纳米晶须的合成及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,以硼砂和锌盐为主要原料,通过简单的液相法,首次一步原位制备出晶态疏水性的纳米硼酸锌晶须。用磷酸酯作表面改性剂,降低了硼酸锌纳米粒子的表面能,提高了与聚合物之间的相溶性。用X-射线衍射(XRD)、透射电子显微镜(TEM)以及差热—热重(DTA-TGA)等分析手段,考察了产物粒子的形貌、成分、尺寸等。并讨论了可能的反应过程、溶液不同的pH对产物的影响以及反应温度对产物粒度的影响。
     将合成的不同形貌的硼酸锌颗粒添加到聚乙烯中进行复合,考察了此复合材料的热力学稳定性。从电镜照片中可以看出,硼酸锌晶须与聚乙烯可以很好的复合,在试验过程中,硼酸锌颗粒很好的溶入到了聚乙烯中,根据相似相溶原理,也可以理解为,产物具有了很好的疏水性,所以与无极性的有机物分子可以很好的相溶。硼酸锌晶须的加入,使复合后的硼酸锌/聚乙烯有着较好的热力学稳定性,分解温度提高了将近150度,在此基础上,考察了此反应的反应机理,相关的活化能的变化,从理论上证明了此复合物的热稳定性的真实可靠。
     同时,考察了掺杂后的硼酸锌的光学性能,不同浓度激活离子铕离子的掺杂,对硼酸盐纳米发光材料性质具有很大的影响。虽然对以硼酸盐为基质的纳米发光材料的发光性质的研究有很多,本论文中掺杂后材料的发光性能有了很大程度的提高,通过实验,得出结论Eu掺杂的硼酸锌纳米晶体得到了Eu的最佳掺杂量为摩尔5%掺杂,最佳反应时间为6-8h,最佳反应温度为60℃,虽然还做了反滴以及加入表面活性剂的实验,但是对实验结果并没有明显的影响,可喜的是产物经400℃烧结后发光性能能够达到工业应用标准。在此基础上,从发光机理上讨论这种改变。
     以硼砂和硫酸铜为主要原料,通过简单的液相法,首次一步原位制备出晶态疏水性的水合硼酸铜晶须。用磷酸酯作表面改性剂,降低了硼酸铜纳米粒子的表面能,通过温度的变化,实现对形貌的控制。用X-射线衍射(XRD)、透射电子显微镜(TEM)、以及差热—热重(DTA-TGA)等分析手段,考察了产物粒子的形貌、成分、尺寸等。通过对硼酸铜合成实验条件的探讨,总结了反应过程中,粒子的形成过程,探讨了此实验的反应机理。同时,将硼酸铜添加到基础油中,改性后的硼酸铜与基础油有着很好的相容性,说明经过实验大大地改善了无机粒子与有机物之间的相容性,使无机粒子能够很好地分散在有机溶液中,解决了无机粒子在油相中难以均匀分散的问题。同时,大大降低了基础油的摩擦系数。
     无论是硼酸锌的制备还是硼酸铜的合成,在制备过程中,都遇到了相同的问题,滤液中含有大量的硫酸钠。在我国许多的工业生产中,都有大量的硫酸钠排放,对环境产生了很大的污染。因此,本论文中,希望可以找到解决方法。我们以硫酸钠为原料,试着合成工业上所需要的硫酸钙晶须,以便对硫酸钠进行回收再利用。
The crystal and hydrophobic zinc borate nanowhiskers were successfully prepared by a wet method using borax and zinc salts as raw materials in situ aqueous solution, and phosphate ester as the modifying surface agent. Surface energy of zinc borate nanoparticles was reduced, and the comparability between zinc borate nanoparticles and polymers was enhanced.The morphology, composition, diameter, size, differential thermal and weight loss of zinc borate particles were measured by X-ray diffraction (XRD), transmission electron microscopy (TEM) equipped with an energy-dispersive X-ray spectrometer(EDS), and differential thermal and thermogravimetric analysis (DTA-TGA) in air. The possible reaction route, the different pH values of the solution on synthesis of pure zinc borate and the reaction temperature on the size of zinc borate were discussed.
     The different shape of zinc borate will be added to the polyethylene, we investigated the thermodynamics stability of the composite material. We can see that zinc borate whiskers can be well composited with PE through our experiment from the electron micrograph. Zinc borate particles can be well infused into polyethylene. According to the similar phase, we also can include that the products have very good hydrophobicity, so they will be easily dissolved with organic molecules. The compound of zinc borate/polyethylene has perfect stability with adding the zinc borate, and the thermodynamics decomposition temperatures have been increased nearly 150 degrees. Therefore, we investigated the reaction mechanism, and the changes of related activation energy. This will be proved theoretically.
     At the same time, we also investigated the optical properties of zinc borates. The different concentrations of activation ion Eu ions doped have great effects the the luminescent properties of the materials. Although there are a lot of reports for the research of materials luminescence properties of borate for the matrix, the material luminous property has been improved largely in my experiments. It is concluded that the best doping quantity of Eu doped zinc borate nanocrystal is 5%, and the optimum reaction time for 6-8 hours, and the best reaction temperature for 60℃. We also attempted to reverse drops and change surfactants, but the results of the experiments have not successed. The good news is that the properties of products can achieve industrial application standards with 400℃sintering. Then, we discussed the mechanism about this change.
     The crystal and hydrophobic copper borate nanowhiskers were successfully prepared by a wet method using borax and bluestone as raw materials in situ aqueous solution, and phosphate ester as the modifying surface agent. The morphology, size, and differential thermal-thermogravimetric situation have been investigated by the X-ray diffraction (XRD), transmission electron microscope (TEM), and differential thermal-thermogravimetic analysis (DTA-TGA) analysis method. Based on the discussion of experimental condition, we have summarized the reaction process, particle formation process and the reaction mechanism of this experiment. Meanwhile, we add copper borate to the base oil, and the modified copper borate can be easily mixed with organic materials, which can show us greatly capability of dispersing with organic matter, and solve the difficult problem the uniform dispersion of inorganic polymer particles, and also can greatly reduce the friction coefficient of the base oil.
     No matter what the preparation of zinc borate or copper, we have met the same question that there is plenty of the filtrate of sodium sulfite during the experiments. In our country, there are a large number of sodium discharges in industrial production, which bring the great pollution to the environment. Therefore, we hope to find the way to solve this problem in my thesis. We try to use the sodium sulfate as the raw material to react with calcium salt to synthesize calcium sulfate whiskers, which have been largely needed in the industry, and also recycle and reuse sodium sulfate.
引文
[1]刘焕彬,陈小泉.纳米科学与技术导论,北京:化学工业出版社,2006:4-9.
    [2]袁哲俊.纳米科学与技术,哈尔滨工业大学出版社,2005:1.
    [3]Feynman,1965, Physics Nobel Lecture.
    [4]Li Y, Xu D S, Zhang Q M, Dapeng Chen Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates Chem. Mater.,1999,11 (12):3433-3435
    [5]Hiroshi A, Hiroto K. Journal of Polymer Science, Part B.1999,37(3):209.
    [6]丁永涛,王鸷,殷敬华.高分子复合材料研究新进展.郑州:黄河水利出版社,2005:83.
    [7]曹茂盛,李大勇,荆天辅,纳米材料学,哈尔滨工程大学出版社,(2002)32.
    [8]Pang Y T, Meng G W, Zhang Y, et al. Copper nanowire arrays for infrared polarizer [J]. Appl Phys A,2003,76:533-536.
    [9]Kubo R, Structural analysis of alumina films produced by two-tep electrochemical oxidation, J. Phys. Soc. Jpn.,1962,17:975-979.
    [10]Muhlen BV, Millgard J, Lind L, Effects of digoxin, furosemide, enalaprilat and metoprolol on endothelial function in young normotensive subjects Clinical and Experimental Pharmacology & Physiology 2001,28(5-6):381-5.
