顺磁性元素改善因瓦合金性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度低膨胀合金(High Strength Low Thermal Expansion, HSLTE)克服了传统Fe-Ni低膨胀合金强度较低的问题而具有较高的强度和低的膨胀系数,使其应用得到扩展。如何兼顾这两种性能,把功能材料作为特殊结构材料使用,成为研究者所关注的研究方向。
     本课题研究以金属膨胀相关理论和细晶强化为主的综合强化方法为基础,选择具有细化晶粒作用的顺磁性合金元素,结合Factsage热力学软件计算的Fe-Ni-X相图,研究控制Fe-Ni因瓦合金线膨胀系数、合金的强度和组织稳定性相匹配的关键环节,提高合金性能。实验研究是通过全程气氛保护熔炼、锻打成型以及热处理等工艺制备试样,在对试样膨胀性能、显微硬度以及组织检测、XRD衍射物相分析的基础上,研究对因瓦合金性能影响的因素,为制定合理的熔炼工艺和强化处理路线提供基础支持。
     (1)对基体平均线膨胀系数的影响,单元素的次序为W、Nb和Mo,合金化后试样的平均线膨胀系数相对于未合金化试样分别提高的幅度约50%、50%和110%左右;二元合金W+Mo和W+Nb合金化后试样的平均线膨胀系数相对于未合金化试样提高了62.5%,而Mo+Nb对基体的平均线膨胀系数的影响就相对较大,增加了125%。除Mo和Mo+Nb合金化的平均线膨胀系数超出标准外,其余均符合要求,并根据合金化元素的质量磁化系数,依据磁致伸缩理论对基体膨胀性能的影响因素进行了定性的分析。
     (2)对基体晶粒尺寸的影响,合金化后基体金属的晶粒尺寸相对于未合金化试样16.7μm的晶粒尺寸均有较大的减小。其中单元素W、Mo、Nb合金化,高含量的W和Nb对晶粒大小的影响相当,分别为5.0μm、5.3μm,其次是高含量的Mo和低含量的Nb,分别为6.3μm、6.7μm,最次的是低含量的W,为10.0μm;二元W+Mo、W+Nb、Mo+Nb合金化,其中W+Nb和Mo+Nb对晶粒大小的影响相当,分别为4.8μm、4.5μm,其次是W+Mo,为7.69μm。
     (3)对基体显微硬度的影响,Nb和Mo合金化对显微硬度HV0.2的影响较大,其中高含量Nb的HV0.2显微硬度值为172.6,相对与未合金化试样128.4的显微硬度值提高了36.0%,低含量的Nb和Mo的显微硬度相当,HV0.2在163左右,最次是W元素,其显微硬度值HV0.2在150左右,但也有提高了12.7%;对二元合金化,W+Nb二元合金化对HV0.2显微硬度的影响最大,其显微硬度HV0.2值为170.3,与未合金化试样相比提高了32.6%,其次为Mo+Nb,其显微硬度HV0.2值为162.0,提高了21.2%,最次是W+Mo,其显微硬度HV0.2值为151,提高了17.6%。
     (4)从改善合金性能的角度,单元素W、Mo、Nb合金化影响的次序为:高含量Nb最大、其次低含量的Nb、最后为W元素合金化;二元合金W+Mo、W+Nb、Mo+Nb合金化的次序为:W+Nb、W+Mo、Mo+Nb。微观组织以退火孪晶为特点。
     试验研究表明,选用具有晶粒细化作用的顺铁磁性W、Mo、Nb作为合金化元素,通过细晶强化、形变强化以及二次强化相、退火孪晶亚结构强化等共同作用,提高Fe-Ni因瓦合金的力学性能,并且使合金膨胀性能符合要求。在试验条件下,Nb的作用最为显著,使膨胀合金的强度明显提高并且能保持较低的平均膨胀系数。
Lower strength is the characteristic of Fe-Ni low expansion alloy. In recent year,the high strength low thermal expansion (HSLTE) alloy with low coefficient of thermalexpansion (CTE) and high strength has been concerned because of the alloy extendedapplication fields. More and more researchers pay attention to study how to balance thelow coefficient of thermal expansion and high strength and to apply the functionalmaterial as special structural materials.
