基于介孔氧化硅的发光材料的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔氧化硅具有独特的结构,比如有序的孔道、均一的孔径分布、大的比表面积和非晶态的无机骨架。这些特性可以使它作为功能性客体材料如金属、氧化物和有机基团的主体材料,利用孔道空间限域效应,起到控制这些客体材料的尺寸大小,达到客体材料的分散。在过去的十年时间,基于介孔氧化硅的功能性杂化材料被广泛研究。这种杂化材料的制备是基于将介孔材料作为硬模板在其孔道内引入前驱物的思想,使客体材料在介孔材料孔道中限域生长,所以前驱物溶液的浸渍过程是至关重要的步骤。此外,当客体材料颗粒尺寸降到纳米尺度,尤其是性能受量子尺寸效应影响明显的半导体材料在光电方面具有优异的性能。因此,开发一种简单、有效的组装法将半导体材料组装到介孔材料孔道中,实现其不同于块体材料的性能,是非常有理论和现实意义的。
     另外,硅酸盐材料具有高的热稳定性和化学稳定性、高的发光效率以及可见光范围的光学透明性,是理想的稀土离子和过渡族金属离子发光中心的基质材料。传统高温固相法是制备硅酸盐发光材料的主要方法,但这种方法存在一些缺点:比如高的反应温度容易使颗粒结块,形成大颗粒,后续的研磨过程会引入一些缺陷,使发光性能降低。介孔材料具有高的孔隙率和大的比表面积,这将增加氧化硅的吉布斯自由能以及与反应物之间的接触面积。因此,可以把介孔氧化硅作为反应物来合成新材料。将不同的氧化物组装到介孔氧化硅孔道内,原则上可以通过煅烧得到相应的硅酸盐材料。到目前,利用介孔氧化硅作为反应物来制备硅酸盐材料,进而作为稀土离子或过渡族金属离子的基质材料的研究报道很少。此外,Eu3+的发光特性对所处格点的对称性非常敏感,介孔氧化硅材料具有不同于溶胶凝胶氧化硅的独特结构,可以将介孔氧化硅作为Eu3+的基质材料。
     本工作中,我们利用介孔氧化硅的孔道、孔壁和表面积等特性,制备出具有分立中心发光和复合中心发光的发光材料,并对其结构和发光特性进行了研究,具体的研究内容如下:
     利用两溶剂法在介孔材料SBA-15中组装ZnO团簇,得到ZnO/SBA-15纳米复合材料。ZnO含量高的ZnO/SBA-15纳米复合材料保持有序的二维六方介孔结构。ZnO以非晶态或团簇的形式稳定存在于SBA-15的孔道中。室温下的发射峰经高斯拟合成三个峰:位于367 nm的发射峰归属于ZnO的近带边发射,420 nm处的紫光发射是由局域在SBA-15和团簇ZnO界面耗尽层中的缺陷态与价带之间的辐射跃迁导致的,457 nm处的蓝光发射是ZnO中的氧空位或间隙锌引起的。由于受SBA-15孔道限域空间作用,ZnO表现出量子尺寸效应,禁带宽度变宽,近带边发射向短波长方向移动,发生了显著的蓝移。这对于开发短波长发光材料具有重要的意义。
     以萃取介孔材料SBA-15为硅源,在800℃下煅烧2 h得到锰掺杂硅酸锌(Zn2SiO4:Mn2+)发光材料,该煅烧温度明显低于传统固相反应的煅烧温度,同时也低于以退火SBA-15为硅源时的煅烧温度。这主要是由于萃取SBA-15具有丰富的孔道、大的比表面积、非晶态孔壁和内表面高密度的羟基,这些因素可增加氧化硅的吉布斯自由能,增大反应物之间的接触面积,提高反应动力学,进而降低反应温度。紫外光245 nm激发下,发光中心Mn2+直接被激发;在真空紫外147 nm激发下,激发能量被基质晶格吸收并通过交换作用传递到发光中心Mn2+,伴随着Mn2+从激发态跃迁到基态,产生527 nm的绿光发射。在245 nm激发下,发射强度最强的掺杂浓度为0.06即样品Zn1.94Mn0.06SiO4。在147 nm激发下,样品Zn1.94Mn0.06SiO4的衰减曲线呈双指数函数关系,经拟合得到的平均寿命为8.87ms,这一数值与报道的8-16 ms相一致。
     采用介孔氧化硅SBA-15模板路线,以SBA-15作为无机硅源,通过高温固相反应在1300℃下制备出铕掺杂的硅酸钇(Y2SiO5:Eu3+)发光材料。Y2SiO5:Eu3+结晶性好、颗粒致密、表面光滑、颗粒大小在微米尺度。发射光谱显示了Eu3+的特征发射,且Eu3+占据对称性低的格位。传统高温固相法制备稀土离子掺杂的硅酸钇发光材料,在加助溶剂情况下,煅烧温度需要1500℃。我们采用的制备方法煅烧温度有显著的下降。对比实验结果表明:介孔氧化硅SBA-15与氧化钇的反应速率高于球状氧化硅与氧化钇的反应速率(介孔氧化硅的颗粒尺寸大于球状氧化硅的颗粒尺寸)。反应温度的降低和反应速率的加快主要是归功于介孔材料SBA-15具有高的孔隙率、大的比表面积,这极大地提高了反应物之间的接触面积,缩短了扩散距离,加快了反应动力学,降低了反应温度。SBA-15在高温固相反应法制备硅酸盐材料显示了很大的优势,可用于制备其他硅酸盐材料。
     以三嵌段共聚物F127为结构导向剂,通过溶胶凝胶和蒸发诱导自组装技术,利用旋涂法在不同基底上制备出Eu3+掺杂立方介孔氧化硅薄膜材料。介孔薄膜的介观结构具有体心立方对称性,薄膜连续、光滑、没有微裂纹,厚度大约为205 nm。当Eu3+的掺杂量达到5.24%(Eu/Si),煅烧温度为600℃,薄膜仍然保持高度有序性。激发光谱显示出波长位于246 nm处的Eu3+-O2-电荷迁移带,说明掺杂在薄膜中的Eu3+与O2-形成键合。发射光谱中观察到Eu3+的两个特征发射峰,分别是非简并能级5D0到轨道-自旋耦合简并能级7FJ(J=1,2)的辐射跃迁。电偶极5D0-7F2的发射强度高于磁偶极5D0-7F1,表明Eu3+所占据的格点对称性低。掺杂浓度高于3.41%(Eu/Si),有浓度淬灭发生,这一浓度要高于Eu3+在非晶态氧化硅中的淬灭浓度1.2%。这可能是由于介孔薄膜具有非晶态骨架和高的比表面积,表面上大量的非成键O2-与Eu3+配位补偿电荷,降低了Eu3+形成团簇。
Mesoporous silica exhibits novel structures such as ordered porous structure, uniform pore size distribution, large surface areas, thick and amorphous frameworks, which make them as excellent hosts for distribution of functional guest species like metals, oxides, and organic groups. Hybrid materials based on mesoporous silica with novel properties have been studied extensively during the last decade. The general route for preparing hybrid materials is to introduce precursors into the pores of mesoporous materials, and the guest species could grow in the pores. Therefore, a crucial step in the above process is the impregnation of the precursor. The semiconductors usually exhibit quantum size effects and show different electric and optical properties from bulk materials, when their particle size decreases to nanometer scale. Because of confined growth of nanostructures due to the volume space effect of pores, it is important to develop a simple and low cost novel strategy to incorporate semiconductors into mesoporous silica achieving novel properties.
