DNA-CTMA薄膜波导的制备及其光电特性表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对DNA-CTMA薄膜的制备及DNA-CTMA薄膜光电特性表征进行研究。我们利用离子交换法制备DNA-CTMA复合物,通过旋转涂覆法和自组装法将DNA-CTMA复合物制备成薄膜波导,表征了DNA-CTMA薄膜的吸收光谱、折射率、交流电阻率等光电特性参数,并利用棱镜耦合的方法观测到DNA-CTMA薄膜波导的m线。
     首先,本文综述了DNA-类脂复合物独特的光电特性及其在光电子器件应用的研究进展。DNA-类脂复合物薄膜,具有透光性好、光学损耗低、在200-250℃仍很稳定等优点。DNA独特的双螺旋结构不但使DNA-阳离子表面活化剂复合物薄膜具有良好的光学特性,而且DNA碱基对结构中的π?π结构为电子的传输提供了通道,同时也为掺杂功能染料提供了纳米级尺寸的自由空间。DNA-类脂复合物在光电子器件中的应用方面,主要有生物有机发光二极管(BioLED)、生物有机半导体场效应管(BioFET)和DNA-类脂复合物在主客掺杂型波导中的应用等。DNA-类脂复合物优越的光电子特性是制备高质量光电子器件的基础。
     本文第二章根据导波光学理论,应用射线光学方法和电磁理论推导薄膜波导中TE和TM导模的本征方程,分析薄膜波导中传播模式和辐射模式的产生条件,从而为设计和制备DNA-CTMA薄膜波导光电子器件提供理论指导;概括介绍了薄膜波导的折射率和厚度、光传输损耗的测量方法,为测量DNA-CTMA薄膜光电特性和分析波导实验结果奠定了理论基础。在本章的最后,概括了目前介质波导所用的材料,如铌酸锂(LiNbO3)晶体、半导体化合物、二氧化硅(SiO2)、SOI(绝缘体上硅)、聚合物等,以及各种材料的主要光学特性参数。
     第三章是实验部分。我们利用三文鱼、青鱼和鲫鱼的DNA分别制备成DNA-CTMA薄膜,对三种DNA以及2000bp和50bp两种不同链长的三文鱼DNA进行对比实验,包括对DNA-CTMA薄膜从紫外200nm到红外25μm的吸收光谱、m线、DNA-CTMA薄膜的折射率、交流电阻等光学特性进行表征。实验结果显示:用不同DNA制备的DNA-CTMA薄膜表现出非常相似的吸收光谱、折射率和交流电阻;不同链长的DNA-CTMA薄膜的光学特性的对比,显示出链的长短并不影响吸收光谱和折射率的大小;另外,分析了在薄膜的制备过程中,残留丁醇及制膜温度和干燥时间对薄膜折射率的影响。薄膜交流电阻率测量结果显示:50bp短链DNA-CTMA薄膜的交流电阻率要比2000bp长链DNA-CTMA薄膜的交流电阻率小2-3个数量级;DNA-CTMA薄膜的电阻随交流电频率的增大而减小;随交流电频率的增大,50bp短链DNA-CTMA薄膜的电阻比2000bp长链DNA-CTMA薄膜电阻减小得更快。
The preparation and photo-electricity characteristics of DNA-CTMA films are mainly studied in this thesis. DNA-CTMA complexes were prepared by ion-change method,and DNA-CTMA thin film were fabricated by self-assembled and spin-coating methods, respectively. The photo-electricity characteristics of DNA-CTMA, such as the absorb spectra, refractive index, ac resistance and so on, were taken. The m lines were examined through prism coupling method.
     The unique photo-electricity characteristics and application as an optoelectronic film material of DNA-lipid complex are reviewed in the first part of the thesis. High optical transparency, low loss, thermal stability limit as high as 200-250℃are all the advantages of DNA-lipid complex film. Theπ?πstacking structure of the nucleo-base pairs of DNA not only form a tunnel ready for electron transfer, but also gives the film materials high optical transparency. Nanosize free space was offered for doping with functional dyes. And then , the application in optoelectronic field were summarized, including Bio-Organic Light Emitting Diode(BioLED), Bio-organic-semi- conductor-field-effect-transistor(BioFET) and application in host/guest waveguide and so on. The superior photo-electricity characteristics of DNA-CTMA are the basis of preparation super photo-electricity device.