     The author chooses the alloying elements with paramagnetic property and grainrefinement ability, based on the metal thermal expansion theory and the comprehensivestrengthening theory of primarily to fine-grain strengthening and the result of Fe-Ni-Xphase diagram by the Factsage software. The key point of influencing the CTE, strengthand stability of Fe-Ni invar alloy was investigated. Then, through the experiment ofmelting under gas shielded, forging process, heat treatment, the key factors ofinfluencing on the invar alloy performance are found out. This provides fundamentalsupport to formulate reasonable process route.
     (1) The rusults of alloying CTE are obtained. The influence order of single-elementalloying on CTE is W, Nb and Mo, which value has increased about50%,50%and110%, compared with the unalloyed sample. The matrix CTE on binary elemen W+Moand W+Nb is similar and improved62.5%, however that of Mo+Nb improved125%,compared with the unalloyed sample. The CET of alloyed with W, Nb, and W+Nb iscorrespondence with standard requirements, except of alloyed with Mo and Mo+Nb.This influence factors on CTE are analysis according to the theory of magnetostric andthe quality magnetization coefficient.
     (2) The effects of alloying grain size are analyzed. For single-element W, Mo andNb alloying, the grain size of the matrix has greatly decreased that compared with theunalloyed sample. The results show that the high content W and Nb have similarinfluence on the grain size which is5.0μm and5.3μm respectively. The grain size is 6.3μm and6.7μm after adding high content Mo and low content Nb. The grain size is10.0μm when adding low content W. For binary-element W+Mo, W+Nb and Mo+Nb,the grain size is4.8μm,4.5μm and7.69μm respectively.
     (3) The effects of alloying microhardness HV0.2are analyzed. The single-elementNb and Mo have great influence on microhardness. The HV0.2of high content Nb is172.6, that has improved36.0%compared with the unalloyed sample. The HV0.2oflow content Nb and Mo is nearly163. The HV0.2of the content W is150, it hasimproved12.7%compared with the unalloyed sample. The influence order ofbinary-element alloying on HV0.2is W+Nb, Mo+Nb and W+Mo, which value is170.3,162.0and151.
     (4) The impact of single element alloying on improving matrix performance is highcontent Nb, low content Nb, W. That of binary-element is W+Nb, W+Mo and Mo+Nb.The microstructure characteristic is annealing twins.
     The experimental results show that alloying with ferromagnetic W, Mo and Nb cangreatly fine the grain size of the Fe-Ni invar alloy. The increased strengthening andlower CTE mainly owe to fine grain strengthening, annealing twins sub-structurestrengthening. The effect of Nb alloying on the grain size is the most significant, whichmakes the strength of matrix increase and maintain a low CTE.
引文
[1]刘江.低膨胀合金的应用和发展[J].金属功能材料.2007(05):33-37.
    [2]何开元.精密合金材料学[M].北京:冶金工业出版社,1991.
    [3] Shga M. Invar alloys[J]. Solid State&Materials Science.1996(1):340-347.
    [4] Lomova N V, Shabanova I N. The study of the electronic structure and magnetic properties of invaralloys based on transition metals[J]. Journal of Electron Spectroscopy and Related Phenomena.2004,137–140(0):511-517.
    [5] Vinogradov A, Hashimoto S, Kopylov V I. Enhanced strength and fatigue life of ultra-fine grain Fe–36Ni Invar alloy[J]. Materials Science and Engineering: A.2003,355(1–2):277-285.
    [6] Zhang J, Tu Y, Xu J, et al. Effect of Solid Solution Treatment on Microstructure of Fe-Ni Based HighStrength Low Thermal Expansion Alloy[J]. Journal of Iron and Steel Research, International.2008,15(1):75-78.
