掺杂铌酸锂晶体的缺陷和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从化学键的观点出发,综合考虑离子半径和化合价对离子占位的影响,提出了用键能方法来研究掺杂离子在铌酸锂(LiNbO_3)晶格中的占位以及不同掺杂离子对LiNbO_3晶体光学性能的影响。
     在LiNbO_3晶格中,掺杂离子M通常进入Li位或Nb位形成M-O键,根据键能越相近,化学键的性质越相似,掺杂引起晶格变形越小的观点,分别比较M-O键与正常格位Li-O键和Nb-O键的键能变化大小,判断出掺杂离子优先进入Li位还是Nb位。研究结果表明通过理论计算得到的掺杂离子占位情况与实验结果一致。
     通过分析掺杂离子占据不同格位的键能变化情况,发现光折变离子无论占Li位还是占Nb位键能都减小,而抗光折变离子占Nb位时键能增加。根据这一规律提出了用键能标准来区分光折变离子和抗光折变离子,并预测了一些新的抗光折变离子用于指导铌酸锂光学器件的研究与开发。
     运用键能方法定量计算了抗光折变离子在LiNbO_3晶体中的理论掺杂阈值。以目前研究得最为广泛且阈值浓度最为统一的同成分掺Mg铌酸锂晶体的阈值5.0 mol%为基准,分别计算了未掺杂LiNbO_3与掺Mg∶LiNbO_3晶体的键能,比较后发现掺Mg∶LiNbO_3晶体阈值处的键能比未掺杂LiNbO_3晶体的键能小2.14 kcal。根据不同抗光折变掺杂LiNbO_3晶体在阈值处所呈现出的共性,在相同的生长条件下,所有的抗光折变掺杂离子在阈值处都会使晶体的键能减小2.14 kcal。根据这一推论分别计算了抗光折变离子在同成分和近化学计量比LiNbO_3晶体中的理论掺杂阈值,定量计算的结果与实验报道结果很接近。
     从晶体化学结构式出发,提出了抗光折变离子在铌酸锂晶体中的掺杂取代机理,并在此基础上研究了晶体键能与缺陷结构之间的内在关系,发现晶体键能与本征缺陷Li空位的变化趋势相反,晶体键能随着掺杂量的增加先增加后减小而后又增加,而Li空位随着掺杂量的增加先减小后增加而后又减小。
     论文最后还研究了掺杂LiNbO_3晶体的缺陷能级。从晶体结构和化学键的观点出发,提出了计算掺杂LiNbO_3晶体缺陷能级的电荷迁移方法,计算结果表明理想的光折变中心在LiNbO_3晶格中应当具有适当的能级。通过计算所得到的掺杂离子在LiNbO_3晶格中的相对能级大小对开发应用前景广阔的双掺杂非挥发全息存储器件具有很重要的理论指导意义。
From the viewpoint of chemical bond, a bonding energy model is proposed to study the occupancy and properties of dopants in the lithium niobate (LiNbO_3) single crystals based on the impact of the ionic radii and valence state.
     Dopants usually incorporate into Li or Nb sites in the LiNbO_3 crystallographic frame. Generally speaking, the properties of chemical bonds are more similar if they have closer bonding energies. Thus dopants make the crystal lattice change little. According to this opinion, the dopant occupancy in the LiNbO_3 matrix can be determined by comparing the deviation of its bonding energy in different lattice location at both Li and Nb sites. The theoretical occupancy of dopants agrees well with the experimental results.
     By analyzing the variation of bonding energy of dopants in different lattice sites (i.e., Li or Nb sites), we find that photorefractive (PR) ions decrease the crystal bonding energy whether they occupy Li or Nb sites, whereas those optical damage resistant (ODR) dopants have the ability to increase the crystal bonding energy when they move to occupy Nb sites. It gives us a bonding energy criterion to distinguish ODR and PR ions and predict some ODR ions to explore new optical devices for the practical applications.
     The threshold concentration of ODR ions in the LiNbO_3 single crystals is quantitatively obtained using bonding energy method. Take the reliable threshold value 5.0 mol% of Mg doped congruent LiNbO_3 as reference, the crystal bonding energies of pure and Mg doped LiNbO_3 are calculated and the bonding energy of Mg doped LiNbO_3 at the threshold decreases 2.14 kcal compared to that of undoped congruent LiNbO_3. The threshold concentration of ODR ions in both congruent and near-stoichiometric LiNbO_3 crystals can be calculated in the light of the same reduced bonding energy (2.14 kcal) at the same growth condition, and it is assumed due to the same property at the threshold of various ODR dopants. The calculated results agree well with the literature reports.