     In addition, silicate is a well-known host material for rare earth or transition metal activators due to its high visible-light transparency, excellent luminescence efficiency, and chemical stability. Up to now, the traditional solid-state reaction process is mainly employed to produce the commercial silicate phosphors with high crystallinity and efficient luminescence. However, the traditional solid-state reaction method has drawbacks such as high reaction temperature, agglomerates, and long grinding. Because of nanoscale pores and large surface areas, mesoporous silica could be used as a reactant for preparing new materials. Various silicates should be obtained by calcination in principle, if different guest oxides are incorporated into the pores of mesoporous silica. Till now, no systematic works on the synthesis of silicate doped with rare earth or transition metal ions by mesoporous template route has been reported. In addition, in comparison to bulk sol-gel silica, ordered mesoporous silica provides unique structures; the luminescence of Eu3+ ions can be used to probe the chemical environment of the Eu3+ ions.
     In this work, the luminescence materials based on mesoporous silica were prepared, and their structures and photoluminescence properties were studied. The studies are as follows.
     The two-solvent method was employed to prepare ZnO clusters encapsulated in mesoporous silica SBA-15 (ZnO/SBA-15). The ZnO/SBA-15 nanocomposite has the ordered hexagonal mesostructure. ZnO clusters are distributed in the pores of SBA-15. The photoluminescence spectra show the emission band centered at about 370 nm which can be fitted by three emission Gaussian peaks:the UV emission band around 367 nm, the violet emission around 420 nm, and the blue emission around 457 nm. The UV emission is attributed to near band-edge emission of ZnO. The violet emission results from the oxygen vacancies on the ZnO-SiO2 interface traps. The blue emission is from the oxygen vacancies or interstitial zinc ions of ZnO. The UV emission shows a significant blue shift due to quantum size effect compared to the emission of the bulk counterpart reported. The ZnO clusters encapsulated in SBA-15 can be used as ultra-violet light-emitting material.
     Mn2+ions-doped Zn2SiO4 (Zn2SiO4:Mn2+) powders were prepared by solid-state reaction using extracted SBA-15 as silica source. The well crystalline willemite Zn2SiO4:Mn2+ can be obtained at 800℃which is much lower than the conventional solid state reaction temperature and lower than using the calcined SBA-15. The reason is that the extracted SBA-15 provides large surface area, high density silanol groups, and large pore size, which may increase the reaction interfaces, enhance the reaction kinetics, and decrease the reaction temperature. Ultraviolet (UV) and vacuum ultraviolet (VUV) excitation spectra reveal the host lattice absorption band around 162 nm and the charge transfer transition band around 245 nm. The Zn2SiO4:Mn2+ phosphor exhibits a strong green emission around 527 nm. The Zn2SiO4:Mn2+ phosphor with the Mn2+ doping concentration of 0.06, i. e., Zn1.94Mn0.06SiO4, shows the highest relative emission intensity. Upon 147 nm excitation, the luminescence decay time of the green emission of Zn1.94Mn0.06SiO4 around 527 nm is 8.87 ms, which is consistent with the value of 8-16 ms as reported.
     Eu3+ ions-doped Y2SiO5 (Y2SiO5:Eu3+) samples were prepared by solid-state reaction at a calcination temperature of 1300℃using SBA-15 as silica source without fluxes. The results show that the crystalline Y2SiO5:Eu3+ particles are dense, weak agglomeration, and have a morphology similar to SBA-15. The characteristic luminescence shows the Eu3+ locate at low symmetric sites. The reaction temperature is lower than that of 1500℃in conventional solid-state reaction with fluxes. Also, the reaction rate between Y2O3 and SBA-15 is faster than that between Y2O3 and SiO2 powder based on our comparison experiments (The particle size of the SiO2 powder is smaller than that of SBA-15). This is attributed to the high reactive activity of SBA-15 with porous structure and large surface areas, which can enhance the Gibbs free energy, increase the reaction interfaces, reduces the diffusion distance, and decrease the reaction temperature. This synthesis route may also be applied to prepare other silicate materials at relative low calcination temperature by solid-state reaction.
     Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. The mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of 5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. In our work, the fluorescence quenching concentration of 3.41%is higher than that of 1.2% in non-templated sol-gel silica. The mesoporous silica thin films provide enough non-network oxygen species to coordinate and charge compensate the Eu3+ ions, which may enhance the overall solubility and reduce the aggregation of Eu3+
引文
[1]Baglioni P, Berti D. Self assembly in micelles combining stacking and H-bonding [J]. Curr Opin Colloid In,2003,8:55-61.
    [2]Faul C F J, Antonietti, M. Ionic self-assembly:facile synthesis of supramolecular materials [J]. Adv Mater,2003,15:673-683.
    [3]Shevchenko E V, Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals [J]. J Am Chem Soc, 2002,124:11480-11485.
    [4]Kanie K, Nishii M, Yasuda T, Taki T, Ujiie S, Kato T. Self-assembly of thermotropic liquid-crystalline folic acid derivatives:hydrogen-bonded complexes forming layers and columns [J]. J Mater Chem,2001,11:2875-2886.
    [5]Sun F, Cai W, Li Y, Cao B, Lu F, Duan G, Zhang L. Morphology control and transferability of ordered through-pore arrays based on electrodeposition and colloidal monolayers [J]. Adv Mater,2004,16:1116-1121.
    [6]Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons [J]. Adv Mater,2001,13:677-681.
    [7]AlMawlawi D, Coombs N, Moskovits M. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size [J]. J Appl Phys, 1991,70:4421-4425.
    [8]Zhang J, Han B, Hou Z, Liu Z, He J, Jiang T. Novel method to load nanoparticles into mesoporous materials:Impregnation of MCM-41 with ZnS by compressed CO2 [J]. Langmuir,2003,19:7616-7620.
    [9]Sohn L L, Willett R L. Fabrication of nanostructures using atomic-force-microscope-based lithography [J]. Appl Phys Lett,1995,67:1552-1554.
    [10]Direnzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica [J]. Micropor Mat,1997,10:283-286.
    [11]Yanagisawa T, Shimizu T, Kuroda K. The preparation of alkyltrimenthyl-ammonium-kanemite complexes and their conversion to microporous materials [J]. Bull Chem Soc Jap,1990,63:988-992.
    [12]Kresge C T, Lenowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesised by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    [13]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C, Olsen D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem Soc,1992,114:10834-10843.
    [14]IUPAC manual of symbols and terminology [J]. Pure Appl Chem,1972,31: 578-638.
    [15]陈逢喜,黄茜丹,李全芝。中孔分子筛研究进展[J]。科学通报,1999,44:1905。
    [16]Gallis K, Araujo J T, Duff K J, Moore J G, Landry C. The use of mesoporous silica in liquid chromatography [J]. Adv Mater,1999,11:1452-1455.
    [17]Li L, Shi J, Yan J, Chen H, Zhao X. SBA-15 supported quaternary ammonium salt:an efficient, heterogeneous phase-transfer catalyst [J]. J Mol Catal A:Chem, 2004,209:227-230.