    [7]陈昀,张明霞,苗承鹏,等. Ni36Fe因瓦合金—老材料和新用途[J].金属世界.2009(06):92-97.
    [8]赵玉鑫,王隆尧,曹献民,等.彩色显象管用I46S热双金属研究[J].上海钢研.1991(05):24-29.
    [9]骆良顺,张宇民,张凤海,等.微量钴合金化的因瓦合金模具铸造成形试验研究[J].铸造.2010,v.59;No.407(10):1012-1015.
    [10]陈昀,李明光,张艳红,等.因瓦合金发展现状及应用前景[J].机械研究与应用.2009,v.22;No.v.22(04):9-11.
    [11]张建福,徐进,王新林.因瓦合金强化途径研究概况[J].金属功能材料.2006(02):37-41.
    [12]启明.高强度因瓦合金[J].金属功能材料.2001(01):48.
    [13]吴珩.高强度因瓦合金[J].上海钢研.2002(03):37-41.
    [14]顾海福,朱鉴清.一种铁基高温低膨胀合金[J].金属学报.1976(02):207-209.
    [15]顾海福,朱鉴清.高温低膨胀合金[J].上海钢研.1975(02):1-7.
    [16]王孝培,顾海福.高低温低膨胀合金研制[J].上海钢研.1978(S1):41-45.
    [17]张红斌.低膨胀系列超合金[J].四川冶金.1993(03):40-49.
    [18]金延.可随意控制合金的热膨胀系数[J].金属功能材料.2002(05):47.
    [19]膨胀合金手册编写组.膨胀合金手册[M].北京:冶金工业出版社,1979.
    [20]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2000.
    [21]田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994.
    [22] Mohn P, Schwarz K, Wagner D. Magneto-volume effects in Fe-Ni invar: A first principles theory[J].Physica B: Condensed Matter.1989,161(1–3):153-156.
    [23] Xiong W, Zhang H, Vitos L, et al. Magnetic phase diagram of the Fe–Ni system[J]. Acta Materialia.2011,59(2):521-530.
    [24]鲜于泽,卢志超.因瓦效应与磁性理论[J].河北师范大学学报.1995(S1):177-179.
    [25]徐祖耀,李鹏兴.材料科学导论[M].上海:上海科学技术出版社,1986.
    [26] Schlosser W F, Graham G M, Meincke P P M. The temperature and magnetic field dependence of theforced magnetostriction and thermal expansion of Invar[J]. Journal of Physics and Chemistry ofSolids.1971,32(5):927-938.
    [27]王来生.时效处理对一种高强度低膨胀合金的作用[J].机械工程材料.1985(02):17-20.
    [28]肖建中.材料科学导论[M].北京:中国电力出版社,2001.
    [29] Sedov V L, Tsigel'Nik O A. Two magnetic states of iron atoms in Invar Fe–Ni alloys and positronannihilation[J]. Physics Letters A.1999,262(6):476-482.
    [30]沈婕,王晓军,夏天东.因瓦效应及因瓦合金的研究现状[C].中国湖北武汉:2007.
    [31] Y. E. Lattice dynamics in ferromagnetic invar alloys[J]. Journal of Magnetism and MagneticMaterials.1979,10(2–3):177-182.
    [32] V. L. M. Theory of Invar[J]. Solid State Communications.1992,83(9):739-743.
    [33] Acet M, Wassermann E F, Andersen K H, et al. Large spin fluctuations and moment-volume couplingin Fe in an FCC environment[J]. Physica B: Condensed Matter.2000,276–278(0):728-729.
    [34] Acet M, Gehrmann B, Wassermann E F, et al. Relevance of magnetic instabilities to the properties ofinterstitial solid solutions and compounds of Fe[J]. Journal of Magnetism and Magnetic Materials.2001,232(3):221-230.