     The intrinsic equation of TE and TM mode in plane waveguide were derived on the basis of ray optics and electromagnetic theory in the second part of this thesis. The condition of guided mode and radiation mode were summarized, offering the theory guide in designing and preparation of DNA-CTMA plane waveguide. The measure methods of index of refraction, thickness and loss of plane waveguide were summarized,which are the theory basic of measure in optical characteristics and analysis the experimental results of DNA-CTMA films. The characteristics of photo-electricity of dielectric waveguide material including LiNbO3 crystalloid, semiconductor complex, SiO2, SOI and polymer were summarized in the last nodule.
     The third part of this thesis is the experiment. DNA-CTMA films were fabricated use Salmon DNA, herring DNA, crucian DNA. 2000bp Salmon DNA-CTMA films were compared with 50bp Salmon DNA-CTMA films in terms of photo-electricity characteristics, including absorption spectrum with wavelength from 200nm to 25μm , m line, index of refraction of DNA-CTMA films and ac resistance. Results show, alike absorption spectra, refractive index and ac resistance were appeared among three kind of DNA. Different length of DNA molecule owed the same absorption spectra and refractive index. In addition, in the preparation process of the films, the some effect factors to the refractive index of film were analyzed, for example, the butanol remained in film, temperature and the dry time. And the ac resistivity of 50bp short DNA-CTMA thin film is less 2-3 orders of magnitude than the 2000bp longer DNA-CTMA thin film. The ac resistance of DNA-CTMA films decreases with increasing frequency of alternating current. Ac resistance of 50bp short DNA-CTMA film decreases at a much faster rate than that of 2000bp DNA-CTMA with frequency increasing.
引文
[1]何杰,“半导体集成化芯片系统基础研究”重大研究计划进展综述.中国科学基金, 2005年第6期, 343-346.
    [2]中华人民共和国国民经济和社会发展第十一个五年规划纲要,2006年03月16日,新华网.
    [3]沈玉全,潘裕斌,锺宝璇,有机/聚合物光电子学器件的应用与研究进展,功能材料, 2001, 31(1): 1-8.
    [4]方鲲,路阳,王凤平,邱宏,半导体量子点/聚合物纳米复合材料研究进展,材料导报,2006,20:102-105.
    [5] Kanji Yamaoka, Yoshiharu Kagami, Masahiro Wada, Amane Watanuki, Junichi Yoshida, Hiroharu Ikeda and Naoya Ogata,Opto-electronic Applications of Marine DNA. Proc. of SPIE, 2005, 5624: 193-202.
    [6]崔大付;张兆田;熊小芸;徐建华,生物电子学的研究与发展,中国科学基金:2004年第4期: 205-210.
    [7] Miller S E. Integrated Optics: An Introduction. Bell System Technical Journal, 1969, 48: 2095- 2061.
    [8]于荣金.集成光学和光子学.光电子·激光,1998,9(2):162-165.
    [9] Y.Okahata and H.Nakayama. Preparations of DNA-aligned Thin Films by Cast and LB Methods and Their Anisotropic Electric Conductivity along DNA Strands in the Film. Proc.Japan Acad. 2000, 76, Ser.B: 145-150.
    [10] T. Fukushima, Y. Inoue, T. Hayakawa, K. Taniguchi et al. Preparation of and Tissue response to DNA-Lipid Films.J.Dental Res. 2001, 80: 1772-1776.
    [11] Y. Okahata and T. Kawasaki.DNA-Lipid Complexes in Organic Solution,and DNA-aligned Cast and LB Films. Christine Wittmann. 2005, Splinger-Verlag: 57-75.
    [12] J. J. J. P. van den Beucken, M. R. J. Vos, P. C. Thune, T. Hayakawa et al. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials. 2006, 27: 691-701.
    [13] Andrew J. Steckl, DNA– a new material for photonics?. Nature Photonics, 2006, 1: 3– 5.
    [14] Leslie AG, Amott S, Chandrasekaran R. Ratliff RL.Polymorphism of DNA double helices. J. Mol. Biol. 1980, 143, 49(1): 49-72.
    [15] Fuller W, Hutchinson F, Molecular and crystal structures of double-helical RNA.I. An X-ray diffraction study of fragmented yeast RNA and a preliminary double-helical RNA model. J. Mol. Biol. 1967, 27(3): 507-24.
    [16] Lili Wang, Jonichi Yoshida, and Naoya Ogata et al.. Self-Assembled Supramolecular Films Derived from Marine Deoxyribonucleic Acid (DNA)-Cationic Surfactant Complexes: Large-Scale Preparation and Optical and Thermal Properties. Chem. Mater. 2001, 13, 1273-1281.