    [18]Dag O, Ozin G A, Yang H, Reber C, Bussiere G. Photoluminescent silicon clusters in oriented hexagonal mesoporous silica film [J]. Adv Mater,1999,11: 474-480.
    [19]Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns A R, Sasaki D Y, Shelnut J, Brinker C J. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites [J]. Nature,2001,410: 913-917.
    [20]Luo H, Wang D, He J, Lu Y. Magnetic cobalt nanowire thin films [J]. J Phys Chem B,2005,109:1919-1922.
    [21]Soler-Illia G J. de A A, Crepaldi E L, Grosso D, Sanchez C. Block copolymer-templated mesoporous oxides [J]. Curr Opin Colloid In,2003,8: 109-126.
    [22]Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J Am Chem Soc,1998, 120:6024-6036.
    [23]Huo Q, Margolese D I, Ciesla U, Demuth D G, Feng P, Gier T E, Sieger P, Firouzi A, Chmelka B F, Schiith F, Stucky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem Mater,1994,6:1176-1191.
    [24]Chen C, Burkett S L, Li H, Davis M E. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41 [J]. Micropor Mat,1993,2:27-34.
    [25]Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff D, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993,261:1299-1303.
    [26]Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinsky J A, Glinka C, Nicol J, Margolesse D, Stucky G D, Chmelka B F. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science,1995,267:1138-1143.
    [27]Huo Q, Margolese D I. Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R, Petroff P M, Schuth F, Stucky G D. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature,1994,368:317-321.
    [28]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supermolecular-templated mesoporous materials [J]. Angew Chem Int Ed,1999,38:56-77.
    [29]Gao F, Lu Q, Liu X, Yan Y, Zhao D. Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase [J]. Nano Lett,2001,1:743-748.
    [30]Yang C, Sheu H, Chao K. Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48 [J]. Adv Funct Mater, 2002,12:143-148.
    [31]Yamada T, Zhou H, Asai K, Honma I. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates [J]. Mater Lett,2002,56: 93-96.
    [32]Yamada T, Zhou H S, Uchida H, Tomita M, Ueno Y, Honma I, Asai K, Katsube T. Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system [J]. Micropor Mesopor Mat,2002,54:269-276.
    [33]Zhang Z, Pan Z, Mahurin S M, Dai S. Synthesis of ultrahigh-density ordered arrays of metallic nickel nanowires in mesoporous silica films [J]. Chem Commun,2003,2584-2585.
    [34]Shan Y, Gao L. Synthesis, characterization and optical properties of CdS nanoparticles confined in SBA-15 [J]. Mater Chem Phys,2005,89:412-416.
    [35]Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:a comparison of physical properties [J]. Chem Mater,1996,8:2068-2079.
    [36]Tian B, Liu X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D. Microwave assisted template removal of siliceous porous materials [J]. Chem Commun,2002, 1186-1187.
    [37]Tian B, Liu X, Yang H, Xie S, Yu C, Tu B, Zhao D. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Adv Mater,2003,15:1370-1374.
    [38]Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D. Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline framework [J]. Nature,1998,396:152-155.
    [39]Pauly T R, Petkov V, Liu Y, Billinge S J L, Pinnavaia T J. Role of framework sodium versus local framework structure in determining the hydrothermal stability of MCM-41 mesostructures [J]. J Am Chem Soc,2002,124:97-103.
    [40]Yu J, Shi J, Chen H, Yan J, Yan D. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica [J]. Micropor Mesopor Mat,2001,46:153-162.
    [41]Mokaya R. Influence of pore wall thickness on steam stability of Al-grafted MCM-41 [J]. Chem Commun,2001,119:633-634.
    [42]Mokaya R. Improving the stability of mesoporous MCM-41 silica via thicker more highly condensed pore walls [J]. J Phys Chem B,1999,103:10204-10208.
    [43]Liu Y, Zhang W, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds [J]. J Am Chem Soc,2000,126:8791-8792.
    [44]Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds [J]. Angew Chem Int Ed,2001,40:1255-1258.
    [45]Liu Y, Pinnavaia T J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions [J]. Chem Mater,2002,14:3-5.
    [46]De Juan F, Ruiz-Hitzky E. Selective functionalization of mesoporous Silica [J]. Adv Mater,2000,12:430-432.
    [47]Maria C A S, Zhao X S. Functionalization of SBA-15 with APTES and characterization of functionalized materials [J]. J Phys Chem B,2003,107: 12650-12657.
    [48]Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age [J]. Adv Mater,2000,12: 1403-1419.
    [49]Hao X Y, Zhang Y Q, Wang J W, Zhou W, Zhang C, Liu S. A novel approach to prepare MCM-41 supported CuO catalyst with high metal loading and dispersion [J]. Micropor Mesopor Mat,2006,88:38-47.
    [50]Alba M D, Luan Z, Klinowski J. Titanosilicate mesoporous molecular sieve MCM-41:synthesis and characterization [J]. J Phys Chem,1996,100: 2178-2182.
    [51]Chen S Y, Jang L Y, Cheng S. Synthesis of Zr-incorporated SBA-15 mesoporous materials in a self-generated acidic environment [J]. Chem Mater,2004,16: 4174-4180.
    [52]Wu S, Han Y, Zou Y C, Song J W, Zhao L, Di Y, Liu S Z, Xiao F S. Synthesis of heteroatom substituted SBA-15 by the "PH-adjusting" method [J]. Chem Mater,2004,16:486-492.
    [53]Sun T, Ying J. Synthesis of microporous transition metal oxide molecular sieves with bifunctional templating molecules [J]. Angew Chem Int Ed,1998,37: 664-667.
    [54]Wang Y, Chen S, Tang X, Palchik O, Zaban A, Koltypin Y, Gedanken A. Mesoporous titanium dioxide:sonochemical synthesis and application in dye-sensitized solar cells [J]. J Mater Chem,2001,11:521-526.
    [55]Yuan Q, Yin A X, Luo C, Sun L D, Zhang Y W, Duan W T, Liu H C, Yan C H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability [J]. J Am Chem Soc,2008,130:3465-3472.
    [56]Schuth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem Mater,2001,13:3184-3195.
    [57]Kruk M, Jaroniec M, Ryoo R, Joo S. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates [J]. J Phys Chem B, 2000,104:7960-7968.
    [58]Jun S, Joo S, Ryoo R. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc,2000,122:10712-10713.
    [59]Zhang W H, Liang C, Sun H, Shen Z, Guan Y, Ying P, Li C. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition [J]. Adv Mater,2002,14:1776-1778.
    [60]Yue B, Hill A H, Harrison A, Zhou W. Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica [J]. Chem Commun,2007, 2518-2520.
    [61]Chen H G, Shi J L, Chen H R, Yan J N, Li Y S, Hua Z L,Yang Y,Yan D S. The preparation and photoluminescence properties of ZnO-MCM-41 [J]. Opt Mater, 2004,25:79-84.
    [62]Bouvy C, Piret F, Marine W, Su B L. Preparation, photoluminescent properties and quantum size effect of ZnS nanoparticles @ mesoporous silica CMI-1 [J]. Chem Phys Lett,2007,433:350-354.