     The doping mechanism of ODR ions in the LiNbO_3 crystal is proposed according to the structure formula. The internal relation between crystal bonding energy and defect structure is investigated. We find that with the increased doping concentration, the crystal bonding energy first increase and then decrease and then increase, while the change trend of intrinsic defect Li vacancy is opposite, it first decrease and then increase and then decrease.
     In addition, based on the crystal structure and chemical bonding, a charge transfer model is proposed for the calculation of energy gap of defects in LiNbO_3 single crystals. It is shown that the PR centers should have appropriate energy level in the LiNbO_3 crystals, which provides us a theoretical guide to obtain promising nonvolatile holographic recording devices through incorporating impurities intentionally.
引文
[1]Russell P.Photonic crystal fibers.Science.2003,299:358-362.
    [2]Benisty H.New designs to confine light.Nature Physics.2005,1:9-10.
    [3]Arsenault A C,Puzzo D P,Manners I et al.Photonic-crystal full-colour displays.Nature Photonics.2007,1:468-472.
    [4]Lifshitz R,Arie A,Banabad A.Photonic quasicrystals for nonlinear optical frequency conversion.Physical Review Letters.2005,95:133901.
    [5]McPherson M S,Ostrovskii I,Breazeale M A.Observation of Acoustical Memory in LiNbO_3.Physical Review Letters.2002,89(11):115506.
    [6]Guarino A,Poberaj G,Rezzonico D et al.Electro-optically tunable microring resonators in lithium niobate.Nature Photonics.2007,1:407-410.
    [7]Hu Z W,Thomas P A,Snigirev A et al.Phase-mapping of periodically domain-inverted LiNbO_3 with coherent X-rays.Nature.1998,392:690-693.
    [8]Odoulov S,Tarabrova,Shumelyuk A.Photorefractive response of bulk periodically poled LiNbO_3:Y:Fe at high and low spatial frequencies.Physical Review Letters.2000,84(15):3294-3297.
    [9]Xue D F,Kitamura K,Wang J Y.Atomic packing and octahedral linking model of lithium niobate single crystals.Optical Materials.2003,23(1-2):399-402.
    [10]Ballman A A.Growth of piezoelectric and ferroelectric materials by the Czochralski technique.Journal of the American Ceramic Society.1965,48(2):112-113.
    [11]张旭,薛冬峰,Kitamura K.铌酸锂晶体的生长研究.人工晶体学报.2005,34(4):720-724.
    [12]贺祥珂,薛冬峰,Kitamura K.铌酸锂晶体的缺陷及其控制.人工晶体学报.2005,34(5):884-888.
    [13]Xue D F,Betzler K,Hesse H.Temperature dependence of the dielectric response of lithium niobate.Journal of Physics and Chemistry of Solids.2001,62(5):973-976.
    [14]Lorenzo A,Jaffrezic H,Roux B et al.Lattice location of rare-earth ions in LiNbO_3.Applied Physics Letters.1995,67(25):3735-3737.
    [15]Xue D F,Kitamura K.Crystallographic modifications of physical properties of lithium niobate crystals by the cation location.Journal of Crystal Growth.2003,249(3-4):507-513.
    [16]Xue D F,Betzler K.Influence of optical-damage-resistant dopants on the nonlinear optical properties of lithium niobate.Applied Physics B.2001,72(6):641-645.
    [17]Fujii Y,Otsuka Y,Ikeda A.Lithium niobate as an optical waveguide and its application to integrated optics.IEICE Transactions on Electronics 2007,E90C(5):1081-1089.
    [18]Imlau M.Defects and photorefraction:a relation with mutual benefit.Physical Status Solidi(a).2007,204(3):642-652.
    [19] Juodkazis S, Sudzius M. Mizeikis V et al. Three-dimensional recording by tightly focused femtosecond pulses in LiNbO_3. Applied Physics Letters. 2006, 89(6):062903.
    