    [11]Song K C, Pratsinis S E, Control of phase and pore structure of titania powders using HCl and NH4OH catalysts, J. Am. Ceram. Soc.,2001,84(1):92-98.
    [12]Wang Y, Jiang X, Xia Y, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc.,2003,125:16176-16177.
    [13]Jesionowski T, Krysztafkiewicz A, Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas, App. Surf. Sci.,2001,172:18-32.
    [14]Mahmoud M E, El-Essawi M M, Kholeif S A, Fathalla E M I, Aspects of surface modification, structure characterization, thermal stability and metal selectivity properties of silica gel phases-immobilized-amine derivatives, Chim. Acta,2004, 525:123-132.
    [15]Avella M, Errico M E, Martuscelli E, Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process, Nano Lett., 2001,1(4):213-217.
    [16]Zhang Z H, Liu S H, Chow S Y, Han M Y. Modulation of the morphology of ZnO nanostructures via aminolytic reaction:from nanorods to nanosquamas [J], Langmuir 2006,22(14):6335-6340.
    [17]Cao B, Li Y, Duan G, Cai W, Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method[J], Cryst. Growth. Des.2006,6(4):1091-1095.
    [18]Peiro A M, Ayllon J A, Peral J, Domenech X, Domingo C, Microwave activated chemical bath deposition (MW-CBD) of zinc oxide:Influence of bath composition and substrate characteristics[J], J. Crystal Growth 2005,285(1-2): 6-16.
    [19]Gou L C, Murphy J, Solution-Phase Synthesis of Cu2O Nanocubes, Nano Lett., 2003,3(2):231-234.
    [20]Viswanatha R, Sapra S, Satpati B, Satyam P V, Dev B N, Sarma D D, Understanding the quantum size effects in ZnO nanocrystals, J. Mater. Chem., 2004,14:661-668.
    [21]Ascencion J, Montoya, a Paz del Angela and Tomas Viveros, The effect of temperature on the structuraland textural evolution of sol-gel Al2O3-TiO2 mixed oxides, J. Mater. Chem.,2001,11:944-950.
    [22]Luo S, Tang Z, Yao W, Zhang Z, Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders, Microelectronic Eng.2003,66:147-152.
    [23]Chen J, Shen Z, Liu F, Liu X, Yun J, Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods, Scripta Mater.,2003,49:509-514.
    [24]Hyeon T, Chung Y, Park J, Lee S S, Kim Y W, Park B H, Synthesis of Highly Crystalline and Monodisperse Cobalt Ferrite Nanocrystals, J. Phys. Chem. B, 2002,106:6831-6833.
    [25]Zhang W H, Fu B X, Seo Y, Schrag E, Hsiao B, Mather P T, Yang N L, Xu D Y, Ade H, Rafailovich M, Sokolov J, Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in Compatibilization polystyrene and poly(methyl methacrylate) blends, Macromolecules,2002,35 (21): 8029-8038.
    [26]Koga, T, Seo, Y S, Shin, K, Zhang, Y, Rafailovich, M H, Sokolov, J C, Chu, B, and Satija, S K, The Role of Elasticity in the Anomalous Swelling of Polymer Thin Films in Density Fluctuating Supercritical Fluids, Macromolecules,2003, 36(14):5236-5243..
    [27]Wormuth K, Superparamagnetic Latex via Inverse Emulsion, J. Colloid and Interface Sci.,241 (2001) 366-377.
    [28]Lee C-F, The properties of core-shell composite polymer latex:Effect of heating on the morphology and physical properties of PMMA/PS core-shell composite latex and the polymer blends, Polymer,2000,41:1337-1344.
    [29]Zhao K, Sun P, Liu D, Dai G, The formation mechanism of poly(vinyl acetate)/poly(butyl acrylate) core/shell latex in two-stage seeded semi-continuous starved emulsion polymerization process, European Polymer J, 40 (2004) 89-96.
    [30]Okubo M, Kondo Y, Takahashi M, Production of Submicron-Size Monodisperse Polymer Particles Having Aldehyde Groups by Seeded Aldol Condensation, Col-loid and Polymer Science,1993,271:109-113.
    [31]Kang K, Kan C, Du Y, Liu D, Synthesis and Properties of Soap-Free Poly(Methyl Methacrylate-Ethyl Acrylate-Methacrylic Acid) Latex Particles Prepared by Seeded Emulsion Polymerization, European Polymer J.,2005,41:439-445.
    [32]Wang Z Y, Paine A J, Rudin A, J Polym. Sci, Part A,1995,33:1597-1605.
    [33]Stach E A, Pauzauskie P J, Kuykendall T, Goldberger J, He R, Yang P, Watching GaN nanowires grow, Nano Lett.,2003,3(6):867-869.
    [34]Li W J, Shi E W, Zhong W Z, et al. Growth mechanism and growth habit of oxide crystals [J], J. Cryst. Growth 1999,203:186-196.
    [35]Barrelet C J, Wu Y, Bell D C, Lieber C M, Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors, J. Am. Chem. Soc.,2003,125: 11498-11499.
    [36]Liu Z, Hu Z, Xie Q, Yang B, Wua J, Qian Y, Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors, J. Mater. Chem.,2003,13: 159-162.
    [37]K. K. Caswell, C. M. Bender, C. J. Murphy, Seedless, Surfac-tantless Wet Chemical Synthesis of Silver Nanowires, Nano Lett.,2003,3(5):667-669.
    [38]Zhang Y X, Li G H, Jin Y X, Zhang Y, Zhang J, Zhang L D, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett.,365 (2002) 300-304.
    [39]Zhang J, Sun L, Pan H, Liao C, Yan C, ZnO nanowires fabricated by a convenient route, New J. Chem.,26 (2002) 33-34.
    [40]Kubo R. Electronic properties of metallic fine particles [J], J. Phys. Soc. Jpn. 1962,17(6):975-986.
    [41]Komatsu T J, On Tasoev's continued fractions, J. Am. Ceram. Sci.2003,86(24): 2239-2243.
    [42]Brown G T, Darwent J R. Methyl orange as a probe for photooxidation reactions of colloidal TiO2, J. Phys Chem.1984,88:4955-4959.
    [43]Hagfeidt A, Gratzel M, Light-induced redox reactions in nanocrystalline systems [J], Chem. Rev.1995,95:49-53.
    [44]刘焕彬,陈小泉.纳米科学与技术导论,北京:化学工业出版社,2006:4-9.
    [45]Ball P, Garwin L, Scanning tunneling microscopy and spectroscopy studies of nanostructured materials [J], Nature,355(1992) 761-764.
    [46]Henglein A, Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J], Chem. Rev.1989,89: 1861-1873.
    [47]Chokshi A H, Rosen A, Karch J, et al, On the validity of the hall-petch relationship in nanocrystalline mater [J]. Scripta Metall 1989,23:1679-1684.
    [48]刘志辉.纳米硼酸铜微粒的合成及其减摩性能的研究.吉林.吉林大学硕士论文.2008
    [49]孟哈日巴拉.高分散性无机纳米粒子的制备及其表面修饰.吉林.吉林大学博士论文.2006.
    [50]刘宁.表面修饰的无机纳米粒子的制备及其摩擦性能的研究.吉林.吉林大学硕士论文.2008.
    [51]李静.氯化银纳米粒子的制备及其表面改性的研究.吉林.吉林大学硕士论文.2007.
    [52]Wang D, Lieber C M, Inorganic materials:Nanocrystals branch out, Nature Mater.,2003,2:355-356.
    [53]Maeda K, Sato M, Niikura I, et al. The structural and optical properties of Cu2O films electrodeposited on different substrates, Semicond Sci. Technol.,2005, 20(1):49-49.
    [54]Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M M, Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties, Angew. Chem. Int. Ed.,2006,45(2): 261-265.
