解法合成DEC反应的金属氧化物催化剂进行了研究。
     首先,对氧化铅催化尿素醇解法合成DEC的控制步骤—氨基甲酸乙酯(EC)与乙醇合成DEC反应的催化作用进行了研究。结果表明,氧化铅具有很好的催化稳定性,重复使用五次后催化活性仍无明显下降。XRD分析结果表明,回收氧化铅催化剂为立方晶相金属Pb和斜方晶相PbO_2的混合物。结合活性评价结果可以断定,该混合物为催化EC与乙醇合成DEC反应的活性组分,且金属Pb和PbO_2的协同作用是其具有较高催化活性的主要原因。
     其次,为进一步提高催化剂的性能,制备了一系列含氧化铅的双金属氧化物,并对其催化EC与乙醇合成DEC的反应性能进行了评价,发现ZnO-PbO的催化活性最高。确定了ZnO-PbO催化剂的适宜制备条件:Zn_2(OH)_2CO_3和PbCO_3为前体,PbO的质量分率为10%,焙烧温度500℃。以ZnO-PbO为催化剂,在乙醇和EC的摩尔比7:1,催化剂占总物料量的质量分率1%,反应温度190℃,反应时间7 h的条件下,EC转化率为50.2%,DEC收率为20.6%,DEC选择性为41.0%。考察了ZnO-PbO的催化稳定性,发现重复使用五次其催化性能无明显下降。结合XRD和IR等分析手段,确定了回收催化剂的组成为Zn(NCO)_2(NH_3)_2、立方晶相金属Pb和斜方晶相PbO_2所形成的混合物,其可能为催化DEC合成反应的催化活性组成。实验结果表明,DEC与PbO之间的反应是导致PbO被还原为金属Pb的主要原因。
     最后,采用热分解法制备了MgO,再将其经H_2/N_2处理后用于催化尿素和乙醇合成DEC反应。考察了MgO制备条件对其催化性能的影响,确定了适宜的制备条件为:以Mg(OH)_2为前躯体,焙烧温度600℃,焙烧时间4 h,在H_2/N_2气氛中400℃处理7 h。以MgO为催化剂,在乙醇和尿素的摩尔比10:1,催化剂用量为尿素和乙醇总质量的2%,反应温度为180℃,反应时间为7 h的条件下,DEC的收率达11.8%。活性评价结合XPS分析结果表明,MgO经H_2/N_2处理后表面氧空位增多是其催化活性提高的主要原因。
As an important organic intermediate, diethyl carbonate (DEC) has a wide application prospect in many industrial fields. In this paper, the synthesis of DEC by ethanolysis of urea was investigated over metal oxide catalysts.
     Firstly, the catalysis of lead oxide for the reaction of ethyl carbamate (EC) and ethanol to DEC, the controlling step in ethanolysis of urea to DEC, was studied. Lead oxide catalyst exhibited an excellent catalytic stability; it could be reused five times without a significant loss in its catalytic activity. XRD analysis showed that the recovered catalyst was a mixture of cubic metal Pb and orthorhombic PbO_2, which was proved to be the real active composition for the synthesis of DEC from EC and ethanol.
     Secondly, a series of double metal oxides containing lead oxide were prepared in order to increase the catalytic performance of the catalyst. The activity evaluation results revealed that ZnO-PbO presented the highest catalytic activity. The effect of preparation conditions on the catalytic performance of ZnO-PbO was studied and the suitable preparation conditions were as follows: Zn_2(OH)_2CO_3 and PbCO_3 as the precursors, lead oxide weight percentage 10% and calcination temperature 500℃. The influe nce of reaction parameters on ZnO-PbO catalytic performance was also investigated. Under the suitable reaction conditions of molar ratio of ethanol to EC 7:1, catalyst weight percentage 1%, reaction temperature 190 and reaction time 7 h, the conversion of EC, the yield and selectivity of DEC were 50.2%, 20.6% and 41.0%, respectively. Furthermore, ZnO-PbO catalyst could be reused five times and no significant loss in the catalytic activity was observed. According to the results of XRD measurement and IR analysis, the recovered catalyst was found to be a mixture of Zn(NCO)_2(NH_3)_2, cubic metal Pb and orthorhombic PbO_2, indicating that this mixture may be the real active composition for DEC synthesis. Furthermore the results of a series of verification experiment showed that the reaction between DEC and PbO was the main reason for the reduction of PbO to metal Pb.