    [20] Tsonev L. Luminescent activation of planar optical waveguides in LiNbO_3 with rare earthions Ln~(3+)-a review. Optical Materials. 2007, in press.
    
    [21] Zhang X, Xue D F, Kitamura K. Domain characteristics and chemical bonds of lithium niobate. Materials Science and Engineering B. 2005, 120(1-3):21-26.
    
    [22] Made D P N, Sahar M R, Sudin R. Interrelation of intrinsic defects and optical absorption properties of lithium niobate (LiNbO_3) crystals. Journal of Nonlinear Optical Physics & Materials. 2005, 14(2): 237-243.
    
    [23] Furukawa Y, Kitamura K, Takekawa S et al. Photorefraction in LiNbO_3 as a function of [Li]/[Nb] and MgO concentrations. Applied Physics Letters. 2000, 77(16):2494-2496.
    
    [24] Kar S, Bhatt R, Shukla V et al. Optical behavior of VTE treated near stoichiometric LiNbO_3 crystals. Solid State Communications. 2006, 137(6): 283-287.
    
    [25] Xue D F, Zhang S Y. The effect of stoichiometry on nonlinear optical properties of LiNbO_3. Journal of Physics: Condensed Matter. 1997, 9(36):7515-7522.
    
    [26] Abrahams S C, Marsh P. Defect structure dependence on composition in lithium niobate.Acta Crystallographica Section B. 1986, 42:61-64.
    
    [27] Fay H, Alford W J, Dess H M. Dependence of second-harmonic phase-matching temperature in LiNbO_3 crystals on melt-composition. Applied Physics Letters. 1968, 12(3):89-92.
    
    [28] Peterson G E, Carnevale A. ~(93)Nb NMR linewidths in nonstoichiometric lithium niobate.Journal of Chemical Physics. 1972, 56(10):4848-4851.
    
    [29] Smyth D M. Defects and transport in LiNbO_3. Ferroelectrics. 1983, 50:93-102.
    
    [30] Lerner P, Legras C, Dumas J P. Stoechiom(?)trie des monocristaux de m(?)taniobate de lithium.Journal of Crystal Growth. 1968, 34:231-235.
    
    [31] Iyi N, Kitamura K, Izumi F et al. Comparative study of defect structures in lithium niobate with different compositions. Journal of Solid State Chemistry. 1992,101(2):340-352.
    
    [32] Zotov N, Boysen H, Frey F et al. Cation substitution models of congruent LiNbO_3 investigated by X-ray and neutron powder diffraction. Journal of Physics and Chemistry of Solids. 1994, 55(2):145-152.
    
    [33] Willkinson A P, Cheetham A K, Jarman R H. The defect structure of congruently melting lithium niobate. Journal of Applied Physics. 1993, 74(5):3080-3083.
    
    [34] Blumel J, Born E, Metzger T. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. Journal of Physics and Chemistry of Solids. 1994,55(7):589-593.
    