    [55]Song K C, Pratsinis S E, The Effect of Hydrolysis Temperature using HCl and NH4OH Catalysts, J. Am. Ceram. Soc.,2001,84(1):92-98.
    [56]Wang Y, Jiang X, Xia Y, A Solution-Phase, Precursor Route to Poly crystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions, J. Am. Chem. Soc.,125 (2003) 16176-16177.
    [57]Wang Y, Herron N, Wang Y, Herron N, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effect, and photophysical properties, J. Phys. Chem.,1991,95(2):525-532.
    [58]Luo S, Tang Z, Yao W, Zhang Z, Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders, Microelectronic Eng.,2003,66:147-152.
    [59]Xie Y, Qian Y T, Wang W Z, et al. A benzene-thermal synthetic route to nanocrystalline GaN, Science,1996,272:1926-1927.
    [60]Zhao K, Sun P, Liu D, Dai G, The formation mechanism of poly(vinyl acetate)/poly(butyl acrylate) core/shell latex in two-stage seeded semi-continuous starved emulsion polymerization process, European Polymer J, 2004,40:89-96.
    [61]Proussevitch A, Sahagian D, Recognition and separation of discrete objects within complex 3D voxelized structures, Computers & Geosciences,2001,27(4): 441-454.
    [62]Wang C, Chu X, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B:Chemical,2006, 113(1):320-323.
    [63]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes, Chem. Rev.2005,105:1025-1102.
    [64]Mascia L, Curing and morphology of epoxy resin-silica hybrid, J. Mater Chem., 1998,8(11):2417-2421.
    [65]Cheon J W, Kang N J, Lee S M, et al, Shape evolution of single-crystalline iron oxide nanocrystals, J. Am. Chem. Soc.2004,126:1950-1951.
    [66]Armes S P, Maeda S, Gill M, Inorganic/organic hybridm aterials:Conducting polymer-silica nanocompositeparticle, Polym. Mater. Sci. Eng,1993,70: 352-353.
    [67]Geng B Y, Ma J Z, You J H, Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets, Cryst. Growth Des.,2008,8(5): 1443-1447.
    [68]George V F, Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes:Isoelectric Point Shift and Additional Attraction, J. Colloid Interface Sci.,2002,249:44-51.
    [69]徐国财,张立德.纳米复合材料,北京,化学工业出版社,2002,1:42-65.
    [70]施利毅,等.纳米材料[M].上海:华东理工大学出版社,2007.
    [71]白春礼.纳米科学与技术[M].云南科技出版社,1999.
    [72]刘珍,梁伟,许并社,市野濑英喜,材料科学与工艺,2000,8(3):103-108.
    [73]刘吉平,廖丽玲.无机纳米材料[M].北京:科学出版社,2003.
    [74]刘军,辽宁化工,2003,32(10):443-446.
    [75]张立德,超微粉体制备与应用技术,北京:中国石化出版社,2001,139-144.
    [76]曹茂盛,李大勇,荆天辅,纳米材料学,哈尔滨工程大学出版社,2002,152.
    [77]Li Q, Kumar V, Li Y, Fabrication of arrays of zinc oxide nanorods and nanotubes in aqueous solution under an external voltage, Chem. Mater.,2005,17, 1001-1006.
    [78]Wang C C, Ying J Y, Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals, Chem. Mater,1999,11:3113-3120.
    [79]Wang W Z, Wang G H, Liu Y K, Zheng C L, Zhan Y J. Synthesis and characterization of aragonite whiskers by a novel and simple route, J Mater Chem,2001,11:1752-1754.
    [80]Zheng Y, Shi E, Chen Z, Li W, Hu X, Influence of solution concentration on the hydrothermal preparation of titania crystallites, J. Mater. Chem.,2001,11: 1547-1551.
    [81]Gao Q, Sun J, Dispersion and Surface Modification of Nanometer Powders [M]. Beijing:Chemical Industry Press,2003,11:126-146.
    [82]Gai G S, Yang Y F, Fan S M, Cai Z F, Preparation and properties of composite mineral powders, Powder Technol,2005,153(3):153-158.
    [83]S. C. D'Andrea and A. Y. Fadeev, Covalent Surface Modification of Calcium Hydroxyapatite Using n-Alkyl-and n-Fluoroalkylphosphonic Acids, Langmuir, 2003,19:7904-7910.
    [84]M. Fuji, T. Takei, T. Watanabe, M. Chikazawa, Wettability of fine silica powder surfaces modified with several normal alcohols, Colloids Surfaces A: Physicochemical Eng. Aspects,1999,154:13-24.
    [85]Ding X F, Zhao J Z, Liu Y H, Zhang H B, Wang Z C, Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion po-lymerization, Mater Lett,2004,58:3126-3130.
    [86]Borum-Nicholas L, Wilson Jr OC, Surface modification of hydroxyapatite, Part I. Dodecyl alcohol, Biomaterials,2003,24:3671-3679.
    [87]Kensuke N, Yoshiki C, Control of crystal nucleation and growth of calcium carbonate by synthetic substrates, Chem Mater,2001,13:3245-3259.
    [88]Kozlowski CA, Walkowiak W. Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes, Water Res,2002,36:4870-4876.
    [89]Wang C Y, Sheng Y, Zhao X, Pan Y, Hari B, Wang Z C, Synthesis of hydrophobic CaCO3 nanoparticles. J Mater Lett,2006,60:854-857.
    [90]张力德,牟季美,纳米材料[M].沈阳:辽宁科技出版社,1994.
    [91]刘学习,庄辉,张大陆,程振民,戴干策,纳米硫酸钡增强PET复合材料性能研究[J].塑料工程,2007,35(4):21-23.
    [92]吴嘉麟,叶忍记,陈烨,李兆芬,郑浩,李素花,PET/纳米SiO2的聚合及结晶性能和纺丝性能[J].高分子材料科学与工程,2006,22(4):169-175.
    [93]郑亚萍,宁荣昌,张爱波,SiO2纳米复合材料研究进展[J].纤维复合材料,2000,2(46):46-47.
    [94]王芳,刘剑洪,罗仲寇,陈敬中,纳米SiO2-聚合物复合材料的研究进展[J].材料导报,2006,20(6):181-184.
    [95]徐国财,张立德,纳米复合材料[M].北京:化学工业出版社,2002.
    [96]许珂敬,董云会,杨福贵,化学沉淀法制备多孔纳米SiO2粉末[J].淄博学院 学报,2000,127:56-65.
    [97]丁艺,林金辉,旦辉,球形纳米SiO2的制备[J].非金属矿,2005,28(3):18-30
    [98]伊阳,陶鑫,聚合物/纳米SiO2复合材料的研究进展[J].工程塑料应用,2006,34(6):71-74.
    [99]旦辉,丁艺,林金辉,高纯球形纳米Si02的制备、改性与应用研究[J].世界科技研究与发展,2006,28(2):48-51.
    [100]郜华萍,谭惠民,SiO2纳米粒子增强改性聚乙烯力学性能的研究[J].昆明理工大学学报,2005,30(3):35-41.
    [101]刘亚青,赵贵哲,纳米SiO2增强增韧HDPE的研究[J].华北工学院学报,2005,26(3):196-199.
    [102]李清江,伍玉娇,陈兴江,PP/纳米SiO2粉体共混体系相容机理的研究[J].高分子材料科学与工程,2007,23(3):159-162.
    [103]石璞,王正祥,邓凌峰,刘跃军,聚丙烯/纳米SiO2复合材料的制备和表征[J].湖南工业大学学报,2007,21(2):60-63.
    [104]伍玉娇,杨红军,骆丁胜,丁兴艳,李清江,PP/纳米SiO2/PP-g-MAH复合材料的研究[J].塑料,2007,36(2):9-13.
    [105]赵辉,罗运军,李杰,夏敏,超支化聚(胺-酯)接枝改性纳米二氧化硅增韧增强PVC的研究[J].高分子材料科学与工程,2005,21(5):258-261.