     Finally, MgO catalyst prepared by calcination and then treated with H_2/N_2 was evaluated in the reaction between urea and ethanol to DEC. The suitable preparation conditions for MgO catalyst were as follows: Mg(OH)_2 as the precursor, calcination temperature 60,0 calcination time 4 h, H_2/N_2 treatment temperature 400℃and H_2/N_2 treatment time 7 h. Under the reaction conditions of molar ratio of ethanol to urea 10:1, weight percentage of catalyst 2%, reaction temperature 180℃, and reaction time 7 h, the yield of DEC was 11.8% . According to the results of activity evaluation and XPS analysis, the increase of oxygen vacancies on the MgO surface may be the main reason for the increase in the catalytic activity of MgO after H_2/N_2 treatment.
引文
1. Nagasubramanian G, Doughyt D. Improving the interfacial resistance in lithium cells with additives. Journal of Power Sources, 2001, 96(l): 29~32
    2. Jeong S K, Inaba M, Iriyama Y, et al. AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries. Journal of Power Sources, 2003, 119(1): 555~560
    3. Moumouzias G, Ritzoulis G, Siapkas D, et al. Comparative study of LiBF_4, LiAsF_6,LiPF_6, and LiClO4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn2O4 cells. Journal of Power Sources, 2003, 122(1): 57~66
    4. Herstedt M, Stjenrdahl M, Gustasfson T, et al. Anion receptor of enhanced thermal stability of the graphite anode interface in a Li-ion battery. Electrochemisty Communications, 2003, 5(6): 467~472
    5. Gnanaraj J S, Zinigrad E, Asraf L, et al. On the use of LiPF_3(CF_2CF_3)_3(LiFAP) solutions for Li-ion batteries. Electrochemisty Communications, 2003, 5(11): 946~951
    6. Shaikh A G, Sivaram S. Organic carbonates. Chemical Reviews, 1996, 96(3): 951~976
    7. Pacheco M A, Marshall C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels, 1997, 11(1): 2~29
    8. Dunn B C, Guenneau C, Hilton S A, et al. Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst, Energy Fuels, 2002(1), 16: 177~181
    9. Muskat I E, Strain F. Preparation of Cabronic Acid Esters. US2379250. 1941
    10.殷元骐,羰基合成化学,北京:化学工业出版社,1995,17~24
    11. Romano U, Renato T, Gioacchino C, et al. Method for the preparation of esters of carbonic acid. US4218391, 1979
    12.李光兴,莫婉玲,朱永强,等.乙醇氧化羰化合成碳酸二乙酯的工艺方法. CN1379017, 2002
    13.李光兴,朱永强,莫婉铃,等.乙醇在CuCl/Schiff碱上催化氧化羰基合成碳酸二乙酯.应用化学, 2003, 20(2): 163~166
    14. Roh N S, Dunn B C, Eyring E M, et al. Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalytic flow reactor. Fuel Processing Technology, 2003, 83(1-3): 27~38
    15.张萍波,张震,王曦,等. PdCl_2/Cu-HMS催化乙醇氧化羰基化合成碳酸二乙酯.石油化工, 2006, 35(7): 685~688
    16. Zhang P B, Ma X B. Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl_2/Cu-HMS catalyst. Chemical Engineering Journal, 2010, 163(1-2): 93~97
    17.高晓晨,马新宾,王胜平,等. PdCl_2-CuCl_2/ Li_2Al_2O对CO低压气相合成.催化学报, 2007, 28(8): 720~724
    18. Zhang P B, Zhang Z, Wang S P, et al. A new type of catalyst PdCl_2/Cu-HMS for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Catalysis Communications, 2007, 8(1): 21~26
    19. Zhang P B, Wang S P, Chen S, et al. The effects of promoters over PdCl_2-CuCl_2/HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Chemical Engineering Journal, 2008, 143(1-3): 220~224
    20.潘鹤林.碳酸二乙酯合成方法浅述.化工中间体, 2002, 6: 14~15
    21.姚洁,王公应.碳酸二甲酯和乙醇酯交换合成碳酸二乙酯的催化剂研究.石油与天然气化工, 2003, 32(5): 267~268
    22.陈鄂湘.碳酸二甲酯与乙醇酯交换合成碳酸二乙酯的催化剂研究: [学位论文],上海:华中科技大学, 2007.
    23. Paul T A, John C W. Green Chemistry: Theory and Practice, London: Oxford University Press, 1998, 11~16
    24.陈静,宋河远,夏春谷.酯交换合成二元醇联产二烷基碳酸酯的方法. CN: 1978414A, 2007
    25. Darbha S, Rajendra S, Paul R. A novel transesterification catalyst and a process for the preparation thereof. WO: 2007043062, 2007
    26.王默,赵新强,安华良,等.碳酸钾催化碳酸丙烯酯与乙醇酯交换合成碳酸二乙酯.高校化学工程学报, 2010, 24(4): 663~669.