    [35] Kojima S. Composition variation of optical phonon damping in lithium niobate crystals.Japanese Applied Physics. 1993, 32(9B):4373-4376.
    [36]Jermann F,Otten J.Light-induced charge transport in LiNbO_3:Fe at high light intensities.Journal of the Optical Society of America B.1993,10:2085-2092.
    [37]Leroux C,Nihoul G,Malovichko G et al.Investigation of correlated defects in non-stoichiometric lithium niobate by high resolution electron microscopy.Journal of Physics and Chemistry of Solids.1998,59(3):311-319.
    [38]Abdi F,Fontana M D,Aillerie M et al.Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO_3 and its relationship to optical properties.Applied Physics A.2006,83(3):427-434.
    [39]Rebouta L,da Silva M F,Soares J C et al.Ion-beam/channeling characterization of LiNbO_3:interaction between impurity sites.Optical Materials.1995,4(2-3):174-178.
    [40]He X K,Xue D F.Dopant occupancy in MgO-codoped lithium niobate crystals.Journal of Rare Earths.2006,24:276-280.
    [41]He X K,Xue D F.Doping mechanism of optical-damage-resistant ions in lithium niobate crystals.Optics Communications.2006,265(2):537-541.
    [42]刘建军,张万林,张光寅.掺镁铌酸锂晶体的缺陷结构及其结晶化学分析.物理学报.1996,45(11):1852-1857.
    [43]孔勇发,许京军,张光寅等.多功能光电材料--铌酸锂晶体.北京:科学出版社,2005.
    [44]Xue D F,Kitamura K.Dielectric characterization of the defect concentration in lithium niobate single crystals.Solid State Communications.2002,122(10):537-541.
    [45]Xue D F,Betzler K,Hesse H.Second order nonlinear optical properties of In-doped lithium niobate.Journal of Applied Physics.2001,89(2):849-854.
    [46]李铭华.杨春晖.徐玉恒等.光折变晶体材料科学导论.北京:科学出版社,2003.
    [47]Xue D F,Betzler K,Hesse H.Chemical bond analysis of the second-order nonlinear optical behavior of Mg-doped lithium niobate.Journal of Physics:Condensed Matter.2000,12(28):6245-6252.
    [48]Xue D F,Betzler K,Hesse H.Chemical bond analysis of the second order nonlinear optical behavior of Zn-doped lithium niobate.Optics Communications.2000,182(1-2):167-173.
    [49]Volk T,Wohlecke M,Rubinina N.Optical-damage-resistant impurities(Mg,Zn,In,Sc)in lithium niobate.Ferroelectrics.1996,183:291-300.
    [50]Razzari L,Minzioni P,Cristiani I et al.Photorefractivity of Hafnium-doped congruent lithium-niobate crystals.Applied Physics Letters.2005,86(13):131914.
    [51]Kong Y P,Liu S G,Zhao Y J et al.Highly optical damage resistant crystal:Zirconium-oxide-doped lithium niobate.Applied Physics Letters.2007,91(8):081908.
    [52]Burlot R,Moncorge R,Boulon G.Spectroscopic properties of Nd~(3+) doped Sc_2O_3:LiNbO_3crystal fibers.Journal of Luminescence.1997,72-74:812-815.
    [53]Sekita M,Nakamura M,Watanabe A et al.Induced emission cross sections of near stoichiometric LiNbO_3:Mg,Nd.Journal of Applied Physics.2006,100(10):103501.
    [54]Li A H,Sun L,Zheng Z R et al.Spectroscopic properties of Er~(3+) in Sc:LiNbO_3 crystal.Applied Physics A.2007,89(4):1005-1010.
    [55]Nuuez L,Cusso F.Polarized absorption and energy levels of LiNbO_3:Tm and LiNbO_3(MgO):Tm.Journal of Physics:Condensed Matter.1993,5(30):5301-5312.
    [56]Phillips J C.Ionicity of the chemical bond in crystals.Reviews of Modern Physics.1970,42(3):317-356.
    [57]Levine B F.Bond susceptibilities and ionicities in complex crystal structures.The Journal of Chemical Physics.1973,59(3):1463-1486.
    [58]张思远.复杂晶体化学键的介电理论及其应用.北京:科学出版社,2005.
    [59]薛冬峰.晶体的化学键和非线性光学效应:(博士学位论文).长春:中国科学院长春应用化学研究所,1998.
    [60]Xue D F,Betzler K,Hesse H et al.Search for new optical crystals by the chemical bond method.人工晶体学报,2004,33(4):605-612.
    [61]Plachinda P A,Dolgikh V A,Stefanovich S Y et al.Nonlinear-optical susceptibility of hilgardite-like borates M_2B_5O_9X(M=Pb,Ca,St,Ba;X=Cl,Br).Solid State Science.2005,7(10):1194-1200.
    [62]邵美成.鲍林规则与键价理论.北京:高等教研出版社,1993.
    [63]Brown I D,Altermatt D.Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database.Acta Crystallographica Section B:Structural Science.1985,41:244-247.
    [64]薛冬峰.晶体材料的设计与模拟.人工晶体学报.2007,36(4):743-749.
    [65]He X K,Xue D F,Kitamura K.Defects and domain engineering of lithium niobate crystals.Materials Science and Engineering B.2005,120(1-3):27-31.
    [66]Rue D F,Wu S X,Zhu Y C et al.Nanoscale domain switching at crystal surfaces of lithium niobate.Chemical Physics Letters.2003,377(3-4):475-480.
    [67]张焕.晶体的结构-化学键关系研究:(硕士学位论文).大连:大连理工大学,2007.
    [68]Yu D Q,Xue D F.Bond analyses of borates from the inorganic crystal structure database.Acta Crystallographica Section B:Structural Science,2006,62:702-709.
    [69]Yu D Q,Xue D F,Ratajczak n.Bond-valence parameters for characterizing O-H'''O hydrogen bonds in hydrated borates.Journal of Molecular Structure.2006,792:280-285.
    [70]Yu D Q,Xue D F,Ratajczak H.Golden ratio and bond-valence parameters of hydrogen bonds of hydrated borates.Journal of Molecular Structure.2006,783(1-3):210-214.
    [71]Xue D P,Betzler K,Hesse H.Induced Li-site vacancies and non-linear optical behavior of doped lithium niobate crystals.Optical Materials.2001,16(3):381-387.
    [72]Xue D F,Iyi N,Kitamura K.Predicting temperature dependence of the refractive index and nonlinear optical coefficients in lithium niobate.Journal of Applied Physics.2002,92(8):4638-4643.