    [35] Dumpich G, Becker E, Schletz K, et al. Evidence for a high-spin Fe state in fcc Fe1-xNix thin films inthe invar region[J]. Journal of Magnetism and Magnetic Materials.1988,74(2):237-247.
    [36] A. Z. M. On the invar problem[J]. Physica B: Condensed Matter.1989,161(1–3):1-8.
    [37] Z hres H, Acet M, Stam W, et al. Coexisting antiferromagnetism and ferromagnetism in Fe-NiInvar[J]. Journal of Magnetism and Magnetic Materials.1988,72(1):80-84.
    [38] Grigoriev S V, Klimko S A, Kraan W H, et al. On the problem of two magnetic correlation lengths inan invar FeNi alloy above TC[J]. Physica B: Condensed Matter.1997,241–243(0):582-584.
    [39] Masayuki S. Invar alloys[J]. Current Opinion in Solid State and Materials Science.1996,1(3):340-348.
    [40] Wang R M, Song Y G, Han Y F. Effect of rare earth on the microstructures and properties of a lowexpansion superalloy[J]. Micron.2002,33(6):575-580.
    [41] Ma lkiński L, Slawska-Waniewska A. Effect of micro structure on magnetization processes innanocrystalline Fe-Zr-B alloys[J]. Materials Science and Engineering: A.1997,226–228(0):716-720.
    [42] B ttger C, Friedrichs H, Neuh user H, et al. The change of Fe-Ni-invar properties by alloying Mn andCu[J]. Physica B: Condensed Matter.1989,161(1–3):29-32.
    [43] Inaba M, Sato M, Higashinakagawa E, et al. Characteristics of chromium-added Invar with regard toshadow masks for high-resolution colour television tubes[J]. Displays.1988,9(1):17-22.
    [44] Tang W, Gerhards C, Heise J, et al. Thermal expansion behavior of FeNi alloy layers in Fe1xNix/Cusuperlattices[J]. Journal of Magnetism and Magnetic Materials.1999,191(1–2):45-53.
    [45]李研,冯佃臣. Fe-Ni-Cu低膨胀系数合金的研究[J].内蒙古石油化工.2010(05):19-20.
    [46]龙毅,周兰,强文江,等.钴、铜元素含量对超因瓦合金磁性温度稳定性的影响[J].功能材料.1999(01):21-23.
    [47] Endoh Y, Noda Y, Ishikawa Y. Influence of magnetoelastic effects on lattice vibrations in theferromagnetic invar alloy Fe0.65Ni0.35[J]. Solid State Communications.1977,23(12):951-953.
    [48]何晓蓉,高建军.精密殷钢模具加工工艺[J].模具工业.2002(05):56-58.
    [49]杨博,李宏,曹正华.殷钢在复合材料成形模具中的应用[J].玻璃钢/复合材料.2010(06):68-69.
    [50]袁均平,易丹青,余志明,等.变形与热处理对Invar合金组织及性能的影响[J].金属热处理.2005(02):50-53.
    [51]张建福,徐进,王新林,等.时效处理对Fe-Ni合金丝材组织及性能的影响[J].材料热处理学报.2005(06):83-86.
    [52]邢绍美.4J32低膨胀合金及其工艺性[J].航天工艺.1998(06):33-35.
    [53]佟晓静.4J36低膨胀合金及其工艺性[J].机械.2002(S1):205-207.
    [54] Chen L, Zhang J, Zhang L, et al. Textures of high-strength and low-expansion Fe-Ni alloy wiresduring cold-drawing processes[J]. International Journal of Minerals, Metallurgy and Materials.2009,16(6):667-671.
    [55] Gulyaev A, Svistunova E L. Anomalies in temperature dependence of mechanical properties andthermal expansion of age hardenable invar alloy Fe-40%Ni-0.8%Be[J]. Scripta Materialia.1996,35(4):501-504.