    27.王玮. Ce_xZr_(1-x)O_2和CeO_2催化CO_2和乙醇直接反应合成碳酸二乙酯: [学位论文],天津:天津大学, 2007.
    28.曹新原,王玮,马新宾.乙醇和CO_2直接合成碳酸二乙酯的原位红外研究.化学工业与工程, 2009, 26(1): 45~49
    29. Fabien G, Sophie T R, Zephirin M. Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate. The Journal of Supercritical Fluids, 2009, 50(1): 46~53
    30.殷元骐.羰基合成化学.北京:化学工业出版社, 1995: 241~246
    31. Wang D P, Yang B L, Zhai X W. Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology, 2007, 88(8): 807~812
    32.赵海龙,赵新强,安华良,等.氧化铅催化氨基甲酸乙酯与乙醇合成碳酸二乙酯的研究.石油化工, 2009, 38(2):139~144.
    33. Foley P. Production of carbonate diesters from oxalate diesters. US4544507. 1984
    34. Hao C Y, Wang S P, Ma X B. Gas phase decarbonylation of diethyl oxalate to diethyl carbonate over alkali-containing catalyst. Journal of Molecular Catalysis A: Chemical, 2009, 306(1-2): 130~135
    35.马新宾,张震,石海峰,等.碳酸二乙酯的合成方法.化学通报, 2003, 8: 528~535
    36. Hacking M A P J, Rantwijk F V, Sheldon R A. Lipase catalyzed reactions of aliphatic and arylaliphatic carbonic acid esters. Journal of Molecular Catalysis B: Enzymatic, 2000, 9(4-6): 201~208
    37. Saleh R Y, Michaelson R C, Suciu E N, et al. Process for manufacturing dialkyl carbonates from urea and alcohol. US5565603, 1996.
    38. Ryu J Y. Process for making dialkyl carbonates. US5902894, 1999
    39.赵新强,邬长城,杨红健,等.尿素与甲醇均相催化合成碳酸二甲酯的研究.化学反应工程与工艺, 2002, 18(3): 200~205.
    40.于剑峰,袁存光.尿素甲醇均相催化合成碳酸二甲酯的新方法.石油大学学报(自然科学版), 2005,29(5): 122~126
    41.茆福林.尿素法合成碳酸二甲酯的反应工艺及催化剂研究: [学位论文].浙江:浙江师范大学, 2005.
    42. Zhao W B, Wang F, Peng W C, et al. Synthesis of dimethyl carbonate from Methyl carbamate and methanol with zinc compounds as catalysts. Industrial and Engineering Chemistry Research, 2008, 47: 5913~5917.
    43.赵文波,彭伟才,赵宁,等. Lewis酸碱催化氨基甲酸甲酯和甲醇合成碳酸二甲酯.石油化工, 2009, 38(4): 367~372.
    44.王登峰,张学兰,唐文东,等.含铈化合物催化氨基甲酸甲酯和甲醇合成碳酸二甲酯,石油化工, 2010, 39(2): 141~145.
    45. Wang D F, Zhang X L, Gao Y Y, et al. Synthesis of dimethyl carbonate from methyl carbamate and methanol over lanthanum compounds. Fuel Processing Technology, 2010, 91(9): 1081~1086.
    46.蔡清海.新型离子液体的制备、表征及离子液体中原子经济反应的研究: [学位论文].上海:华东师范大学, 2004
    47. Wang H, Lu B, Wang X G, et al. Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Processing Technology, 2009, 90(1): 1198~1201.
    48.王登峰,张学兰,高阳艳,等.离子液体催化氨基甲酸甲酯和甲醇合成碳酸二甲酯.石油化工, 2010, 39(4): 387~390.