    [73]薛冬峰.化学键观点在寻找新型非线性光学晶体材料中的应用.化学研究.2001,12(1):5-7.
    [74]Zhang X,Xue D F,Liu X Y.Ferroelectric nanodomain engineering at the-Z face of lithium niobate single crystals.Physica B:Condensed Matter.2007,387(1-2):147-150.
    [75]Zhang X,Xue D F.Bonding energy and growth habit of lithium niobate single crystals.Journal of Rare Earths.2006,24:241-244.
    [76]Zhang X,Xue D F.Bond energy prediction of Curie temperature of lithium niobate crystals.Journal of Physical Chemistry B.2007,111(10):2587-2590.
    [77]许东利,薛冬峰.结晶成长的化学键合理论.人工晶体学报.2006,35(3):598-603.
    [78]Xu D L,Xue D F,Ratajczak H.Morphology and structure studies of KDP and ADP crystallites in water and ethanol solutions.Journal of Molecular Structure,2005,740(1-3):37-45.
    [79]Xu D L,Xue D F.Computational study of crystal growth habit and cleavage.Journal of Alloys and Compounds.2007,in press.
    [80]Zhang X,Xue D F,Liu M N et al.Microscopically structural studies of lithium niobate powders.Journal of Molecular Structure.2005,754(1-3):25-30.
    [81]陈伟,王占国,林兰英.晶体化学中的键电荷模型及其应用前景.无机材料学报,1995,10(2):139-150.
    [82]Zi(?)lkowski J,Dziembaj L.Empirical relationship between individual cation-oxygen bond length and bond energy in crystals and in molecules.Journal of Solid State Chemistry.1985,57:291-299.
    [83]Rebouta L,Smulders P J M,Boerma D O et al.Ion-beam channeling yields of host and impurity atoms in LiNbO_3:computer simulations.Physical Review B.1993,48(6):3600-3610.
    [84]Kling A,Valdrez C,Marques J G et al.Incorporation of tungsten in lithium niobate by diffusion.Nuclear Instruments and Methods in Physics Research B.2002,190:524-527.
    [85]Donnerberg H J,Tomlinson S M,Catlow C R A.Defects in LiNbO_3-Ⅱ.Computer simulation.Journal of Physics and Chemistry of Solids.1991,52(1):201-210.
    [86]He Y L,Xue D F.Bond-energy study of photorefractive properties of doped lithium niobate crystals.Journal of Physical Chemistry C.2007,111(35):13238-13243.
    [87]Mouras R,Fontana M D,Bourson P et al.Lattice site of Mg ion in LiNbO_3 crystal determined by Raman spectroscopy.Journal of Physics:Condensed Matter.2000,12(23):5053-5059.
    [88]Chernaya T S,Maksimov B A,Volk T R et al.Zn atoms in lithium niobate and mechanism of their insertion into crystals.JETP Letters.2001,73(2):103-106.
    [89]Volk T,Wohlecke M,Rubinina N et al.LiNbO_3 with the damage-resistant impurity indium.Applied Physics A:Materials Science and Processing.1995,60(2):217-225.
    [90]Shimamura S,Watanabe Y,Sota T et al.A defect structure model of LiNbO_3:Sc_2O_3.Journal of Physics:Condensed Matter.1996,8(37):6825-6832.
    [91]Zhao M G,Chiu M.Substitution site of the Fe~(3+) impurity in crystalline LiNbO_3.Physical Review B.1994,49(18):12556-12558.
    [92]Jablonski R,Kaczmarek S M,Pracka I et al.ESR and optical measurements of LiNbO_3and LiTaO_3 single crystals doped with ions of the first transition series.Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy.1998,54(11):1701-1709.
    [93]Grachev V,Malovichko G.EPR,ENDOR,and optical-absorption study of Cr~(3+) centers substituting for niobium in Li-rich lithium niobate crystals.Physical Review B.2000,62(12):7779-7790.
    [94]Malovichko G,Grachev V,Hofstaetter A et al.ENDOR study of Cr~(3+) centers substituting for lithium in lithium niobate.Physical Review B.2002,65(22):224116.
    [95]Zhang G Q,Zhang G Y,Liu S M et al.Valence and electronic shell configuration characters of damage-resistant dopants in LiNbO_3 crystals.Chinese Physical Letters.1998,15(9):686-688.
    [96]Petrosyan A M,Hovsepyan R K,Kokanyan E P et al.Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants.Proceedings of SPIE.2000,4060:106-113.
    [97]Zhong J G,Jin J A,Wu Z K et al.Measurement of optically induced refractive-index damage of lithium niobate doped with different concentration of MgO.11th International Quantum Electronics Conference.New York.IEEE Catalog.No.80.CH 156-0,1980:631-635.
    [98]Bryan D A,Gerson R,Tomaschke H E.Increased optical damage resistance in lithium niobate.Applied Physics Letters.1984,44(9):847-849.
    [99]Volk T,Rubinina N,Wohlecke M.Optical-damage-resistant LiNbO_3:Zn crystal.Optical Letters.1990,15:996-998.
    [100]冯锡淇,张启仁,应继锋等.掺镁铌酸锂晶体阈值效应的研究.中国科学A辑.1989,6:665-672.
    [101]范志新,刘新福.铌酸锂晶体最佳掺杂含量的理论计算.人工晶体学报.2002,31(1):67-70.
    [102]Xue D F,He X K.Dopant occupancy and structural stability of doped lithium niobate crystals.Physical Review B.2006,73(6):064113.
    [103]Li S Q,Liu S G,Kong Y F et al.The optical damage resistance and absorption spectra of LiNbO_3:Hf crystals.Journal of Physics:Condensed Matter.2006,18(13):3527-3534.
    [104]Minzioni P,Cristiani I,Yu J et al.Linear and nonlinear optical properties of hafnium doped lithium niobate crystals.Optics Express.2007,15(21):14171-14176.
    [105]Iyi N,Kitamura K,Yajima Y et al.Defect structure model of MgO-doped LiNbO_3.Journal of Solid State Chemistry.1995,118(1):148-152.
    [106] Furukawa Y, Kitamura K, Takekawa S et al. The correlation of MgO-doped near stoichiometric LiNbO_3 composition to the defect structure. Journal of Crystal Growth. 2000,211(1-4):230-236.
    