    [63]Hess C, Hoefelmeyer J D, Tilley T D. Spectroscopic characterization of highly dispersed vanadia supported on SBA-15 [J]. J Phys Chem B,2004,108: 9703-9709.
    [64]Liu S, Yue B, Jiao K, Zhou Y, He H. Template synthesis of one-dimensional nanostructured spinel zinc ferrite [J]. Mater Lett.2006,60:154-158.
    [65]Gies H, Grabowski S, Bandyopadhyay M, Grcunert W, Tkachenko O P, Klementiev K V, Birkner A. Synthesis and characterization of silica MCM-48 as carrier of size-confined nanocrystalline metal oxides particles inside the pore system [J]. Micropor Mesopor Mat,2003,60:31-42.
    [66]Yue W, Zhou W. Synthesis of porous single crystals of metal oxides via a solid-liquid route [J]. Chem Mater,2007,19:2359-2363.
    [67]Rumplecker A, Kleitz F, Salabas E-L, Schiith F. Hard templating pathways for the synthesis of nanostructured porous Co3O4 [J]. Chem Mater,2007,19: 485-496.
    [68]Yang J, Hidajat K, Kawi S. Synthesis of nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor [J]. Mater Lett,2008,62: 1441-1443.
    [69]Yang H, Lu Q, Gao F, Shi Q, Yan Y, Zhang F, Xie S, Tu B, Zhao D. One-step synthesis of highly ordered mesoporous silica monoliths with metal oxides nanocrystals in their channels [J]. Adv Funct Mater,2005,15:1377-1384.
    [70]Fu G, Cai W, Kan C, Li C, Zhang L. Controllable optical properties of Au/SiO2 nanocomposite induced by ultrasonic irradiation and thermal anneal [J]. Appl Phys Lett,2003,83:36-38.
    [71]Lee K-B, Lee S-M, Cheon J. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration [J]. Adv Mater,2000, 13:517-520.
    [72]Chen W, Zhang J, Cai W. Sonochemical preparation of Au, Ag, Pd/SiO2 mesoporous nanocomposites [J]. Scripta Mater,2003,48:1061-1066.
    [73]Zhang Z, Dai S, Blom D A, Shen J. Synthesis of ordered metallic nanowires inside ordered mesoporous materials through electroless deposition [J]. Chem Mater,2002,14:965-968.
    [74]Li H, Lin H, Xie S, Dai W, Qiao M, Lu Y, Li H. Ordered mesoporous Ni nanowires with enhanced hydrogenation activity prepared by electroless plating on functionalized SBA-15 [J]. Chem Mater,2008,20:3936-3943.
    [75]Wang P, Wang Z, Li J, Bai Y. Preparation, characterizations, and catalytic characteristics of Pd nanoparticles encapsulated in mesoporous silica [J]. Micropor Mesopor Mat,2008,116:400-405.
    [76]Parala H, Winkler H, Kolbe M, Wohlfart A, Fischer R A, Schmechel R, Von Seggern H. Confinement of CdSe nanoparticles inside MCM-41 [J]. Adv Mater, 2000,12:1050-1055.
    [77]Chen L, Klar P J, Heimbrodt W, Brieler F J, Froba M, Krug von Nidda H-A, Kurz T, Loidl A. Arrays of (Zn,Mn)S quantum wires with well-defined diameters below 10 nm [J]. J Appl Phys,2003,93:1326-1328.
    [78]Brieler F J, Grundmann P, Froba M, Chen L, Klar P J, Heimbrodt W, Krug von Nidda H -A, Kurz T, Loidl A. Formation of Zn1-xMnxS nanowires within mesoporous silica of different pore sizes [J]. J Am Chem Soc,2004,126: 797-807.
    [79]Leon R, Margolese D, Stuky G D, Petroff P M. Nanocrystalline Ge filaments in the pores of mesosilicate [J]. Phys Rev B,1995,52:2285-2288.
    [80]Chomski E, DagO, Kuperman A, Coombs N, Ozin G A. New forms of luminescent silicon:silicon-silica composite mesostructures [J]. Chem Vapor Depos,1996,2:8-13.
    [81]Burova L I, Petukhov D I, Eliseev A A, Lukashin A V, Tretyakov Y D. Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix [J]. Superlattice Microst,2006,39:257-266.
    [82]Huwe H, Froba M. Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3 [J]. Carbon,2007,45: 304-314.
    [83]Vaishnavi T S, Haridoss P, Vijayan C. Optical properties of zinc oxide nanocrystals embedded in mesoporous silica [J]. Mater Lett,2008,62: 1649-1651.
    [84]Jiang Q, Wu Z Y, Wang Y M, Cao Y, Zhou C F, Zhu J H. Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template [J]. J Mater Chem,2006, 16:1536-1542.
    [85]Tang G Q, Xiong Y, Zhang L Z, Zhang G L. Novel long-lifetime photoluminescence of nanosized ZnO included in the mesoporous MCM-41 [J]. Chem Phys Lett,2004,395:97-102.
    [86]Chen J, Feng Z, Ying P, Li C. ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies [J]. J Phys Chem B,2004,108:12669-12676.
    [87]Zeng W, Wang Z, Qian X F, Yin J, Zhu Z K. ZnO clusters in situ generated inside mesoporous silica [J]. Mater Res Bull,2006,41:1155-1159.
    [88]Zhang W H, Shi J L, Wang L Z, Yan D S. Preparation and characterization of ZnO clusters inside mesoporous silica [J]. Chem Mater,2000,12:1408-1413.
    [89]Chen H Q Shi J L, Chen H R, Yan J N, Li Y S, Hua Z L, Yang Y, Yan D S. The preparation and photoluminescence properties of ZnO-MCM-41 [J]. Opt Mater, 2004,25:79-84.
    [90]Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites [J]. J Am Chem Soc,1994,116:7941-7942.
    [91]Yang H, Kuperman A, Coomb N, Mamiche-Afara S, Ozin G A. Synthesis of oriented films of mesoporous silica on mica [J]. Nature,1996,379:703-705.
    [92]Lu Y, Ganguli R, Drewien C A, Anderson M T, C Brinker J, Gong W, Guo Y, Soyez H, Dunn B, Huang M, Zink J I. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating [J]. Nature,1997,389: 364-368.
    [93]Zhao D, Yang P, Melosh N, Feng J, Chmelka B F, Stucky G D. Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv Mater, 1998,10:1380-1385.
    [94]Zhao D, Yang P, Margolese D I, Chmelka B F, Stucky G D. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures [J]. Chem Commun,1998,2499-2500.
    [95]Soler-Illia G J de A A, Crepaldi E L, Grosso D, Sanchez C. Block copolymer-templated mesoporous oxides [J]. Curr Opin Colloid In,2003,8: 109-126.
    [96]Grosso D, Cagnol F, Soler-Illia G J de A A, Crepaldi E L, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C. Fundamentals of mesostructuring through evaporation-induced self-assembly [J]. Adv Funct Mater,2004,14: 309-322.
    [97]Gibaud A, Grosso D, Smarsly B, Baptiste A, Bardeau J F, Babonneau F, Doshi D A, Chen Z, Brinker C J, Sanchez C. Evaporation-controlled self-assembly of silica surfactant mesophases [J]. J Phys Chem B,2003,107:6114-6118.
    [98]Yang H, Coombs N, Sokolov I, Ozin G A. Free-standing and oriented mesoporous silica films grown at the air-water interface [J]. Nature,1996,381: 589-592.