    [56] Hausch G, B cher R, Hartmann J. Influence of thermomechanical treatment on the expansionbehavior of invar and superinvar[J]. Physica B: Condensed Matter.1989,161(1–3):22-24.
    [57]张建福,徐进,王新林.因瓦合金强化途径研究概况[J].金属功能材料.2006(02):37-41.
    [58]屠怡范,张建福,赵栋梁,等. Fe-Ni基高强度低膨胀合金组织性能与时效时间的关系[J].金属功能材料.2007(03):10-14.
    [59]邓世平,唐光明,赵彦. Fe-33Ni-4Co-1.2Nb超低膨胀合金研究[J].功能材料.2010(04):677-679.
    [60] Gulyaev A A, Svistunova E L. Precipitation process and age-hardenability of Fe-Ni-Be invar alloys[J].Scripta Metallurgica et Materialia.1995,33(9):1497-1503.
    [61] Sridharan K, Worzala F J, Dodd R A. Heat treatment and microstructure of an FeNiCo Invaralloy strengthened by intermetallic precipitation[J]. Materials Characterization.1992,29(4):321-327.
    [62] K. H. J. B. Invar effect in R2Fe14B compounds (RLa, Ce, Nd, Sm, Gd, Er)[J]. Journal of theLess Common Metals.1986,118(2):349-353.
    [63]王鑫,张建福,张羊换,等. NbC析出对超因瓦合金膨胀性能影响[J].稀有金属.2009,v.33;No.194(05):670-674.
    [64] Liu Y, Liu L, Wu Z, et al. Grain growth and grain size effects on the thermal expansion properties ofan electrodeposited Fe–Ni invar alloy[J]. Scripta Materialia.2010,63(4):359-362.
    [65]段启强,张辉,莫春立,等.驻留滑移带与晶界和孪晶界的交互作用[M].2006:449-453.
    [66]董成瑞,任海鹏,金同哲.微合金非调制钢[M].北京:冶金工业出版社,2000.
    [67]冶金工业部钢铁研宄院主编.合金钢手册[M].北京:冶金工业出版社,1973.
    [68]刘智恩.材料科学基础[M].西安:西北工业大学出版社,2000.
    [69]史美堂.金属材料及热处理[M].上海:上海科学技术出版社,1986.
    [70]包卫平,赵艳君,许立伟,等.固溶处理对TWIP钢组织和力学性能的影响[J].金属热处理.2010(04):33-37.
    [71]潘晓霞,余勇,谢若泽,等.固溶强化FeCrNi合金塑性变形机制探讨[J].机械工程材料.2006(03):14-16.
    [72]田兴,张彦生. Si对Fe-Mn-C合金的显微结构和拉伸性能的影响[J].科技通报.1991(01):1-5.
    [73]覃作祥,刘志强,张剑波.高Mn高SiTWIP钢显微组织与力学性能[J].大连交通大学学报.2011(04):48-52.
    [74]沈丁杰,熊惟皓,杨青青,等.热处理对Ag-Cu-Zn(-Sn)系925银合金力学性能和显微组织的影响[J].材料导报.2007(S1):436-438.
    [75]陈建刚,张建福,卢凤双,等.18Ni马氏体时效钢强化方法概述[J].金属功能材料.2009(04):46-49.
    [76]宋维锡.金属学[M].北京:冶金工业出版社,1989.
    [77]布赖恩F.,皮克林编,刘嘉禾译.钢的组织与性能[M].北京:科学出版社,1999.
    [78] Yue L, Wang L, Han J. Effects of rare earth on inclusions and corrosion resistance of10PCuREweathering steel[J]. Journal of Rare Earths.2010,28(6):952-956.
    [79] Yu S, Zhu Q, Wu S, et al. Microstructure of Steel5Cr21Mn9Ni4N Alloyed by Rare Earth[J]. Journalof Iron and Steel Research, International.2006,13(2):40-44.