    49.邬长城,赵新强,王延吉.金属铅催化尿素与甲醇合成碳酸二甲酯.第九届全国化学工艺学术年会论文集.北京:中国石化出版社, 2005
    50. Wu C C, Zhao X Q, Wang Y J. Effect of reduction treatment on catalytic performance of Zn-based catalyst for the alcoholysis of urea to dimethyl carbonate. Catalysis Communications, 2005, 6(10): 694~698
    51.薄向利,夏代宽,邱添. ZnO和金属单质催化尿素醇解法制备碳酸二甲酯的研究.化工中间体, 2006, 11: 23~28
    52.赵新强,王延吉,申群兵,等.金属氧化物催化剂上尿素与甲醇合成碳酸二甲酯.石油学报(石油加工), 2002, 8(5): 47~52
    53.邬长城,赵新强,王延吉.尿素醇解法催化合成碳酸二甲酯连续反应工艺研究.石油化工, 2004, 3(6): 508~511
    54. Wang M H, Wang H, Zhao N, et al. Synthesis of dimethyl carbonate from urea and methanol over solid base catalysts. Catalysis Communications, 2006, 7(1): 6~10.
    55. Zhao W B, Peng W C, Wang D F, et al. Zinc oxide as the precursor of homogenous catalyst for synthesis of dialkyl carbonate from urea and alcohols. Catalysis Communications, 2009, 10(5): 655~658
    56.郭效军,王爱平,魏彩虹,等. ZnO-TiO_2复合催化剂上尿素与甲醇合成碳酸二甲酯.化学工程师, 2010, 174(3): 24~27
    57.肖雪,吕贺,路嫔,等.纳米氧化铁上尿素与甲醇高选择性合成碳酸二甲酯.天然气化工, 2010, 35(2): 22~27
    58. Wang D F, Zhang X L, Gao Y Y, et al. Zn/Fe mixed oxide:Heterogeneous catalyst for the synthesis of dimethyl carbonate from methyl carbamate and methanol. Catalysis Communications, 2010(11): 430~433
    59. Wang D F, Zhang X L, Zhao W B, et al. Synthesis of dimethyl carbonate from methyl carbamate and methanol catalyzed by mixed oxides from hydrotalcite-like compounds. Journal of Physics and Chemistry of Solids, 2010, 71(4): 427~430
    60. Thayer A. Gas additive gets subtracted. Chemical & Engineering News, 2003-7-28: 12
    61. Edwards H G M, Farwell D W, Lewis I R, et al. Vibrational spectra of diammine diisocyanatozinc (Ⅱ) Zn(NCO)_2(NH_3)_2 and dipyridyl diisocyanato zincⅡ() Zn(NCO)_2(C_5H_5N)_2. Journal of Molecular Structure, 1992, 271: 27~36
    62. Idriss H, Seebauer E G. Reactions of ethanol over metal oxides. Journal of Molecular Catalysis A: Chemical, 2000, 152(1-2): 201~212
    63. Notario R, Quijano J, Sanchez C, et al. Theoretical study of the mechanism of thermal decomposition of carbonate esters in the gas phase. Journal of Physical Organic Chemistry, 2005, 18(2): 134~141
    64. Inui K, Kurabayashi T, Sato S, et al. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. Journal of Molecular Catalysis A: Chemical, 2004, 216(1):147~156
    65. Varisli D, Dogu T, Dogu G. Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chemical Engineering Science, 2007, 62(18-20): 5349~5352
    66. Hao C Y, Wang S P, Li M S, et al. Hydrogenation of CO_2 to formic acid on supported ruthenium catalysts. Catalysis Today, 2011,160(1): 184~190
    67.白素松.乙醛液相及气相缩合反应研究: [学位论文].上海:同济大学,2008.
    68.朱正峰,郭海福,闫鹏,等.均匀设计在固体超强酸SO_4~(2-)/SnO_2制备中的应用.广州化工, 2006, 34(4): 38~40
    69.常瑜,宋广慧,王秀生.均匀设计法优化2-二甲胺甲基环己酮的合成.太原理工大学学报, 2007, 38(1): 23~25
    70. Kumar M, Aberuagba F, Gupta J K, et al. Temperature-programmed reduction and acidic properties of molybdenum supported on MgO–Al_2O_3 and their correlation with catalytic activity. J Mol Catal A: Chem, 2004, 213(2): 217~223
    71. Ardizzone S, Bianchi C L, Fadoni M, Vercelli B. Magnesium salts and oxide: an XPS overview. Appl Surf Sci, 1997, 119(3-4): 253~259
    72. Castanier E, Noguera C. Oxygen vacancies on MgO(100). Surface Science, 1996, 364: 1-16
    73. Pacchioni G, Ferrari A M. Surface reactivity of MgO oxygen vacancies. Catalysis Today, 1999, 50: 533-540
    74. Florez E, Fuentealba P, Mondragon F. Chemical reactivity of oxygen vacancies on the MgO surface: Reactions with CO_2, NO_2 and metals. Catalysis Today, 2008, 133–135: 216–222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700