    [99]Brinker C J, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy [J]. Adv Mater,1999,11:579-585.
    [100]Stathatos E, Lianos P, Falaras P, Siokou A. Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films [J]. Langmuir,2000,16:2398-2400.
    [101]Molenkamp W C, Watanabe M, Miyata H, Tolbert S H. Highly polarized luminescence from optical quality films of a semiconducting polymer aligned within oriented mesoporous silica [J]. J Am Chem Soc,2004,126:4476-4477.
    [102]Cabot A, Arbiol J, Cornet A, Morante J R, Chen F, Liu M. Mesoporous catalytic filters for semiconductor gas sensors [J]. Thin Solid Films,2003,436:64-69.
    [103]Baskaran S, Liu J, Domansky K, Kohler N, Li X, Coyle C, Fryxell G E, Thevuthasan S, Williford R E. Low dielectric constant mesoporous silica films through molecularly templated synthesis [J]. Adv. Mater,2000,12:291-294.
    [104]Wei M, Wang K, Yanagida M, Sugihara H, Morris M A, Holmes J D, Zhou H. Supercritical fluid processing of mesoporous crystalline TiO2 thin films for highly efficient dye-sensitized solar cells [J]. J Mater Chem,2007,17: 3888-3893:
    [105]Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature,1998,396:152-155.
    [106]Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem Mater,1999,11:2813-2826.
    [107]Crepaldi E L, Soler-Illia G J A A, Grosso D, Cagnol F, Ribot F, Sanchez C. Controlled formation of highly organized mesoporous titania thin films:from mesostructured hybrids to mesoporous nanoanatase TiO2 [J]. J Am Chem Soc, 2003,125:9770-9786.
    [108]Yu J C, Li G, Wang X, Hu X, Leung C W, Zhang Z. An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst [J]. Chem Commun,2006, 2717-1719.
    [109]Gimon-Kinsel M E, Balkus Jr K J. Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors [J]. Micropor Mesopor Mat,1999,28:113-123.
    [110]Gimon-Kinsel M E, Balkus Jr K J. Mesoporous molecular sieve thin films [J]. Stud Surf Sci Catal,1998,117:111-118.
    [111]Brezesinski T, Fischer A, Iimura K, Sanchez C, Grosso D, Antonietti M, Smarsly B M. Generation of self-assembled 3D mesostructured SnO2 thin films with highly crystalline frameworks [J]. Adv Funct Mater,2006,16:1433-1440.
    [112]Pan J H, Chai S Y, Lee C, Park S -E, Lee W I. Controlled formation of highly crystallized cubic and hexagonal mesoporous SnO2 thin Films [J]. J Phys Chem C,2007,111:5582-5587.
    [113]Tian B, Liu X, Yu C, Fan J, Wang L, Xie S, Stucky G D, Zhao D. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nat Mater,2003,2:159-163.
    [114]Tian B, Yang H, Liu X, Xie S, Yu C, Fan J, Tu B, Zhao D. Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors [J]. Chem Commun,2002,1824-1825.
    [115]Yu C, Tian B, Zhao D. Recent advances in the synthesis of non-siliceous mesoporous materials [J]. Curr Opin Solid State Mater Sci,2003,7:191-197.
    [116]Yamada T, Zhou H S, Uchida H, Tomita M, Ueno Y, Honma I, Asai K, Katsube T. Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system [J]. Micropor Mesopor Mat,2002,54: 269-276.
    [117]Yamada T, Zhou H S, Uchida H, Tomita M, Ueno Y, Honma I, Asai K, Katsube T. Surface photovoltage NO gas sensor with properties dependent on structure of the self-ordered mesoporous silicate film [J]. Adv Mater,2002,14: 812-815.
    [118]Yamada T, Zhou H S, Uchida H, Honma I, Katsube T. Experimental and theoretical NOx physisorption analyses of mesoporous film (SBA-15 and SBA-16) constructed surface photo voltage (SPV) sensor [J]. J Phys Chem B, 2004,108:13341-13346.
    [119]Ryan K M, Erts D, Olin H, Morris M A, Holmes J D. Three dimensional architectures of ultra-high density semiconducting nanowires deposited on chip [J]. J Am Chem Soc,2003,125:6284-6288.
    [120]Bartl M H, Scott B J, Huang H C, Wirnsberger G, Popitsch A, Chmelkac B F, Stucky G D. Synthesis and luminescence properties of mesostructured thin films activated by in-situ formed trivalent rare earth ion complexes [J]. Chem Commun,2002,2474-2475.
    [121]Frindell K L, Bartl M H, Popitsch A, Stucky G D. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films [J]. Angew Chem Int Ed,2002,41:960-962.
    [122]Luo H, Wang D, He J, Lu Y. Magnetic cobalt nanowires thin films [J]. J Phys Chem B,2005,109:1919-1922.
    [123]Wang D, Luo H, Kou R, Gil M P, Xiao S, Golub V O, Yang Z, Brinker C J, Lu Y. A general route to macroscopic hierarchical 3D nanowire networks [J]. Angew Chem Int Ed,2004,43:6169-6173.
    [124]Wang D, Choi D, Yang Z, Viswanathan V V, Nie Z, Wang C, Song Y, Zhang J, Liu J. Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2 [J]. Chem Mater,2008,20:3435-3442.
    [125]Silversmith A J, Boye D M, Anderman R E, Brewer K S. Fluorescence line narrowing and decay dynamics in sol-gel glasses containing Eu3+[J]. J Lumin, 2001,94-95:275-278.
    [126]Costa V C, Lochhead M J, Bray K L. Fluorescence line-narrowing study of Eu3+-doped sol-gel silica:effect of modifying cations on the clustering of Eu3+ [J]. Chem Mater,1996,8:783-790.
    [127]Wang J, Song H, Kong X, Peng H, Sun B, Chen B, Zhang J, Xu W. Fluorescence properties of trivalent europium doped in various niobate codoped glasses [J]. J Appl Phys,2003,93:1482-1486.
    [128]Yamane H, Kaminaga Y, Abe S, Yamada T. Preparation, crystal structure, and photoluminescence of Ca2Sn04:Eu3+,Y3+[J]. J Solid State Chem.2008,181: 2559-2564.
    [129]Jia W, Liu H, Felofilov S P, Meltzer R, Jiao J. Spectroscopic study of Eu-doped and Eu,Y-codoped SiO2 sol-gel glasses [J]. J Alloys Comp,2000,311: 11-15.
    [130]Van D A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. Identification of the transition responsible for the visible emission in ZnO using quantum size effects [J]. J Lumin,2000,90:123-128.
    [131]Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles [J]. J Phys Chem B,1998,102: 2854-2862.
    [132]Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V,Cho S J, Morkoc H. A comprehensive review of ZnO materials and devices [J]. J Appl Phys,2005,98:04130(1-130).
    [133]Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes [J]. Chem Rev,2005,105:1025-1102.
    [134]Yu Y, Wang Y, Chen D, Huang P, Ma E, Bao F. Enhanced emissions of Eu3+ by energy transfer from ZnO quantum dots embedded in SiO2 glass [J]. Nanotechnology,2008,19:055711(1-5).