    [106]阳满红,郭少云,纳米Si02增强增韧聚氯乙烯复合材料的研究[J].聚氯乙烯,2003,(1):26-32.
    [107]阮长久,田兴友,崔平,郑瑾,张献,郑康,李勇,PET/SiO2纳米复合材料的结晶和形貌研究[J],高分子材料科学与工程,2007,23(4):159-162.
    [108]杨光福,柯扬船,刘维康, PET/SiO2纳米复合材料的光学性能和结晶成核行为[J],高分子材料科学与工程,2007,23(4):94-101.
    [109]姜鲁华,杜芳林,张志焜,崔作林,纳米碳酸钙的制备及应用进展[J],中国粉体技术,2002,8(1):28-32.
    [110]王依民,夏于旻,纳米颗粒及其聚合物复合材料的研究与应用,中国粉体工业,2008.
    [111]钱海燕,万永敏,石防震,张少明,化学法制备超细碳酸钙[J],中国粉体技 术,2000,6(2):11-14.
    [112]李霞,王春艳,方兰,刘立柱,聚乙烯/有机蒙脱土复合材料制备与性能研究[J],哈尔滨理工大学学报,2003,8(2):90-93.
    [113]刘立柱,张文龙,朱兴松,邓涛,方兰,熔融插层制备聚乙烯/蒙脱土纳米复合材料及其性能研究[J],中国塑料,2005,19(10):35-38.
    [114]邓涛,刘立柱,张国伟,方兰,PE/PEMA/MMT纳米复合材料的制备与性能[J],哈尔滨理工大学学报,2004,9(5):110-113.
    [115]李敏,何晓峰,刘景江,张学全,孙广平,蔡洪光,张春雨,原位聚合聚乙烯/蒙脱土纳米复合材料的结晶行为[J],高等学校化学学报,2006,27(4):779-783.
    [116]杨玲,郑全成,浅谈聚酯啤酒瓶的应用及阻气性的研究[J],甘肃科技,2006,22(12):107-108.
    [117]蔡亮珍,章永化,赵建青,改性蒙脱土对PET吹塑瓶阻隔性的影响[J],工程塑料应用,2002,30(5):5-8.
    [118]周昌贵,黄关葆,聚对苯二甲酸乙二酯/蒙脱土纳米复合材料的制备及性能研究[J],聚酯工业,2005,18(1):21-24.
    [119]郜君鹏,李阳,梁伯润,栾广贵,王依民,蒙脱土对PET结晶性能、热稳定性和力学性能的影响[J],中国塑料,2004,18(8):23-28.
    [120]丁超,何慧,洪浩群,贾德民,不同改性蒙脱土对聚丙烯/蒙脱土纳米复合材料性能的影响[J],材料科学与工程学报,2004,22(5):746-749.
    [121]邹志明,章永化,蒋智杰,苟海林,叶国锦,方健,龚克成,改性蒙脱土对聚丙烯的抗紫外老化作用[J],中国塑料,2000,14(11):81-84.
    [122]何淑琴,胡源,宋磊,唐勇,阻燃聚丙烯/蒙脱土纳米复合材料的燃烧性能[J],中国科学技术大学学报,2006,36(4):408-412.
    [123]Yuan H Y, Ching Y L, Jui M Y, Wei H L. Preparation and Properties of Poly (vinyl alcohol)-clay Nanocomposite Materials [J], Polymer,2003,44: 3553-3560.
    [124]林蔚,刘海涛,胡勇,MMT改性PVA内墙涂料的研究[J],齐齐哈尔大学学报,2002,17(3):43-44.
    [125]彭人勇,张英杰,聚乙烯醇/蒙脱石纳米复合材料的结构与性能[J],塑料科 技,2005,(2):15-19.
    [126]刘青喜,周兴平,解孝林,王春生,李承东,原位插层聚合制备PVC/蒙脱土纳米复合材料[J],聚氯乙烯,2002,(2):11-13.
    [127]万超瑛,乔秀颖,张勇,张隐西,聚氯乙烯/蒙脱土纳米复合材料的结构与力学性能[J],上海交通大学学报,2003,37(5):636-639.
    [128]石旭东,潘明旺,李秀错,张留成,丁会利,乳液法PVC/Na+-MMT纳米复合材料的结构表征及性能研究[J],高分子学报,2004,(1):149-152.
    [129]Gong F, Feng M, Zhao C, et al, Thermal properties of poly (vinyl chloride)/montmorillonite Nanocomposites, Polymer Degradation and Stability, 2004,84:289-294.
    [130]Gong F L, Zhao C G, FengM, et al, Synthesis and characterization of PVC /montmorillonite nanocomposite[J], Journal of Materials Science,2004,39: 293-294.
    [131]罗艳红,聚氯乙烯/粘土纳米复合材料的制备及性能研究,硕士学位论文,河北工业大学,2000.
    [132]张恩友,宋功品,王平华,PVC/聚烯烃/蒙脱土纳米复合材料的制备与性能研究[J],塑料工业,2004,32(11):22-24.
    [133]奚强,赵春芳,李蕾等,化学物理学报,2003,16(2):135-140.
    [134]龙复等,无机溶胶粒子的有机高分子胶囊化研究,高分子材料科学与工程,1991,7(6):13-16.
    [135]Yoshio M, Wang H, Fukuda K, et al. J. eledtrochem Soc.,2000,147: 1245-1250.
    [136]孙聆东,付雪峰,钱程等,水热法合成CdS/ZnO核壳结构纳米微粒[J],高等学校化学学报,2001,22(6):879-882.
    [137]Moffitt Matthew, Scaling Relations and Size Control of Block Ionomer Microreactors Containing Different Metal Ions, Eisenberg Adi [J], Macromolecules,1997,30(15):4363-4373.
    [138]徐长远,王永生,黄最明等,发光材料研究进展,光电子技术与信息,1997,10(1):8-11.
    [139]马立新,徐国跃,硼酸盐玻璃中稀土粒子的发光研究,南京航空航天大学 学报,1996,28(2):225-227.
    [140]朱赛芬,吴周安,纳米材料的制备及在化工中的应用,上海化工,2001,8:22-27.
    [141]张慰萍,尹民,稀土掺杂的纳米发光材料的制备和发光,发光学报,2000,21(4):314-318.
    [142]Yang P, M. K. Lu, D. Xu, et al., The photoluminescence characreistics of ZnS nanocrystal doped with Mn3+(M=In, Ca, Al), Mater. Res. Bull.,2001,36: 1301-1308.
    [143]Silva R F, Zaniquelli M E D, Morphology of nanometric size particulate aluminium-doped zinc oxide films, Colloids and Surfaces,2002,551:198-200.
    [144]Kurita A, Kanematsu Y, Wasahito M, et al., Wavelength and angle-selective properties of optical memory effect by interference of mutiple-scattered light in Sm-doped ZnS nanocrystals, J.Lumin.,2000,986:87-89.
    [145]Taghavinia N, Lerondel G, Makino H, et al., Activation of porous silicon layers using Zn2SiO4:n2+ phosphor particles, J. Lumin.,2002,96:171-173.
    [146]Lebedev V A, Voroshilov I V, Gavrilenko N, et al., Kinetic and spectroscopic investigations of Yb:YCa40(B03)3 (Yb:YCOB) single crystals, Opt.Commun. 2000,14:171-175.
    [147]Leonyuk N I, Tructual aspects in crystal growth of anhydrous borates, J. Crystal Growth,1997,174:301-303.
    [148]于桂贤,袁绍暇,发光材料的研制及应用,化工新型材料,2000,29(6):1-4.
    [149]唐道明,稀土发光,物理,1990,19(6):366-364.
    [150]金炎,蒋雪茵,桑文斌等,络合转化法制备Mn掺杂的ZnS纳米微晶及光致发光特性,功能材料与器件学报,1998,4(1):24-28.