    [17] K Ijiro and Y.Okahata.A DNA-Lipid Complex soluble in Organic Solvents. J. Chem. Commun. 1992, 1339-1341.
    [18] Y.Okahata., K Ijiro and Matsuzaki.A DNA-Lipid Cast Film on a Quartz-Crystal Microbalance and Detection Behaviors of Dye Molecules into DNA in an Aqueous Solution. Langmuir. 1993, 9: 19-21.
    [19] Y. Okahata. DNA Strands aligned in a Film.“Advances in Biomaterials Science”. Kodansha Elsevier, Tokyo, 1997, 363-372.
    [20] Y. Okahata. T. Kobayashi, K. Tanaka and M Shimomura. Anisotropic Electric Conductivity in an Aligned DNA Cast Film.J.Am.Chem.Soc.1998,120,6165-6166.
    [21] H. Kimura, S. Machida, K. Horie and Y.Okahata. Effect of lipid Molecules on Twisting Motions of DNA Helix Studied by Fluorescence Polarization Anisotropy. Polym.J, 1998, 30: 708-712.
    [22] Y. Okahata, K. Ijiro, and Y. Matsuzaki.A DNA-Lipid Cast Film on a Quartz-Crystal Microbalance and Detection of Intercalation Behaviors of Dye Molecules into DNAs in an Aqueous Solution. Langmuir, 1993, 9: 19-21.
    [23] K.Tanaka,Y.Okahata.A DNA-Lipid Complex in Organic media and Formation of an Aligned Cast Film. J. Am. Chem. Soc. 1996, 188:10679-10683.
    [24] M. Samoc, A. Samoc, A. Miniewicz and J. G. Grote,“Femtosecond z-scan studies of cubic nonlinear optical properties of salmon DNA”, Australasian Conference on Optics, Lasers and Spectroscopy, ACOLS’5Rotorua. New Zealand, 2005, TuP52:5-9.
    [25] A. Samoc, M. Samoc, A. Miniewicz and J. G. Grote.“Linear and nonlinear refractive indices of deoxyribonucleic acid (DNA)”, ISOPL4, Dingle, Ireland, 27-30 June, 2006: 7-8.
    [26] M. Samoc, A. Samoc and J. G. Grote, Complex nonlinear refractive index of DNA. Chem. Phys. Lett. submitted, 2006, 431: 1-3.
    [27] Joshua Hihath, Bingqian Xu, Peiming Zhang et al. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. PNAS. 2005, 102 (47): 16979-16983.
    [28] Y. Okahata. Construction of Electron-Transfer Field usingAligned DNA-Lipid Cast Film.“New Charanges in Organic Electrochemistry”, ed. by T. Osa, Gordon and Breach Sci.Tokyo.1998.
    [29] H. Nakayama, H. Ohno and Y. Okahata. Intramolecular Electron Conduction along DNA Strands and their Temperature Dependency in a DNA-aligned Cast Film. Chem. Commun. 2001: 2300-2301.
    [30] Okahata Y, Kobayashi T, Tanaka K et al. J Am.Chem.Soc.1998, 120: 6165-6166.
    [31] James G. Grote, Joshua A. Hagen, John S. Zetts , et al. Investigation of Polymers and Marine-Derived DNA in Optoelectronics. J. Phys. Chem.B 2004, 108 (25): 8584-8591.
    [32] Emily M. Heckman, Perry P. Yaney, James G. Grote, et al.. Poling and optical studies of DNA NLO waveguides. SPIE , 2005, 593408: 1-7.
    [33]张海琪,薛良义,李明云,等.大黄鱼基因组DNA的提取及其RAPD分析条件的探索.科技通报, 2002, 18(5): 368-373.
    [34]张宁,王凤山,DNA提取方法进展.中国海洋药物, 2004, 2: 40-46.
    [35]韩兵社,解军,王惠珍.海洋生物废弃物核酸提取工艺研究.山西医科大学学报, 2001, 32(3): 274-279.
    [36]姚伟,耿广良,余爱丽,等.一种改良的转基因甘蔗基因组DNA提取方法.热带亚热带植物学报, 2004, 12(3): 257-260.
    [37]易庆平,罗正荣,张青林.植物总基因组DNA提取纯化方法综述.安徽农业科学, 2007, 35(25): 7789-7791.