    [135]孙家跃,杜海燕,胡文祥。固体发光材料[M]。北京:化学工业出版社,2003,87。
    [136]Fujihara S, Kato T, Kimura T. Sol-gel synthesis of silica-based oxyfluoride glass-ceramic thin films:incorporation of Eu3+ activators into crystallites [J]. J Am Ceram Soc,2001,84:2716-2718.
    [137]黄世华,由芳田。固体中稀土离子的4fn-15d组态[J]。中国稀土学报,2002,20:515-520。
    [138]方容川。固体光谱学[M]。合肥:中国科学技术大学出版社,2001,132。
    [139]孙家跃,杜海燕,胡文祥。固体发光材料[M]。北京:化学工业出版社,2003,103。
    [140]Thiyagarajan P, Kottaisamy M, Ramachandra Rao M S. Structural and luminescence properties of pulsed laser deposited green-emitting Zn2SiO4:Mn phosphor thin films [J]. Scripta Mater,2007,57:433-436.
    [141]Takesue M, Suino A, Hakuta Y, Hayashi H, Smith R L. Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water [J]. J Solid State Chem,2008,181:1307-1313.
    [142]Sreekanth Chakradhar R P, Nagabhushana B M, Chandrappa G T, Ramesh K P, Rao J L. Solution combustion derived nanocrystalline Zn2SiO4:Mn phosphors: A spectroscopic view [J]. J Chem Phys,2004,121:10250-10259.
    [143]Lin J, Su Q, Zhang H, Wang S. Crystal structure dependence of the luminescence of rare earth ions (Ce3+, Tb3+, Sm3+) in Y2SiO5 [J]. Mater Res Bull,1996,31:189-196.
    [144]Mitsunage M, Yano R, Uesugi N. Time- and frequency-domain hybrid optical memory:1.6-kbit data storage in Eu3+:Y2SiO5 [J]. Opt Lett,1991,16: 1890-1892.
    [145]Liu Y, Xu C-N, Matsui H, Imamura T, Tadahiko W. Preparation and luminescence of rare-earth-activated Y2Si05 thin films by metallorganic decomposition [J]. J Lumin,2000,87-89:1297-1299.
    [146]Ouyang X, Kitai A H, Xiao T. Electroluminescence of the oxide thin film phosphors Zn2Si04 and Y2Si05 [J]. J Appl Phys,1996,79:3229-3234.
    [147]Kang Y C, Lenggoro I W, Park S B, Okuyama K. Y2Si05:Ce phosphor particles 0.5-1.4μm in size with spherical morphology [J]. J Solid State Chem,1999, 146:168-175.
    [148]Peters T E. Cathodoluminescent Lny(SiO2)x:Tb phosphors [J]. J Electrochem Soc,1969,116:985-986.
    [149]Hess H, Heim A, Scala M. Photoluminescence of zinc silicate doped with Al and Ti [J]. J Electrochem Soc,1983,130:2443-2447.
    [150]Kim C J, Kwon M S. Effects of precursors in the ethanol-based sol-gel synthesis of Zn2Si04:Mn phosphor [J]. J Mater Sci,2006,41:6138-6141.
    [151]Lee C H, Kang Y C, Jung K Y, Choi J G. Phosphor layer formed from the Zn2SiO4:Mn phosphor particles with spherical shape and fine size [J]. Mat Sci Eng B,2005,117:210-215.
    [152]Wang H, Ma Y, Yi G, Chen D. Synthesis of Mn-doped Zn2SiO4 rodlike nanoparticles through hydrothermal method [J]. Mater Chem Phys,2003,82: 414-418.
    [153]Su K, Tilley T D, Sailor M J. Molecular and polymer precursor routes to manganese-doped zinc orthosilicate phosphors [J]. J Am Chem Soc,1996,118: 3459-3468.
    [154]Jiao H, Wang X, Ye S, Jing X. Morphology of Gd3+-doped Y2Si05:Ce [J]. J Lumin,2007,122-123:113-116.
    [155]Zhang W, Xie P, Duan C, Yan K, Yin M, Lou L, Xia S, Krupa J-C. Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5:Eu [J]. Chem Phys Lett,1998,292:133-136.
    [156]Bosze E J, McKittrick J, Hirata G A. Investigation of the physical properties of a blue-emitting phosphor produced using a rapid exothermic reaction [J]. Mat Sci Eng B,2003,97:265-274.
    [157]Jiao H, Wei L, Zhang N, Zhong M, Jing X. Melting salt assisted sol-gel synthesis of blue phosphor Y2Si05:Ce [J]. J Eur Ceram Soc,2007,27:185-189.
    [158]Taghavinia N, Lerondel G, Makino H, Yao T. Europium-doped yttrium silicate nanoparticles embedded in a porous SiO2 matrix [J]. Nanotechnology,2004,15: 1549-1553.
    [1]李光亮。有机硅高分子化学[M]。北京:科学出版社,1999:13。
    [2]Ryan K M, Erts D, Olin H, Morris M A, Holmes J D. Three dimensional architectures of ultra-high density semiconducting nanowires deposited on chip [J]. J Am Chem Soc,2003,125:6284-6288.
    [3]Tian B, Liu X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D. Microwave assisted template removal of siliceous porous materials [J]. Chem Commun,2002, 1186-1187.
    [4]Liu S, Yue B, Jiao K, Zhou Y, He H. Template synthesis of one-dimensional nanostructured spinel zinc ferrite [J]. Mater Lett,2006,60:154-158.
    [5]Brinker C J, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy [J]. Adv Mater,1999,11:579-585.
    [6]Grosso D, Cagnol F, de A. A. Soler-Illia G J, Crepaldi E L, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C. Fundamentals of mesostructuring through evaporation-induced self-assembly [J]. Adv Funct Mater,2004,14: 309-322.
    [7]左演声,陈文哲,梁伟。材料现代分析方法[M]。北京:北京工业大学出版社,2000。
    [8]Seedof R, Eichler H J, Koch H. Detector for the VUV to the IR using salicylate as a combined fluorescent and reflective coating [J]. Appl. Opt,1985,24:1335-1342.
    [1]Zhao D, Feng J, Huo Q, Melosh N, Frederickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279:548-552.
    [2]Pham-Huu C, Keller N, Estournes C, Ehret G, Ledoux M J. Synthesis of CoFe2O4 nanowire in carbon nanotubes. A new use of the confinement effect [J]. Chem Commun,2002,1882-1883.
    [3]Keller N, Pham-Huu C, Shiga T, Estournes C, Greneche J-M, Ledoux M J. Mild synthesis of CoFe2O4 nanowires using carbon nanotube template:a high-coercivity material at room temperature [J]. J Magn Mag Mater,2004, 272-276:1642-1644.
    [4]Imperor-Clerc M, Bazin D, Appay M -D, Beaunier P, Davidson A. Crystallization of β-MnO2 nanowires in the pores of SB A-15 silicas:in situ investigation using synchrotron radiation [J]. Chem Mater,2004,16:1813-1821.
    [5]Zhang W H, Shi J L, Wang L Z, Yan D S. Preparation and characterization of ZnO clusters inside mesoporous silica [J]. Chem Mater,2000,12:1408-1413.
    [6]Aronson B J, Blanford C F, Stein A. Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates:synthesis and structural characterization [J]. Chem Mater,1997,9:2842-2851.