    [151]向霞,曾光廷,鲍军委等,Nit'离子注入单晶氧化铝的光学性能研究,四川大学学报(工程科学版),2003,35(3):70-73.
    [152]李洁,张哲夫,稀土发光材料研究与发展方向,稀有金属与硬质合金,2002,30(2):37-40.
    [153]张迈生,王立格,杨燕生,微波快速合成硫化银铜锡磷光体及对的敏化发光,功能材料与器件学报,2000,6(2):95-98.
    [154]王晓君,林海,黄立辉等,Dy3+和Tb3+离子掺杂的稀土硼酸盐玻璃的光谱 性质,吉林大学自然科学学报,1997,3:49-53.
    [155]苏锵,曾庆华,在空气下制备掺二价稀土的硼酸盐及二价稀土离子,无机化学学报,2000,16(2):293-295.
    [156]邹文国.硼酸盐类纳米发光材料的制备与表.山东.山东大学博士论文.2005.
    [157]金弼,罗啼,CaS:Ce3荧光粉中的电荷迁移态光谱,中国稀土学报,1991,9(1):37-41.
    [158]郭常新,柏善岩,GdxYl-xP5O14:Ce, Tb的发光和能量传递,中国稀土学报1995,13(2):123-126.
    [159]张晓,刘行仁,CaSiO3中Tb3+的发光及Ce3+-Tb3+的能量传递,中国稀土学报,1991,9(4):324-326.
    [160]彭夷安,郭凤瑜,LaB03中Ce3+, Dy3+的发光和能量传递,中国稀土学报,1989,7(4):21-25.
    [161]孟宪国,王永生,孙力,何志毅等,(Eu2+,Nd3+):CaAl204的长余辉发我及机理的研究,光学学报,2003,23(3):356-359.
    [162]张巍巍,张巍萍,闰阔,纳米Y2-.S iO,:Eu:的发光特性及浓度碎灭研究,发光学报,1999,20(2):97-99.
    [163]Pei Y H, Liu X R, Cathodoluminescence and Photoluminescence of the superfine Y2O3:Eu phosphor. Nanostruct Mater.,1996,17 (1):52-55.
    [164]郭凤瑜,蔡向东,彭夷安,Ca3La:3 (B03) 5基质中Tb3+的光致发光,稀有金属,1994,18(1):5-10.
    [165]吴根华,陈荣,张启运,KAIF4:Ce Tb磷光体的放光特性及Ce3+对Tb3+的敏化作用,光谱学与光谱分析,1997,17(3):6-11.
    [166]谢平波,段昌奎,张慰萍,纳米晶Y2Si05:Eu的浓度碎灭研究,发光学报,1998,19(1):19-21.
    [167]张巍巍,谢平波,张巍萍等,稀土正硼酸盐Ln1-xB03:Eux (Ln=Y, Gd)的结构与发光特性,无机材料学报,2000,16(1):9-12.
    [168]林元华,张中太,张枫等,铝酸盐长余辉光致发光材料的制备及其发光机理的研究,材料导报,2000,14(1):35-37.
    [169]Shea L E, Mckittrick J, Lopez O A, Synthesis of red-emitting small particle size luminescent oxides using an optimized combustion process, J. Am. Ceram Soc, 1996,79(12):3257-3259.
    [170]孙家跃,杜海燕,胡文样,北京:化学工业出版社,2003.
    [171]来华.纳米稀土磷酸盐发光材料的合成以及发光性能的研究.吉林.吉林大学博士论文.2009.
    [172]魏智,LED的技术发展与应用,国外电子元器件,2003,1:73-75.
    [173]曲崇,徐征,陈晓红等,PPV固态类阴极射线发光动力学的研究,2002,23(2):183-185.
    [174]章伟光,稀土发光材料的开发与应用,贵州化工,2001,26(3):36-38.
    [175]黄国光,自发光材料的应用及商机提示,丝网印刷,2002,2:41.
    [176]魏钟睛,马培华.溶液系统中的晶须生长机理.盐湖研究.1995.
    [177]Yu Q J, Yu C L, Yang H B, et al. Growth of dumbbell-like ZnO microcrystals under mild conditions and their photoluminescence properties, Inorg. Chem. 2007,46:6204-6210.
    [178]田玉美,郑云辉,赵旭,刘艳华,郭玉鹏,周兵,王子忱,一种常压液相原位制备纳米硼酸锌晶须的新方法,吉林大学.2008.
    [179]田玉美.无机纳米润滑油添加剂的合成及性能研究.吉林.吉林大学博士论文.2006.
    [180]Aleksandra B, Djurisic A B, Leung Y H, Optical properties of ZnO nanostructures, Small,2006,2:944-961.
    [181]Li D, Haneda H, Morphologies of Zinc oxide particles and their effects on photocatalysis, Chemosphere 2003,51:129-137.
    [182]Xu L, Jiang L P, Zhu J J, Photo-induced effects on self-organized TiO2 nanotube arrays:The influence of surface morphology, Nanotechnology,2009,20: 645-605.
    [183]Han X G, He H Z, Kuang Q, et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites, J. Phys. Chem C 2009,113:584-589.
    [184]Ahmadi T S, Wang Z L, Green T C, Henglein A, El-sayed MA, Shape-controlled synthesis of colloidal platinum nanoparticles, Science,1996,272(5720): 1924-1925.
    [185]Duan X, Huang Y, Cui Y, Wang J, Lieber C M, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature,2001, 409(6816):66-69.
    [186]Hess H, Vogel V, Molecular shuttles based on motor proteins:active transport in synthetic environments, Rres. Mol. Biotechnol.,2001,82(1):67-85.
    [187]Rensmo H, Keis K, Lindstrom H, Solbrand A, hagfeldt A, Lindquist S E, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes, J. Phys. Chem. B,1997,101(14):2598-2601.
    [188]Alivisatos A P, Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996,271(5251):933-937.
    [189]Brus L E, Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state, J. Chem. Phys.1984,80(9):4403-4409.
    [190]Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R, Architectonic quantum dot solids, Acc. Chem. Res.,1999,32(5):415-423.
    [191]Jun Y W, Lee J H, Choi J S, Cheon J W, Symmetry-controlled colloidal nanocrystals:nonhydrolytic chemical synthesis and shape determining parameters, J. Phys. Chem. B,2005,109(31):14795-14806.
    [192]Fierro J L G, Metal Oxides, Chemistry and Applications, CRC Press, Boca Raton, F L,2006.
    [193]Singhal M, Chhabra V, Kang P, Shah D O, Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion, Mater. Res. Bull.,1997,32(2):239-247.
    [194]Speghini A, Peruffo M, Casarin M, Ajo D, Bettinelli M, Electronic spectroscopy of trivalent lanthanide ions in lead zinc borate glasses, Journal of Alloys and Compounds,2000,300/301:174-179.
    [195]Sbetti M, Moser E, Montagna M, Ferrari M, Chaussedent S, Bettinelli M, Homogeneous line width in a zinc borate glass activated by Eu3+, J. Non-Cryst. Solids, Journal of Non-Crystalline Solids,1997,220:217-221.
    [196]F. Rocca, G. Dalba, R. Grisenti, M. Bettinelli, F. Monti, A. Kuzmin, Extended X-ray absorption fine structure measurements of the local environment of Pr3+ ions in silica xerogels and zinc borate glasses, Journal of Non-Crystalline Solids, 1998,232-234,581-586.
    [197]Ebendorff-Heidepriem H, Ehrt D, Bettinelli M and Speghini A, Influence of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses, J. Non-Cryst. Solids 240 (1998) 66-78.
    [198]L. D. Longo, M. Ferrari, E. Zanghellini, M. Bettinelli, J. A. Capobianco, M. Montagna, F. Rossi, Optical spectroscopy of zinc borate glass activated by Pr3+ ions, Journal of Non-Crystalline Solids,1998,231,178-188.