    [107] Ashkin A, Boyd G D, Dziedzic J M et al. Optical-induced refractive index inhomogeneities in LiNbO_3 and LiTaO_3. Applied Physics Letters. 1966, 9(1):72-74.
    
    [108] Schirmer O F, Thiemann O, Wohlecke M. Defects in LiNbO_3—I. Experimental aspects.Journal of Physics and Chemistry of Solids. 1991, 52(1):185-200.
    
    [109] Li L, Zhou S H, Zhang S Y. Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu~(3+)-doped compounds. Journal of Physical Chemistry C. 2007, 111(7):3205-3210.
    
    [110] Li H T, Fan Y X, Guo F Y et al. Growth and spectroscopic characterization of Fe_2O_3 highly doped near-stoichiometric LiNbO_3 single crystals. Journal of Crystal Growth. 2007,303(2):651-654.
    
    [111] Suchocki A, Biernacki S W, Grinberg M. Nephelauxetic effect in high-pressure luminescence of transition-metal ion dopants. Journal of Luminescence. 2007,125(1-2):266-270.
    
    [112] Hesselink L, Orlov S S, Liu A et al. Photorefractive materials for nonvolatile volume holographic data storage. Science. 1998, 282:1089-1094.
    
    [113] Bai Y S, Kachru R. Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers. Physical Review Letters. 1997, 78(15):2944-2947.
    
    [114] Amodei J J, Staebler D L. Holographic pattern fixing in electro-optic crystals.Applied Physics Letters. 1971, 18(12):540-542.
    
    [115] Micheron F, Bismuth G. Electrical control of fixation and erasure of holographic patterns in ferroelectric materials. Applied Physics Letters. 1972, 20(2):79-81.
    
    [116] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature. 1998, 393:665-668.
    
    [117] McMillen D K, Hudson T D, Wagner J et al. Holographic recording in specially doped lithium niobate crystals. Optics Express. 1998, 2(12):491-502.
    
    [118] Kang B, Rhee B K, Joo G T et al. Measurements of photovoltaic constant and photoconductivity in Ce,Mn:LiNbO_3 crystal. Optics Communications. 2006, 266:203-206.
    
    [119] Ren L Y, Liu L R, Liu D A et al. Dynamic characteristics of holographic recording and fixing in LiNbO_3:Ce:Cu crystal. Optics Communications. 2004, 238:363-369.
    
    [120] Ren L Y, Liu L R, Liu D A et al. Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO_3:Fe:Cu. Optical Materials. 2003,23:261-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700