    [80] Liu C, Huang Y, Jiang M. Effects and Mechanisms of RE on Impact Toughness and FractureToughness of Clean Heavy Rail Steel[J]. Journal of Iron and Steel Research, International.2011,18(3):52-58.
    [81] D. C L. Rare earth-sulfur interactions during steel making and their effect on properties[J]. Journal ofthe Less Common Metals.1983,93(2):275.
    [82]余景生,余宗森,章复中.稀土处理钢手册[M].北京:冶金工业出版社,1993.
    [83]陈宁叶文林勤郭世宝.稀土对14MnNb钢的微合金化作用[J].北京科技大学学报.1995(02):159-163.
    [84]韩宝军.稀土含量对38CrMoAl钢渗氮层性能的影响[J].表面技术.2009(06):39-42.
    [85]唐历,王义成,赵安银,等.稀土在钒微合金化热轧钢板中的作用[J].钢铁钒钛.2000(03):39-43.
    [86]范植金,罗国华,朱玉秀,等.连铸结晶器喂稀土处理的碳锰钢夹杂物研究[J].中国稀土学报.2009(06):834-837.
    [87]张卫文,刘正义,尹志民,等.稀土在过共晶高硅铝合金中的合金化作用[J].理化检验(物理分册).1998(03):12-14.
    [88]洪雨,吴玉程,李云,等.添加钨和稀土元素对TiAl合金性能的影响[J].合肥工业大学学报(自然科学版).2009(11):1707-1710.
    [89]洪雨,吴玉程,李云,等.添加钨和稀土元素对TiAl合金性能的影响[J].合肥工业大学学报(自然科学版).2009(11):1707-1710.
    [90]田景,杨王玥,孙祖庆.工艺参数对低碳钢形变强化相变的影响[J].材料热处理学报.2005(05):62-67.
    [91] Tsuij N, Saito Y, Utsunomiya H. Ultra-fine grained bulk steel produced by accumulativeroll-bonding(ARB)process[J]. Scripta Materialia.1999,40(7):795-800.
    [92] Costa A L M, Reis A C C, Kestens L. Ultra grain refinement and hardening of IF-steelduringaccumulative roll-bonding[J]. Materials Science and Engineering A.2005(460):4177-4189.
    [93] Ueji R, Tsuji N, Minamino Y. Ultragrain refinement of plain low carbon steel by coldrolling andannealing of martensite[J]. Acta Materialia.2002(50):4177-4189.
    [94]陈勇军,王渠东,李德江等.往复挤压工艺制备超细晶材料的研究与发展[J].材料科学与工程学报.2006,24(1):152-155.
    [95]戴文笠.累积叠轧焊对Q235钢组织细化影响的研究[D].北京科技大学,2006.
    [96]路迪民.金属学[M].西安:西北大学出版社,1994.
    [97]雍歧龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].机械工业出版社,1989.
    [98] Kumar B R, Mahato B, Sharma S, et al. Effect of Cyclic Thermal Process on Ultrafine GrainFormation in AISI304L Austenitic Stainless Steel[J]. Metallurgical and Materials Transactions A.2009(13).
    [99]王艳林,谢飞鸣,项幼阳,等.热轧钢材晶粒细化及其应用研究[J].金属材料与冶金工程.2010(05):3-5.
    [100] Li J, Ma J, Song C, et al. Columnar to Equiaxed Transition During Solidification of Small Ingot byUsing Electric Current Pulse[J]. Journal of Iron and Steel Research, International.2009,16(6):7-12.
    [101] Jian-Zhong W, Jin-Gang Q I, Hui-Ling D U, et al. Heredity of Aluminum Melt Caused by ElectricPulse Modification (I)[J]. Journal of Iron and Steel Research, International.2007,14(4):75-78.
    [102] Qi J, Wang J, He L, et al. An investigation for structure transformation in electric pulse modifiedliquid aluminum[J]. Physica B: Condensed Matter.2011,406(4):846-849.