    [199]Schubert D M, Alam F, Visi M Z, Knobler C B, Structural Characterization and Chemistry of thelndustriaUy Important Zinc Borate, Zn[B3O4(OH)3], Chem. Mater.,2003,15:866-871.
    [200]Dong J X and Hu Z S, A Study of the Anti-Wear and Friction-Reducing of nanometer Zinc Borate, Tribology International,1998,31:219-223.
    [201]Li J, Xia S P and Gao S Y, Synthesis and Thermodynamic Properties of K2Ba[B4O5(OH)4]2·8H2O, Spectrochim. Acta,1995,51 A:519-532.
    [202]Hanrath T, Korgel B A, Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals, J. Am. Chem. Soc.,2002,124(7): 1424-1429.
    [203]Chokshi A H, Rosen A, Karch J, et al., On the validity of the hall-petch relationship in nanocrystalline mater, Scripta Metall,1989,23:1679-1684.
    [204]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes, Chem. Rev.2005,105:1025-1102.
    [205]Wu W, Lu S C, Mechano-chemical surface modification of calcium carbonate particles by polymer grafting, Powder Technology,2003,137:41-48.
    [206]Angles M N, Dufresne A A, Plasticized/tunicin Whiskers Nanocomposites Materials, Structural analysis, Macromolecules 2000,33:8344-8353.
    [207]Favier V, Chanzy H, Cavaille J Y, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules,1995,28:6365-6367.
    [208]Helbert W, Cavaille J Y, Dufresne A, Polym, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers, Compos.1996,17 (4):604-611.
    [209]Azizi Samir M A S, Alloin F, Paillet M, Dufresne A, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Macromolecules,2004,37:4313.
    [210]Ruiz M M, Cavaille J Y, Dufresne A, Graillat C, Gerard J F, New waterborne epoxy coatings based on cellulose nanofillers, Macromol. Symp,2001,169: 211-222.
    [211]Grunert M, Winter T W, Ambitions in organic farming Veterinary Times, J. Polym EnViron,2002,10 (1/2):27-29.
    [212]Tashiro K, Kobayashi M, Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses:role of hydrogen bonds, Polymer 1991,32 (8):1516-1526.
    [213]Halperin W P, Quantum size effects in metal particles, Res. Mod. Phys.,1986, 58(3):532-606.
    [214]Song Q, Zhang Z J, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc.,2004,126(19):6164-6168.
    [215]Tuan H Y, Lee D C, Hanrath T, Korgel B A, Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents, Nano Lett.,2005, 5(4):681-684.
    [216]Wang Z L, Song J H, Piezoelectric Nanogenerators based on zinc oxide nanowire arrays, Science,2006,312:242-246.
    [217]Tian Y M, Guo Y P, Jiang M, Sheng Y, Hari B L, Zhang G Y, Zhou B, Zhu Y C, Wang Z C, Synthesis of hydrophobic zinc borate nanodiscs for lubrication, Mater. Lett.,2006,60:2511-2514.
    [218]Shubert, DM, U.S. Patent,5,342,553,1994.
    [219]Freeman E S, Carroll B, The application of thermoanalytical technique to reaction kinetics, J. Phys. Chem.,1958,3:394-397.
    [220]Coast A W, Renfern J P, Kinetic parameters from thermogravimetric data, Nature,1964,201:68-69.
    [221]Doyle C D, Kinetic analysis of thermogravimetric data [J], J. Appl. Polymer Sci.,1961,5:285-292.
    [222]Friedman H L, Kinetics and gaseous products of thermal decomposition of polymers [J], J. Macromolecula Sci. (Chem.),1967,1(1):57-79.
    [223]Kissinger H E, Variation of peak temperature with heating rate in differential thermal analysis [J], J. Res. Nat. But., Standards,1956,57:217-221.
    [224]Garfoth A, Fiddy S, et al. Catalytic degradation of high density polyethylene [J], Thermochimica Acta,1997,294:65-69.
    [225]Christ C L, Clark J R, A Crystal-Chemical Classification of Borate Structures with Emphasis on Hydrated Borates, Phys. Chem. Miner.,1977,2:59-87.
    [226]Samyn F, Bourbigot S, Duquesne S, Delobel R, Effect of zinc borate on the thermal degradation of ammonium polyphosphate Effect of zinc borate on the thermal degradation of ammonium polyphosphate, Thermochim. Acta,2007, 456:134-144.
    [227]Schubert D M, Alam F, Visi M Z, Knobler C B, Structural characterization and chemistry of the industrially important zinc borate, Zn[B3O4(OH)3], Chem. Mater.,2003,15:866-871.
    [228]Carpentier F, Bourbigot S, Bras M L, Delobel R, Rheological investigations in fire retardancy:application to ethylene-vinyl-acetate copolymer-magnesium hydroxide/zinc borate formulations, Polym. Int.,2000,49:1216-1221.
    [229]Grice J D, Burns P C, Hawthorne F C, Borate minerals Ⅱ., A hierarchy of structures based upon the borate fundamental building block, Can. Miner.,1999, 37:731-762.
    [230]Chen C, Wang Y, Wu B, Wu K, Zeng W, Yu L, Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7, Nature,1995,373: 322-324.
    [231]Zheng Y H, Tian Y M, Ma H L, Qu Y N, Wang Z C, Synthesis and performance study of zinc borate nanowhiskers, Colloid Surf. A:Physicochem. Eng. Aspects,2009,339:178-184.
    [232]Bhaskar T, Uddin M A, Murai K A, Kaneko J, Hamano K, Kusaba T, et al., Comparison of thermal degradation products from real municipal waste plastic and model mixed plastics, J. Anal. Appl. Pyrolysis,2003,70:579-587.
    [233]Ali S, Garforth A A, Harris D H, Rawlence D J, Uemichi Y, Polymer waste recycling over "used" catalysts, Catal. Today,2002,75:247-255.
    [234]Aguado J, Serrano D, Clark J H, Feedstock recycling of waste plastic, RSC clean technology monographs, Cambridge, Royal Society of Chemistry,1999.
    [235]Vasile C, Pakdel H, Brebu M, Onu P, Darie H, Thermal and catalytic decomposition of mixed plastics, J. Anal. Appl. Pyrolysis,2001,57:287-303.
    [236]Bockhorn H, Hentschel J, A. Hornung, U. Hornung, Environmental engineering: stepwise pyrolysis of plastic waste, Chem. Eng. Sci 1999,54:3043-3051.
    [237]Jakab E, Uddin M A, Bhaskar T, Sakata Y, Thermal decomposition of flame-retarded high-impact polystyrene, J. Anal. Appl. Pyrolysis,2003,68: 83-99.
    [238]Blazsa M, Csoma C S, Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis, J. Anal. Appl. Pyrolysis, 2002,64:249-261.
    [239]Bhaskar T, Matsui T, Nitta K, Uddin M A, Muto A, Sakata Y, Laboratory evaluation of calcium-, iron-, and potassium-based carbon composite sorbents for capture of hydrogen chloride gas, Energy Fuel,2002,16:1533-1539.
    [240]Bhaskar T, Matsui T, Kaneko J, Uddin M A, Muto A, Sakata Y, Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis, Green Chem.2002,4:372-375.
    [241]Uddin M.A., Bhaskar T, Kaneko J, Muto A, Sakata Y, Matsui T, Dehydrohalogenation during pyrolysis of brominates flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC), Fuel,2002,81:1819-1825.
    [242]Bhaskar T, Murai K, Brebu M, Matsui T, Uddin M A, Muto A, et al., Thermal degradation of ABS-Br mixed with PP and catalytic debromination by iron oxide carbon composite catalyst (Fe-C), Green Chem.,2002,4:603-606.
    [243]Brebu M, Uddin M A, Muto A, Sakata Y, Vasile C, Catalytic degradation of acrylonitrileebutadieneestyrene into fuel oil.1. The effect of iron oxides on the distribution of nitrogencontaining compounds, and 2. Changes in the structure and catalytic activity of iron oxides, Energy Fuels 2001,15:559-564.