    [7]Jiang Q, Wu Z Y, Wang Y M, Cao Y, Zhou C F, Zhu J H. Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template [J]. J Mater Chem,2006, 16:1536-1542.
    [8]Wang Y M, Wu Z Y, Shi L Y, Zhu J H. Rapid functionalization of mesoporous materials:directly dispersing metal oxides into as-prepared SBA-15 occluded with template [J]. Adv Mater,2005,17:323-327.
    [9]Lin K F, Cheng H M, Hsu H C, Lin L J, Hsieh W F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method [J]. Chem Phys Lett,2005,409:208-211.
    [10]Veprek S, Iqbal Z, Sarott F -A. Thermodynamic criterion of the crystalline-to amorphous transition in silicon [J]. Phil Mag B,1982,45:137-145.
    [11]George J, Shylesh S, Singh A P. Vanadium-containing ordered mesoporous silicas: Synthesis, characterization and catalytic activity in the hydroxylation of biphenyl [J]. Appl Catal A,2005,290:148-158.
    [12]Fernandez L, Garro N, Haskouri J E, Perez-Cabero M, Alvarez-Rodriguez J, Latorre J, Guillem C, Beltran A, Beltran D, Amoros P. Mesosynthesis of ZnO-SiO2 porous nanocomposites with low-defect ZnO nanometric domains [J]. Nanotechnology,2008,19:225603 (1-10).
    [13]Fu Z, Yang B, Li L, Dong W, Jia C, Wu W. An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposites [J]. J Phys:Condens Matter,2003,15:2867-2873.
    [14]Gao S, Zhang H, Deng R, Wang X, Sun De, Zheng G. Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method [J]. Appl Phys Lett,2006,89:123125 (1-3).
    [15]Rumplecker A, Kleitz F, Salabas E -L, Schuth F. Hard templating pathways for the synthesis of nanostructured porous Co3O4 [J]. Chem Mater,2007,19: 485-496.
    [16]Cho S, Ma J, Kim Y, Sun Y, Wong G K L, Ketterson J B. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J]. Appl Phys Lett,1999,75:2761-2763.
    [17]Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S -J, Morkoc H. A comprehensive review of ZnO materials and devices [J]. J Appl Phys,2005,98:041301 (1-103).
    [18]Wong E M, Searson P C. ZnO quantum particle thin films fabricated by electrophoretic deposition [J]. Appl Phys Lett,1999,74:2939-2941.
    [19]Cao B, Cai W, Zeng H, Duan G. Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates [J]. J Appl Phys,2006,99:073516 (1-6).
    [20]Tang G Q, Xiong Y, Zhang L Z, Zhang G L. Novel long-lifetime photoluminescence of nanosized ZnO included in the mesoporous MCM-41 [J]. Chem Phys Lett,2004,395:97-102.
    [21]Zeng W, Wang Z, Qian X F, Yin J, Zhu Z K. ZnO clusters in situ generated inside mesoporous silica [J]. Mater Res Bull,2006,41:1155-1159.
    [22]Chen H G, Shi J L, Chen H R, Yan J N, Li Y S, Hua Z L, Yang Y, Yan D S. The preparation and photoluminescence properties of ZnO-MCM-41 [J]. Opt Mater, 2004,25:79-84.
    [1]Taghavinia N, Lerondel G, Makino H, Yamamoto A, Yao T, Kawazoe Y, Goto T. Nanocrystalline Zn2SiO4:Mn2+ grown in oxidized porous silicon [J]. Nanotechnology,2001,12:547-551.
    [2]Zhao D, Feng J, Huo Q, Melosh N, Frederickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279:548-552.
    [3]Xiong L, Shi J, Gu J, Li L, Huang W, Gao J, Ruan M. A mesoporous template route to the low-temperature preparation of efficient green light emitting Zn2SiO4:Mn phosphors [J]. J Phys Chem B,2005,109:731-735.
    [4]Nomura K, Shibata N, Maeda M. Orientation control of zinc oxide films by pulsed current electrolysis [J]. J Cryst Growth,2002,235:224-228.
    [5]Takesue M, Suino A, Shimoyama K, Hakuta Y, Hayashi H, Smith R L. Formation of α-and β-phase Mn-doped zinc silicate in supercritical water and its luminescence properties at Si/(Zn+Mn) ratios from 0.25 to 1.25 [J]. J Cryst Growth,2008,310:4185-4189.
    [6]Cho T H, Chang H J. Preparation and characterizations of Zn2SiO4:Mn green phosphors [J]. Ceram Int,2003,29:611-618.
    [7]Mohanty P, Ram S. Thermodynamic lattice instability driving bulk amorphization in Eu3+-doped Al2O3 mesoporous composites [J]. Mater Lett, 2002,53:287-295.
    [8]Lin C C, Shen P. Sol-gel synthesis of zinc orthosilicate [J]. J Non-Cryst Solids, 1994,171:281-289.
    [9]Lin J, Sanger D U, Mennig M, Barner K. Sol-gel deposition and characterization of Mn2+-doped silicate phosphor [J]. Thin Solid Films,2000,360:39-45.
    [10]Kitazawa N, Namba H, Aono M, Watanabe Y. Sol-gel derived mesoporous silica films using amphiphilic triblock copolymers [J]. J Non-Cryst Solids,2003,332: 199-206.
    [11]Srinivasu P, Anand C, Alam S, Ariga K, Halligudi S B, Balasubramanian V V, Vinu A. Direct synthesis and the morphological control of highly ordered two-dimensional P6mm mesoporous niobium silicates with high niobium content [J]. J Phys Chem C,2008,112:10130-10140.
    [12]Huang M H, Choudrey A, Yang P. Ag nanowire formation within mesoporous silica [J]. Chem Commun,2000,1063-1064.
    [13]Selomulya R, Ski S, Pita K, Kam C H, Zhang Q Y, Buddhudu S. Luminescence properties of Zn2SiO4:Mn2+ thin-films by a sol-gel process [J]. Mater Sci Eng B, 2003,100:136-141.
    [14]Ahmadi T S, Haase M, Weller H. Low-temperature synthesis of pure and Mn-doped willemite phosphor (Zn2SiO4:Mn) in aqueous medium [J]. Mater Res Bull,2000,35:1869-1879.
    [15]Sun X W, Kwok H S. Pulsed laser deposition of silicate phosphor thin films [J]. Appl Phys A,1999,69:S39-S43.
    [16]Kang Z T, Liu Y, Wagner B K, Gilstrap R, Liu M, Summers C J. Luminescence properties of Mn2+ doped ZnSiO4 phosphor films synthesized by combustion CVD [J]. J Lumin,2006,121:595-600.
    [17]Hao Y, Wang Y H. Synthesis and photoluminescence of new phosphors M2 (Mg, Zn) Si2O7:Mn2+ (M= Ca, Sr, Ba) [J]. Mater Res Bull,2007,42:2219-2223.
    [18]Tamatani M. Fluorescence in β-Al2O3-like materials of K, Ba and La activated with Eu2+ and Mn2+[J]. Jpn J Appl Phys,1974,13:950-956.
    [19]Wang L, Liu X, Hou Z, Li C, Yang P, Cheng Z, Lian H, Lin J. Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4:Mn2+ microfibers and microbelts [J]. J Phys Chem C,2008,112:18882-18888.