    [103] Ma J, Li J, Gao Y, et al. Grain refinement of pure Al with different electric current pulse modes[J].Materials Letters.2009,63(1):142-144.
    [104]王冰,王建中,曹丽云,等.过热度对电脉冲孕育处理Al-5%Cu合金凝固组织的影响[J].热加工工艺.2007(13):61-63.
    [105]王静松,于文涛,唐培新,等. Sn-15%Pb合金电脉冲孕育处理效果时间相关性研究[J].北京科技大学学报.2007(S1):150-153.
    [106]王冰,王建中,齐锦刚,等.电脉冲孕育处理对Al-Cu-Mn合金时效过程的影响[J].材料热处理学报.2007(S1):138-141.
    [107]王建中,齐锦刚,杜慧玲,等.电脉冲孕育处理对纯铝凝固组织的影响[J].材料科学与工艺.2008(05):646-649.
    [108]王超,袁守谦,张西锋,等.电脉冲对335HRB螺纹钢凝固组织和力学性能的影响[J].兵器材料科学与工程.2009(02):49-52.
    [109]张西锋,袁守谦,魏颖娟,等.电脉冲细化HRB335螺纹钢凝固组织的研究[J].热加工工艺.2008(11):22-25.
    [110]张西锋,袁守谦,魏颖娟,等.断面尺寸对电脉冲处理45钢凝固组织的影响[J].连铸.2010(01):1-3.
    [111] Li Y J, Zeng X H, Blum W. Transition from strengthening to softening by grain boundaries inultrafine-grained Cu[J]. Acta Materialia.2004,52(17):5009-5018.
    [112] Nes E, Holmedal B, Evangelista E, et al. Modelling grain boundary strengthening in ultra-fine grainedaluminum alloys[J]. Materials Science and Engineering: A.2005,410–411(0):178-182.
    [113]孟祥瑞,巫瑞智,张密林.超轻Mg-Li合金细晶强化与复合强化的研究现状[J].铸造技术.2009(01):116-119.
    [114]乔立峰,刘振宇,王国栋,等.退火时间对含铌高强细晶IF钢组织性能的影响[J].北京科技大学学报.2010(08):998-1003.
    [115] R. M. Grain boundary strengthening in a fine grained aluminium alloy[J]. Scripta Metallurgica etMaterialia.1995,32(5):781-786.
    [116]梁晓光,伞星源,杨鹏,等. Cu及Cu-Zn合金压缩行为机理的研究[J].昆明理工大学学报(自然科学版).2011(04):23-28.
    [117]张治民,王强,李保成. AZ31镁合金温变形对其性能影响的研究[J].材料科学与工艺.2005(06):637-639.
    [118]陈伟,施哲,赵宇.铌微合金化控冷工艺生产HRB500抗震钢筋强韧化机理[J].中南大学学报(自然科学版).2011(06):1604-1610.
    [119]罗丽,汪明朴,郭明星,等.快速凝固制备Cu-2.0Cr-0.3Zr(wt%)合金组织及性能研究[J].矿冶工程.2007(04):90-93.
    [120]陈伟,施哲,赵宇,等.铌微合金化和控冷工艺开发HRB500抗震钢筋[J].材料热处理学报.2010(07):77-82.
    [121]范建文,易敏,陈明跃,等.细晶强化Q345中板的控轧控冷工艺研究[J].轧钢.2003(01):11-14.
    [122]张亨金,卫英慧,刘东风,等.超细晶粒Q235钢板力学性能和强韧化机理研究[J].太原理工大学学报.2006(06):667-669.
    [123] Jones A R. Annealing twinning and the nucleation of recrystallization at grain boundaries[J]. ActaMetallurgica Sinica.1981(5).
    [124]杨钢,孙利军,张丽娜,等.形变孪晶的消失与退火孪晶的形成机制[J].钢铁研究学报.2009(02):39-43.
    [125]荘育智,吳昌衡. α-铁中的退火孪晶[J].金属学报.1958(01):55-61.