    [244]刘艳华.多步骤固相分解反应的热分析动力学研究.吉林.吉林大学博士论文.2005.
    [245]张光宇.纳米硼酸镁微粒的合成及其减摩性能的研究.吉林.吉林大学硕士论文.2006.
    [246]孟翠省.纳米技术在高分子材料改性中的应用.化工新型材料.2001.
    [247]Wallstrom S, Dowling K, Karlsson S, Development and comparison of test methods for evaluating formation of biofilms on silicones, Polym. Degrad. Stab.,2002,78:257-262.
    [248]Shen K K, Kochesfahani S, Jouffret F, Zinc borates as multifunctional polymer additives, Polym. Advan. Technol.,2008,19:469-474.
    [249]Dollimore D, Tong P, Alexander K S, The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the arrhenius equation, Thermochim. Acta,1996,282/283:13-27.
    [250]Ozawa T, Bull, A, New Method of Analyzing Thermogravimetric Data, Chem. Soc.Jpn.,1965,38:1881-1886.
    [251]Flynn J H, Wall L A, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. B:Polym. Lett.,1966,4: 323-328.
    [252]Tanaka M, Masumoto Y, Very weak temperature quenching in orange luminescence of ZnS:Mn2+ nanocrystals in polymer, Chem. Phys. Lett.,2000, 324:249-254.
    [253]Jagannathan R, Athinarayanasamy K, Mani A, Jayasankar C K, Nano-crystallites formation and Eu3+ luminescence in zinc boro-sulphate glasses, Opt. Mater.,1996,5:57-62.
    [254]Lai H, Chen B, Xu W, Xie Y, Wang X, Di W, Fine particles (Y,Gd)PxV1-xO4:Eu3+ phosphor for PDP prepared by coprecipitation reaction, Mater. Lett.,2006,60:1341-1343.
    [255]Yang H M, Shi J X, Gong M L, A new luminescent material, Sr2SnO4:Eu3+, J. Alloys. Compd.,2006,415:213-215.
    [256]Bettinelli M, Speghini A, Spectroscopic investigation of zinc borate glasses doped with trivalent europium ions, J. Non-Cryst. Solids.,1996,201:211-221.
    [257]Ambrosi L, Bettinelli M, Ferrari M, Casarin M, Piazza A, Optical spectroscopy of Eu3+doped zinc borate glasses, J. Phys. IV (Paris) C,1994,4:477-480.
    [258]Thulasiramudu A, Buddhudu S, Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses, Spectrochem. Acta Part A:Mol. Bio. Spectrosc,2007,66:323-328.
    [259]Pozza G, AjO D, Bettinelli M, Speghini A, Casarin M, Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass, Solid State Commun,1996,97:521-525.
    [260]Lee S S, Kim H J, Byeon S H, Park J C, Kim D K, Thermal-shock-assisted solid-state process for the production of BaMgAl10O17:Eu phosphor, Ind. Eng. Chem. Res.,2005,44:4300-4305.
    [261]Ding W J, Wang J, Zhang M, Zhang Q H, Su Q, A novel orange phosphor of Eu2+-activated calcium chlorosilicate for white light-emitting diodes, J. Solid State Chem.,2006,179:3582-3585.
    [262]Yan B, Su X Q, LuVO4:RE3+(RE=Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors, Opt. Mater.,2007,29: 547-551.
    [263]Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang H J, et al. Fabrication, patterning, and optical properties of nanocrystalline YV04:A(A) Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography, Chem. Mater.,2002,14:2224-2231.
    [264]Zhang J Y, Zhang Z T, Tang Z L, Tao Y, Long X, Luminescent properties of the BaMgAl10O17:Eu2+, M3+(M=Nd, Er) phosphor in the VUV Region, Chem. Mater.,2002,14:3005-3008.
    [265]Dexpert-Ghys J, Mauricot R, Faucher M D, Spectroscopy of Eu3+ ions in monazite type lanthanide orthophosphates LnPO4, Ln=La or Eu, J. Lumin., 1996,69:203-215.
    [266]于桂贤,袁绍暇,发光材料的研制及应用,化工新型材料,2000,29(6):1-11
    [267]唐道明,稀土发光,物理,1990,19(6):366.
    [268]金炎,蒋雪茵,桑文斌等,络合转化法制备Mn掺杂的ZnS纳米微晶及光致发光特性,功能材料与器件学报,1998,4(1):24.
    [269]向霞,曾光廷,鲍军委等,Nit'离子注入单晶氧化铝的光学性能究究,四川大学学报(工程科学版),2003,35(3):70.
    [270]李洁,张哲夫,稀土发光材料研究与发展方向,稀有金属与硬质合金,2002,30(2):37.
    [271]张迈生,王立格,杨燕生,微波快速合成硫化银铜锡磷光体及对的敏化发光,功能材料与器件学报,2000,6(2):95.
    [272]王晓君,林海,黄立辉等,Dy3+和Tb3+离子掺杂的稀土硼酸盐玻璃的光谱性质,吉林大学自然科学学报,1997,3:49.
    [273]苏锵,曾庆华,在空气下制备掺二价稀土的硼酸盐及二价稀土离子,无机化学学报,2000,16(2):293.
    [274]Osvet A, Emelianova S, Weissmann R, et al., Spectral hole burning in Sm2+ doped alkaliborate glasses and Tb3+ doped silicate and borate glasses, J. Lumin., 2000,86:323.
    [275]金弼,罗啼,CaS:Ce3荧光粉中的电荷迁移态光谱,中国稀土学报,1991,9(1):37.
    [276]郭常新,柏善岩,GdxYl-xP5O14,:Ce, Tb的发光和能量传递,中国稀土学报1995,13(2):123.
    [277]张晓,刘行仁,CaSiO3中Tb3+的发光及Ce3+-Tb3+的能量传递,中国稀土学报,1991,9(4):324.
    [278]张光宇.纳米硼酸镁微粒的合成及其减摩性能的研究.吉林.吉林大学硕士论文.2006.
    [279]谢洪波.发光材料CeO2:Sm3+、YVO4:Dy3+、Ga2O3:Eu3+的制备和表征.中南大学硕士论文.2007.
    [280]张巍巍,张巍萍,闰阔,纳米Y2-.S iO,:Eu:的发光特性及浓度碎灭研究,发光学报,1999,20(2):97.
    [281]赵庆杰,王常任.硼铁矿的开发利用.辽宁化工.2001.
    [282]郭凤瑜,蔡向东,彭夷安,Ca3La:3 (B03) 5基质中Tb3+的光致发光,稀有金属,1994,18(1):5.
    [283]吴根华,陈荣,张启运,KAIF4:Ce Tb磷光体的放光特性及Ce3+对Tb3+的敏化作用,光谱学与光谱分析,1997,17(3):6.
    [284]谢平波,段昌奎,张慰萍,纳米晶Y2Si05:Eu的浓度碎灭研究,发光学报,1998,19(1):19.
    [285]张巍巍,谢平波,张巍萍等,稀土正硼酸盐Ln1-xB03:Eux (Ln=Y, Gd)的结构与发光特性,无机材料学报,2000,16(1):9.
    [286]林元华,张中太,张枫等,铝酸盐长余辉光致发光材料的制备及其发光机理的研究,材料导报,2000,14(1):35.
    [287]段昌奎,夏上达,张慰萍,纳米X,-Y2Si05:Eu"发光光谱的理论研究,物理学报,1997,46(2):1427.
    [288]Reynolds O, Phil. Trans, On the Theory of Lubrication Roy. Soc.,1886, A177: 157-234.
    [289]Hardy W B, Hardy J K, Chain length effects in boundary lubrication, Phil. Mag., 1919,38:33-38.
    [290]Lee S M, et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks, J. Am. Chem. Soc.2002, 124(38):11244-11249.