    [20]Sohn K S, Cho B, Park H D. Excitation energy-dependent photoluminescence behavior in Zn2SiO4:Mn phosphors [J]. Mater Lett,1999,41:303-308.
    [21]Yan J, Ji Z, Xi J, Wang C, Du J, Zhao S. Fabrication and characterization of photoluminescent Mn-doped-Zn2SiO4 films deposited on silicon by pulsed laser deposition [J]. Thin Solid Films,2006,515:1877-1880.
    [22]Fujii T, Kodaira K, Kawauchi O, Tanaka N. Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si-Al glasses prepared by the sol-gel method [J]. J Phys Chem B,1997,101:10631-10637.
    [23]Lin J, Sanger D U, Mennig M, Barner K. Sol-gel deposition and characterization of Mn2+-doped silicate phosphor films [J]. Thin Solid Films,2000,360:39-45.
    [1]Zhao D, Feng J, Huo Q, Melosh N, Frederickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279:548-552.
    [2]Graeve O A, Corral J O. Preparation and characterization of rare-earth-doped Y2O3 luminescent ceramics by the use of reverse micelles [J]. Opt Mater,2006, 29:24-30.
    [3]Holsa J, Jyrkas K, Leskela M. Site selectively excited luminescence of Eu3+ in gadolinium, yttrium and lutetium oxyorthosilicates [J]. J Less-Common Met, 1986,126:215-220.
    [4]Wang J, Tian S, Li G, Liao F, Jing X. Preparation and X-ray characterization of low-temperature phases of R2SiO5(R=rare earth elements) [J]. Mater Res Bull, 2001,36:1855-1861.
    [5]Liu Y, Xu C N, Chen H, Tateyama H. Influence of calcining temperature on photoluminescence and thermal quenching in europium-doped Y2SiO5 using the MOD process [J]. J Lumin,2002,97:135-140.
    [6]Jiao H, Wang X, Ye S, Jing X. Morphology of Gd3+-doped Y2SiO5:Ce [J]. J Lumin,2007,122-123:113-116.
    [7]Mohanty P, Ram S. Thermodynamic lattice instability driving bulk amorphization in Eu3+ -doped Al2O3 mesoporous composites [J]. Mater Lett, 2002,53:287-295.
    [8]Huang H, Yan B. Sol-gel synthesis of YxGd2-xSiO5:Eu3+ phosphors derived from the in situ assembly of multicomponent hybrid precursors [J]. Opt Mater,2006, 28:556-559.
    [9]Zhang Q Y, Pita K, Ye W, Que W X. Luminescent properties of rare-earth ion doped yttrium silicate thin film phosphors for a full-colour display [J]. J Phys D, 2002,35:3085-3090.
    [10]Wang S, Xu H, Chen X, Zhong S, Jiang J, Huang Y, Wang S, Xu R. Solvothermal synthesis of disk-like YF3 superstructures [J]. J Cryst Growth, 2008,310:4697-4700.
    [1]Yamane H, Kaminaga Y, Abe S, Yamada T. Preparation, crystal structure, and photoluminescence of Ca2Sn04:Eu3+,Y3+[J]. J Solid State Chem.2008,181: 2559-2564.
    [2]Jia W, Liu H, Felofilov S P, Meltzer R, Jiao J. Spectroscopic study of Eu-doped and Eu,Y-codoped SiO2 sol-gel glasses [J]. J Alloys Comp,2000,311:11-15.
    [3]Silversmith A J, Boye D M, Anderman R E, Brewer K S. Fluorescence line narrowing and decay dynamics in sol-gel glasses containing Eu3+[J]. J Lumin, 2001,94-95:275-278.
    [4]Yamada T, Zhou H S, Uchida H, Tomita M, Ueno Y, Ichino T, Honma I, Asai K, Katsube T. Surface photovoltage NO gas sensor with properties dependent on the structure of the self-ordered mesoporous silicate film [J]. Adv Mater,2002,14: 812-815.
    [5]Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem Mater,1999,11:2813-2826.
    [6]Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films [J]. Chem Mater,2002,14:3284-3294.
    [7]Pan J H, Chai S Y, Lee C, Park S E, Lee W I. Controlled formation of highly crystallized cubic and hexagonal mesoporous SnO2 thin films [J]. J Phys Chem C, 2007,111:5582-5587.
    [8]Lu Q, Wang Z, Li J, Wang P, Ye X. Structure and photoluminescent properties of ZnO encapsulated in mesoporous silica SBA-15 fabricated by two-solvent strategy [J]. Nanoscale Res Lett,2009,4:646-654.
    [9]Alba M D, Luan Z, Klinowski J. Titanosilicate mesoporous molecular sieve MCM-41:synthesis and characterization [J]. J Phys Chem,1996,100: 2178-2182.
    [10]Innocenzi P, Falcaro P, Grosso D, Babonneau F. Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy [J]. J Phys Chem B,2003,107:4711-4717.
    [11]Duan G, Zhang C, Li A, Yang X, Lu L, Wang X. Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template [J]. Nanoscale Res Lett,2008,3:118-122.
    [12]Yin J, Xiang L, Zhao X. Monodisperse spherical mesoporous Eu-doped TiO2 phosphor particles and the luminescence properties [J]. Appl Phys Lett,2007,90: 113112-113114.
    [13]Wang J, Brocklesby W S, Lincoln J R, Townsend J E, Payne D N. Local structures of rare-earth ions in glasses:the'crystal-chemistry'approach [J]. J Non-Cryst Solids,1993,163:261-267.
    [14]Chen W, Sammynaiken R, Huang Y. Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y [J]. J Appl Phys,2000,88: 1424-1431.
    [15]Li L, Zhang S. Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds [J]. J Phys Chem B,2006,110: 21438-21443.
    [16]Hazenkamp M F, van der Veen A M H, Feiken N, Blasse G. Hydrated rare-earth-metal ion-exchanged zeolite a:characterization by luminescence spectroscopy. Part 2.-The Eu3+ ion [J]. J Chem Soc, Faraday Trans,1992,88: 141-144.
    [17]Lin C, Wang H, Kong D, Yu M, Liu X, Wang Z, Lin J. Silica supported submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ spherical particles with a core-shell structure:sol-gel synthesis and characterization [J]. Eur J Inorg Chem,2006,3667-3675.
    [18]Wan N, Xu J, Lin T, Zhang X, Xu L. Energy transfer and enhanced luminescence in metal oxide nanoparticle and rare earth codoped silica [J]. Appl Phys Lett,2008,92:201109 (1-3).
    [19]Zaitoun M A, Kim T, Lin C T. Observation of electron-hole carrier emission in the Eu3+-doped silica xerogel [J]. J Phys Chem B,1998,102:1122-1125.
    [20]Berry A J, King T A. Characterisation of doped sol-gel derived silica hosts for use in tunable glass lasers [J]. J Phys D,1989,22:1419-1422.
    [21]Ishizaka T, Nozaki R, Kurokawa Y. Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence [J]. J Phys Chem Solids,2002,63:613-617.
    [22]Yu M, Lin J, Fu J, Zhang H J, Han Y C. Sol-gel synthesis and photoluminescent properties of LaPO4:A(A=Eu3+, Ce3+, Tb3+) nanocrystalline thin films [J]. J Mater Chem,2003,13:1413-1419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700