    [126]夏爽,李慧,周邦新,等.金属材料中退火孪晶的控制及利用——晶界工程研究[J].自然杂志.2010(02):94-100.
    [127]熊荣刚,符仁钰,黎倩,等. TWIP钢的拉伸应变硬化行为[J].钢铁.2007(11):61-64.
    [128]贺志荣,解念锁,张永宏.中碳钢退火孪晶的形态及形成机制[J].陕西工学院学报.1996(03):3-7.
    [129] Torrents A, Yang H, Mohamed F A. Effect of Annealing on Hardness and the Modulus of Elasticityin Bulk Nanocrystalline Nickel[J].2010(3).
    [130]傅云义,杨平,杨王玥,等.粗大奥氏体晶粒中应变诱导铁素体形成特点[J].北京科技大学学报.2000(02):170-173.
    [131]刘向海,刘薇,刘嘉斌,等.退火工艺对低铝低硅孪晶诱发塑性钢组织及性能的影响[J].中国计量学院学报.2010(01):82-86.
    [132]米振莉,唐荻,代永娟,等.退火温度对25Mn-3Si-3Al-TWIP钢组织和力学性能的影响[J].北京科技大学学报.2007(S2):117-121.
    [133]刘向海,刘薇,刘嘉斌,等.铜对孪晶诱发塑性合金组织和性能的影响[J].材料科学与工程学报.2011(01):131-133.
    [134] Zhang X, Godfrey A, Huang X, et al. Microstructure and strengthening mechanisms in cold-drawnpearlitic steel wire[J]. Acta Materialia.2011,59(9):3422-3430.
    [135] Gavriljuk V G, Berns H, Escher C, et al. Grain boundary strengthening in austenitic nitrogen steels[J].Materials Science and Engineering: A.1999,271(1–2):14-21.
    [136] Yi H, Du L, Wang G, et al. Strengthening Mechanism of a New700MPa Hot Rolled High StrengthSteel[J]. Journal of Iron and Steel Research, International.2008,15(2):76-80.
    [137] Yi H, Du L, Wang G, et al. Development of Nb-V-Ti Hot-Rolled High Strength Steel With FineFerrite and Precipitation Strengthening[J]. Journal of Iron and Steel Research, International.2009,16(4):72-77.
    [138]刘彦春,朱伏先,任培东,等.新型细晶强化Q460级中厚板的研制[J].轧钢.2005(02):7-9.
    [139]李建华,方芳,习天辉,等.微合金化3.5Ni钢的强化机理[J].材料工程.2010(05):1-4.
    [140]李鸿美,张慧杰,孙力军,等.超低碳钢的强化机制研究[J].稀有金属.2010(S1):97-100.
    [141]王磊,高彩茹,王彦锋,等.新型细晶强化Q420q宽厚板的研制[J].轧钢.2008(02):3-6.
    [142]龚志华,王宝峰,杨钢,等.等通道挤压变形奥氏体不锈钢中孪晶细化机理[J].金属热处理.2009(08):36-39.
    [143]傅杰,李光强,于月光,等.基于纳米铁碳析出物的钢综合强化机理[J].中国工程科学.2011(01):31-42.
    [144] Kamikawa N, Huang X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purityaluminium deformed to high strain and annealed[J]. Acta Materialia.2009,57(14):4198-4208.
    [145] Fukamichi K, Hiroyoshi H, Kikuchi M, et al. Invar effects on some iron-base amorphous alloys[J].Journal of Magnetism and Magnetic Materials.1979,10(2–3):294-299.
    [146]陈稼祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984.
    [147]傅杰,陈恩普,谢继莹等.特种冶炼[M].北京:冶金工业出版社,1982.
    [148]傅杰.特种熔炼与冶金质量控制[M].北京:冶金工业出版社,1999.
    [149]四川五局金属材料机械性能试验编写组.金属材料机械性能试验[M].北京:国防工业出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700