    [291]Winer W O, Future trends in tribology, Wear,1990,136:19-27.
    [292]温诗铸,纳米摩擦学,清华大学出版社,1998.
    [293]潘元青,李清华,世界润滑油市场现状及预测,当代石油石化,2002,10:9.
    [294]Yoon S Song Lisle, Robert J Basalay. Mannich dispersant Ⅵ-improver blended with phenolic compound for improved storage stability [P]. US:4808325,1989.
    [295]Antonio Gutierrez Mercerville, Robert D.ndberg, actone modified viscosity modifiers useful in oleaginous compositions [P], US:4933098,1990.
    [296]Kimura Y, Wakabayashi T, Okada K, et.al Boron nitride as a lubricant additive [J], Wear,1999,232:199-206.
    [297]戴凤阁,赵殿富,润滑油添加剂的种类与开发,河南化工,2002,8:6-9.
    [298]West W W, Cerrito E, Stokely J M, Rafael S, US Patent 3,565,802.
    [299]Sims M J, Framcisco S, US Patent 3,819,521.
    [300]Hu Z S, Lai R, Lou F, Wang L G, Chen Z L, Chen G X, Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives, Wear,2002,252:370-374.
    [301]胡泽善等,纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能,摩擦学学报,2000,20:292-295.
    [302]李更辰,张建民,王永强,石家庄铁道学院学报,2003,16:2.
    [303]MMU-10G屏显式材料端面高温摩擦磨损试验机使用说明书.
    [304]Inouse K, Nose Y, Method for producting an alkaline earth meatal borate dispersion [P].US Pat 4683 126,1987.
    [305]Dong J, Chen G, A new concept-formation of permeatin layers from nonactive antiwear additive, Lubr Eng,1994,50(1):17-22.
    [306]陈志刚,顾卓明,顾彩香,纳米润滑材料的研究现状和进展[J],机电设备,2003(4):7-11.
    [307]刘美华等,传统抗磨添加剂与纳米粒子的抗磨减摩机理分析比较[J],合成润滑材料,2002,2:19-22.
    [308]Murray C B, Nirmal M, Norris D J, Bawendi, Synthesis and structural characterization of Ⅱ-Ⅵ semiconductor nanocrystallites (quantum dots). Z. Phys. D:At., Mol. Clusters,1993,26:231-233.
    [309]Alivisatos A P, Semiconductor Clusters, Nanocrystals and Quantum Dots, Science,1996,271:933-937.
    [310]Chestnoy N, Hull R, Brus L E, Higher Excited Electronic States in Clusters of ZnSe, CdSe, and ZnS:Spin-orbit, Vibronic, and Relaxation Phenomena, J. Chem. Phys.,1986,85:22 37.
    [311]Cleveland C L, Luedtke W D, Landman U, Dynamics of Cluster-Surface Collisions, Phys. Rev.,1999,60:5065.
    [312]Reyes-Gasga J, Elechiguerra J L, Liu C, Camacho-Bragado A, Montejano-Carrizales J M, Yacaman M J, J. Crystal Growth,2006,286:162.
    [313]Li L S, Hu J, Yang W, Alivisatos A P, Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures, Nano Lett.,2001,1:349.
    [314]Hu J, Li L S, Yang W, Manna L, Wang L W, Alivisatos A P, Linearly polarized emission from colloidal semiconductor quantum rods, Science,2001,292: 2060-2066.
    [315]Xia Y N, Yang P D, Sun YG, Wu Y Y, Mayers B, Gates B, Yin Y, Topcis in Catalysis, Adv. Mater.,2003,15:353-389.
    [316]Bakkers E P A M, Verheijen M A, J. Am. Chem. Soc.125 (2003) 3440-3441.
    [317]Goldberger J, He R, Zhang Y, Lee S, Inorganic Nanotubes:A new class of one-dimensional, Nature,2003,422:599-602.
    [318]Kong X Y, Ding Y, Yang R S, Wang Z L, Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts, Science,2004,303:1348-1351.
    [319]Ma C, Ding Y, Moore D, Wang X D, Wang Z L, Single-Crystal CdSe Nanosaws, J. Am. Chem. Soc.,2004,126:708-709.
    [320]Hong J, Effects of ammonia and cetyltrimethylammonium bromide (CTAB) on morphologies of ZnO nano-and micromaterials under solvothermal process Materials Chemistry and Physics,2008,112(3):1024-1028.
    [321]Lee Y, Lee J, Bae C J, Park J G, Noh H J, Park J H, Hyeon T, Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions, Adv. Funct. Mater.,2005,15: 503-509.
    [322]Morales A M, Lieber C M, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science,1998,279:208-211.
    [323]Song Q, Zhang Z J, Nitrogen-driven structural transformation in carbon, J. Am. Chem. Soc.,2004,126:6164-6168.
    [324]Jana N R, Chen Y, Peng X, Single-Phase and Gram-Scale Synthesis of Au and Other Noble Metal Nanocrystals, Chem. Mater.,2004,16:3931-3937.
    [325]Tian Y M, Guo Y P, Jiang M, Sheng Y, Hari B L, Zhang G Y, Jiang Y Q, Zhou B, Zhu Y C, Wang Z C, Synthesis of hydrophobic zinc borate, Mater. Lett.,2006, 60:2511-2514.
    [326]Chen C C, Yeh C C, Chen C H, Catalytic growth and characterization of gallium nitride nanowires, J. Am. Chem. Soc.,2001,123:2791-2798..
    [327]Anghel V, Bovington C, Spikes H A, Mechanisms of oiliness additives, Lubr Sci.,1999,11:313-315.
    [328]Alivisatos A P, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science,1996,271:933-937.
    [329]Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 2002,415:617-620.
    [330]Piquemal J Y, Viau G, Beaunier P, Verduraz F B, FieveF t, One-step construction of silver nanowires in hexagonal mesoporous silica using the polyol process, Mater. Res. Bull.,2003,38:389-394.
    [331]Angles M N, Dufresne A, Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis, Macromolecules,2000,33:8344-8353.
    [332]Favier V, Chanzy H, CavailleJ Y, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules,1995,28:6365-6367.
    [333]Helbert W, Cavaille J Y, Dufresne A, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I:Processing and mechanical behavior, Polym. Compos,1996,17 (4):604-611.
    [334]Azizi Samir M A S, Alloin F, Paillet M, Dufresne A, Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites, Macromolecules,2004,37: 4313-4316.
    [335]Ruiz M M, Cavaille J Y, Dufresne A, Graillat C, Gerard J F, New waterborne epoxy coatings based on cellulose nanofillers, Macromol. Symp.,2001,169: 211-222.
    [336]Grunert M, Winter T W, Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals, J. Polym. EnViron.,2002,10 (1/2):27-31.
    [337]Tashiro K, Kobayashi M, Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses:role of hydrogen bonds, Polymer, 1991,32 (8):1516-1526.
    [338]Jana N R, Gearheart L, Murphy C J, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, J. Phys. Chem. B,2001,105:4065-4067.
    [339]Huang Z B, Zhang Y Q, Tang F Q, Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity, Chem. Commun.,2005,3:342-344.
    [340]Wang J, Chen Q W, Zeng C, Hou B Y, Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires, Adv. Mater.,2004,16:137-140.
    [341]Ji G B, Tang S L, Ren S K, Zhang F M, Gu B X, Gu Y W, Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process, J. Cryst. Growth,2004,270:156-159.
    [342]Ban C M, Whittingham M S, Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods, Solid State Ionics,2008,179:1721-1724.
    [343]Tian Y M, Guo Y P, Jiang M, Sheng Y, Hari B L, Zhang G Y, Jiang Y Q, Zhou B, Zhu Y C, Wang Z C, Synthesis of Hydrophobic Zinc Borate Nanodiscs for Lubrication, Mater. Lett.,2006,60:2511-2515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700