    [38] Anna Samoc,Zbigniew ,Galewski et al.. Prism coupler and microscopic investigations of DNA films. SPIE, 2007, 6646: 1-9.
    [39] F.斯伯,R布伦特,RE金斯顿,等.精编分子生物学实验指南.北京:科学出版社, 1998: 832-833.
    [40] Gongjian Zhang, Lii Wang, Jonichi Yoshida and Naoya Ogata,Optical and Optoelectronic Materials Derived from Biopolymer, Deoxyribonucleic Acid (DNA). SPIE, 2001, 4580: 337-346.
    [41]汪之和.水产品加工与利用.北京:化学工业出版社,2003.
    [42]王晓霞,解军,王惠珍,等.改良稀碱法从鱿鱼肝脏中提取核酸.山西医科大学学报, 2001, 5: 385-386.
    [43]郎杰,刘鸣华,DNA薄膜的制备及性质研究进展.化学通报.2001, 4:197-200.
    [44] Anna Samoc,Marek Samoc,James G. Grote, et al. Optical properties of Deoxyribonucleic Acid (DNA) polymer host. SPIE, 2006, 6401: 1-10.
    [45] Kunio Hirata, Takahito Oyamada et al. Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammo nium lipid complex layer. Appl. Phys. Lett. 2004, 85, 1627-1629.
    [46] J. A. Hagen, W. Li, A. J. Steckla, J. G. Grote. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl. Phys. Lett. 2006, 88(17): 171109-1-3.
    [47] Birendra Singh ,Niyazi Serdar Sariciftc. Bio-organic-semiconductor-field- effect-transistor based on deoxyribonucleic acid gate dielectric.APPLIED PHYSICS LETTERS, 2006, 100, (24): 1-4.
    [48] Emily M.Heckman,James G.Grote,Perry P.Yaney et al.. DNA based nonlinear photonic materials. SPIE, 2004, 5516: 47-51.
    [49] Darnell Diggs, Josh Hagen, Emily Heckman, et al.. Molecular Binding and Enhanced Photoluminescence of Bromocresol Purple in Marine Derived DNA. SPIE, 2005, 593407: 1-8.
    [50] Z. Yu, W. Li, J. A. Hagen et al.. Photoluminescence and lasing from deoxyribonu- cleic acid (DNA) thin films doped with sulforhodamine. Applied Optics, 2007, 46: 1507-1513.
    [51] James G Grote, Emily M Heckman, Joshua A.Hagen ,et al.. DNA:new class of polymer. SPIE, 2006, 6117:61170.
    [52] Emily M. Heckman, James G. Grote et al.. Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer. Appl. Phys. Lett. 2006 , 89(18): 181116-1-3.
    [53] Emily M.Heckman, Perry P.Yaney, James G.Grote et al.. Poling and optical studies of DNA NLO waveguides. Proc. of SPIE. 2005, 5934: 593408-1-7.
    [54] J.G. Grote, J.S. Zetts, R.L. Nelson et al. Investigation of Polymers and Marine Derived DNA in Optoelectronics. Journal of Physical Chemistry B. 2004, 108(25): 8584-8591.
    [55] G. Zhang, H. Takahashi, L. Wang et al.. Nonlinear Optical Materials Derived From Biopolymer (DNA)-Surfactant-Azo Dye Complex. Proc. of SPIE. 2002, 4905: 375-380.
    [56] J. G. Grote, N. Ogata, D.E. Diggs, and F. Kenneth Hopkins. Deoxyribonucleic Acid(DNA) Cladding Layers for Nonlinear Optic Polymer Based Electro-Optic Devices. Proc. of SPIE. 2003, 4991: 621-625.
    [57] P. P. Yaney, E. M. Heckman, D. E. Diggs, F. K. Hopkins and J. G. Grote. Development of chemical sensors using polymer optical waveguides fabricated with DNA. Proc. of SPIE. 2005, 5724: 224-233.
    [58] I.Smalyukh Ivan, V.Zribi Olena,C.Butler John et al.. Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA. Phy. Rev. Lett. 2006, 96, 177801.
    [59] A. Miniewicz, A.Kochalska, J. Mysliwiec et al.. Deoxyribonucleic acid-based photochromic material for fast dynamic holography. Appl. Phys. Lett. 2007, 91, 04118.
    [60] S.Zakharova Svetlana, W.Jesse, C. Backendorf and R.C.van der Maarel Johan. Liquid crystal formation in supercoiled DNA solutions. Biophysical J. 2002, 83: 1119-1129.
    [61] K. Tanaka and Y. Okahata, A DNA-lipid complex in organic media and formation of an aligned cast film. J Am.Chem.Soc. 1996, 118: 10679-10683.
    [62] E. M. Heckman, J. A.Hagen, P. P. Yaney, J. G. Grote and F. K. Hopkins. Processing techniques for deoxyribonucleic acid:Biopolymers for photonics application. Appl. Phys. Lett. 2005, 87, 211115.
    [63] Y. Kawabe, L. Wang, T. Nakamura and N. Ogata. Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes. Appl. Phys.Lett. 2002, 81: 1372-1374.
    [64] P. Gupta, P. P. Markowicz, K. Baba et al.. DNA-Ormocer based biocomposite for fabrication of photonic structures. Appl. Phys. Lett. 2006, 88, 213109.
    [65] Tamir T.Integrated Optics.2nd ed.Berlin, Heidelberg, New York:Springer- Verlag. 1979.
    [66] Hunsperger R G.Integrated Optics:Theory and Technology. 3rd ed. New York: Springer-Verlag.1991.
    [67] Okamoto K. Fundamentals of Optical Waveguides. New York:Academic Press.2000.
    [68]唐天同,王兆宏.集成光学.北京:科学出版社, 2005年8月第一版:16-18.
    [69] Yariv A. Optical Electronics in Modern Communication. Beijing: Publishing House of Electronics Industry, 2002.
    [70]曹庄琪.导波光学.北京.科学出版社.2007.
    [71]肖丙刚,宋军,何赛灵.泄漏波导法精确测量薄膜参数的理论和实验研究.光子学报. 2005,34(4): 586-589.
    [72] Weber H P, Dunn F A, Leibolt W N. Loss measurements in thin-film optical waveguides. Applied Optics. 1973, 12: 755-757.
    [73] Mwez J L, Logan R A, Sergent A M. Loss measurements in GaAs and AlxGal-xAs dielectric waveguides between 1.1eV and the energy gap. Journal of Applied Physics. 1976,47:1436-1450.
    [74]蒋毅,曹庄琪,仇琳琳等.低损耗有机聚合物光波导的制备及其数字化测量技术.光学学报. 1999,19:1142-1145.
    [75]方志烈.半导体发光材料和器件.上海:复旦大学出版社,1992.
    [76]沈玉全,潘裕斌,锺宝璇.有机/聚合物光电子学器件的应用与研究进展.功能材料. 2000, 31(1): 1-8.
    [77] Oh Min-Cheol, Lee Hyung-Jong, Lee Myung-Hyun, et al. Asymmetric Xjunction thermooptic swithes based on fluorinated polymer waveguides. IEEE Photonics Technology Letters. 1998, 10(6): 813-815.
    [78] Moylan CR, Miller R D, Volksen W, et al. Thermally stable polymers for application in integrated optics. Lasers and Electro-Optics Society Annual Meeting, 1995, 2: 249-250.
    [79] Ohmori Y, Yo shino K, Suita Y. Integrated Photonics Research. Technical Digest Series. 1998, 4: 356-358.
    [80] Henning T, Wachter C, Karthe W, et al. Integrated Photonics Research. Technical Digest Series. 1998, 4: 350-352.
    [81] Tumolillo T A, AMSMI-RD-WS-CM Jr, Ashley P R.SPIE. 1993, 2025: 507-515.
    [82]刘昊.有机聚合物光波导的研究[J].南京:东南大学,2004.
    [83]蔡伯荣,谭志飞,孙守瑶.集成光学[M].成都:电子科技大学出版社,1990.
    [84] Anna Samoc, Marek Samoc, James G. Grote, et al. Optical properties of Deoxyribonucleic Acid(DNA) polymer host. Proc. of SPIE. 2006, 6401: 640106-1-9.
    [85] Emily M. Heckman, Joshua A. Hagen, Perry P. Yaney, et al. Processing techniques for deoxyribonucleic acid:Biopolymer for photonics applications. Appl. Phys. Lett. 2005, 87: 211115-1-3.
    [86] Osterberg H, Smith L W. Transmission of optical energy along surfaces:pt.Ⅱ, inhomogeneous media[J].Journal of Optical Society of America, 1964, 54: 1078-1084.
    [87] Otto A. Exaction of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik,1968, 216: 398-410.
    [88] Tien P K, Ulrich R,Martin R J. Modes of propagating light waves in thin deposited semiconductor films[J].Applied Physics Letters,1969, 14:291-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700